MOSFET PARAMETERS FOR HAND CALCULATION

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nMOSFET</td>
<td>470</td>
<td>1.1 \times 10^{-7}</td>
<td>0.2</td>
<td>11.2</td>
<td>0.32</td>
</tr>
<tr>
<td>pMOSFET</td>
<td>100</td>
<td>1.5 \times 10^{-7}</td>
<td>0.2</td>
<td>11.2</td>
<td>0.32</td>
</tr>
</tbody>
</table>

(*) You may use the approximate relation: \(C_{IS} \approx C_{GS} W_0 \), \(C_{DS} \approx C_{GD} W_0 \)

PROBLEM 1

Consider the common source (CS) amplifier shown in the figure below, where the supply voltage \(V_{DD} = 1.2 \, \text{V} \), the source resistance \(R_S = 10 \, \text{k}\Omega \) and the load capacitance \(C_L = 10 \, \text{ff} \). Then:

1) determine the device channel length \(L \) so that the transconductance efficiency \(g_m I_D = 10 \) and the intrinsic gain \(a_0 = 22 \);
2) determine the device channel width \(W \) so that \(C_{GS} = 15 \, \text{ff} \);
3) determine the value of \(R_S \) so that \(V_{DS} = V_{GD} / 2 \);
4) derive the expression of the frequency response of the circuit and trace its Bode plot;
5) considering only the dominant pole of the frequency response, derive the expression and the value of the frequency where the amplitude of the frequency response is equal to 1.

SOLUTION

1) MOSFET channel length \(L \)

\[
\frac{g_m}{I_D} = \frac{2}{V_{DS}} = 10 \quad \Rightarrow \quad V_{DS} = 0.2 \, \text{V}
\]

\[
a_o = \frac{g_m R_S}{V_{DS}} = 2 \frac{I_D}{V_{DS}} \cdot \frac{M_L}{I_D} = L = \frac{g_m}{a_0} \quad \frac{V_{DS}}{M_L} = 200 \, \mu\text{m}
\]

2) MOSFET channel width \(W \)

\[
C_{GS} = \frac{2}{3} \frac{C_{xW}}{W} + C_{xsoW} = 15 \, \text{fF} \quad \Rightarrow \quad W = \frac{C_{gs}}{2/3 \frac{C_{xW}}{W} + C_{xso}} = 8.2 \, \mu\text{m}
\]

3) \(R_S \) so that \(V_{DS} = V_{DD} / 2 \)

\[
V_{DS} = V_{DD} - R_S I_D \quad I_D = \frac{1}{2} \frac{k_n}{L} V_{DS}^2 \quad V_{DS} = 38.9 \, \mu\text{A}
\]

\[
R_S = \frac{V_{DD} - V_{DS}}{I_D} = \frac{V_{DD} - V_{DS}}{2I_D} = 1.59 \, \text{k}\Omega
\]

4) Frequency response \(Av(f_w) = \frac{V_O}{V_S} \)

Small-signal equivalent circuit
\[A_v(j\omega) = \frac{V_o}{V_i} = -\frac{g_m R_o (1 - j\omega C_d/g_m)}{1 + j\omega R_o C_o} \]

\[R_o = R_e \parallel R_d \]

\[Y_i = \frac{i_i}{V_i} = \frac{j\omega C_s + j\omega C_d (1 + g_m R_o)}{A + R_s Y_i} \]

\[Y_i = \frac{2}{\omega + A_s} \quad V_o = \frac{V_s}{A + R_s Y_i} = \frac{V_s}{A + j\omega R_s C_i} \quad C_i = C_d + C_d (1 + g_m R_o) \]

\[A_v(j\omega) = \frac{V_o}{V_s} = \frac{V_o}{V_i} \frac{V_i}{V_s} = -A_v \frac{1 - j\omega/w_2}{(1 + j\omega/w_{p1}) (1 + j\omega/w_{p2})} \]

\[A_v = g_m R_o = 4.71 \]

\[\omega_s = 2\pi f_s = \frac{g_m}{C_d} = 2\pi \cdot (234 \text{ GHz}) > \omega_r \text{ irrelevant} \]

\[\omega_{p1} = 2\pi f_{p1} = \frac{1}{R_s C_i} = 2\pi \cdot (528 \text{ MHz}) \text{ dominant pole} \]

\[\omega_{p2} = 2\pi f_{p2} = \frac{1}{R_o C_o} = 2\pi \cdot (8.02 \text{ GHz}) \text{ non-dominant pole} \]

\[|A_v(j\omega)| \text{ dB} \]

\[-20 \text{ dB/dec} \]

5) Unity-gain frequency of the dominant-pole frequency response
Assuming \[A_v(j\omega) = -\frac{A_v}{1 + j\omega/\omega_p} \]

Then \[|A_v(j\omega_0)| = 1 \Rightarrow \frac{A_v}{\sqrt{1 + (\omega_0/\omega_p)^2}} = 1 \]

\[\omega_0 = \omega_p \sqrt{A_v^2 - 1} = 2.4\, \text{kHz} \]

If we remove the dominant-pole behavior assumption, then:

\[u_0 = A_v \sqrt{\frac{1 + (\omega_0/\omega_p)^2}{1 + (\omega_0/\omega_p)^2}} = 1 \]

\[\frac{\omega_0^2}{\omega_p^2} + \omega_0^2 \left(\frac{1}{\omega_p^2} + \frac{1}{U_i^2} - \frac{A_v^2}{\omega_p^2} \right) + 1 - \frac{A_v^2}{\omega_p^2} = 0 \]

\[\omega_0 = 2.33\, \text{GHz} \]

Problem 2

Consider the circuit shown in the figure below, where the supply voltage \(V_{DD} = 1.2\, \text{V} \), the bias current \(I_b = 1\, \text{mA} \), the signal source \(I_s \) generates a sinusoidal current with frequency large enough for capacitor \(C \) to be considered an ac short circuit. Using the MOSFET parameters at the top of the previous page and the data below:

1) determine the device gate width \(W \) so that the transconductance \(g_m = 10\, \text{mS} \);
2) determine the value of \(V_D \) so that the dc component of the input voltage \(V_I = 0.2\, \text{V} \);
3) derive an analytic expression for the transfer function \(A(s) = I_D/I_i \) (current gain).

Data

\(V_T = 0.4\, \text{V} \), \(L = 120\, \text{nm} \); \(R_D = 0.5\, \text{k} \); \(R_I = 5\, \text{k} \).

Solution

1) **Device gate width \(W \)**

\[I_D = I_b \quad g_m = \sqrt{2kT/W} \quad I_D = 10\, \text{mS} \quad \Rightarrow \quad W = L \cdot \frac{g_m^2}{2kT} \quad W = 12.8\, \mu\text{m} \]

2) **Gate voltage \(V_G \)**

\[V_G = V_I + V_{GS} = V_I + V_{RW} + V_{OV} = 0.8\, \text{V} \]

\[V_{OV} = \frac{2I_D}{g_m} = 0.2\, \text{V} \]

Note: we are neglecting the body effect.
that would increase V_{TH} value

3) Current gain $A_i(s) = \frac{i_o}{i_i}$

\[
\Phi I_B = \text{const} \Rightarrow \text{ac open}
\]

KCL at output node:
\[
v_o \left(\frac{1}{R_D} + \frac{1}{R_o} + sC_o \right) - v_i \left(\frac{1}{sC_s} + \frac{1}{R_d} \right) = 0
\]

\[
R_o = \frac{\mu_m L}{I_D} = 1.32 \ \mu \Omega \Rightarrow \ \beta_0 = \frac{1}{R_o} = 758 \ \mu S \ll \ \beta_m = \beta_m (1 + x) = 12 \ \text{mS}
\]

\[
v_o = \frac{\beta_m R_D}{1 + s R_D \alpha} \cdot v_i, \quad R_0 = R_0 || R_D
\]

\[
i_i = V_i \cdot \frac{1}{R_D} \left(s C_i + \beta_m + \frac{1}{R_o} \right) v_i - \frac{1}{R_o} v_o =
\]

\[
= \left(s C_i + \beta_m + \frac{1}{R_o} - \frac{\beta_m R_D}{1 + s \alpha} \right) v_i, \quad \alpha = \frac{1}{\beta_m C_0}
\]

\[
= \beta_m \left(\frac{s^2 C_i + \beta_m + s \beta_m}{s^2 C_i + \beta_m + \frac{R_o}{R_o + R_D}} \right) v_i
\]

\[
= \beta_m \left[\frac{1 + s (z + \beta_m)}{1 + s C} \right] v_i, \quad z = \frac{1}{R_o C_0}
\]

\[
\frac{\beta_m}{C_i} = 2\pi \cdot (89.8 \ \text{GHz}), \quad \frac{1}{C} = 2\pi \cdot (44.6 \ \text{GHz})
\]

MOSFET transit frequency: $\omega_T = \frac{\beta_m}{C_i + C_d} = 2\pi \cdot (81.1 \ \text{GHz})$

Taking into account that the maximum operating frequency of the circuit in practice is going to be $\ll \omega_T$, the
\[Y_i = \frac{A_i V_i}{V_i} = \frac{\text{gm} I_i}{R_s + R_D} \]

\[I_i = \frac{A_i}{R_s} \frac{V_i}{R_s + 2i} = \frac{I_s}{R_s} \frac{V_i}{V_i + 1} = \frac{\text{gm} R_s}{R_s + 1} \]

\[A_i(s) = \frac{V_o}{I_s} = -\frac{\text{gm}}{R_s + 1} \frac{1}{V_i} \frac{I_s}{I_s + R_D} \]

\[= -\frac{\text{gm} R_s}{1 + \frac{R_s R_D}{R_D}} \cdot \frac{1}{V_i} \]

\[= -\frac{R_s}{1 + \frac{R_D}{R_D}} \cdot \frac{\text{gm} R_s}{1 + \frac{R_D}{R_D}} \]

Problem 3

Consider the two circuits shown in the figure below, and discuss the advantages in terms of frequency response \(A_i(s) = \frac{V_o}{I_i}\) of topology (b) with respect to topology (a) when the internal parasitic capacitances of the two MOSFETs are negligible with respect to the load capacitance \(C_L\).

Using the MOSFET parameters at the top of the previous page and the data below, determine the low-frequency gain and the frequency of the dominant pole in the two cases.

Data

\(V_{\text{IN}} = 0.4 \, \text{V}, \, I_{\text{B1}} = 100 \, \mu\text{A}, \, g_{\text{m1}}/I_{\text{B1}} = 15, \, R_D = 4 \, \text{k}\Omega, \, L_1 = 240 \, \text{nm}, \, L_2 = 120 \, \text{nm}, \)

\(I_e = 2 \, \text{mA}, \, V_{\text{OV2}} = 0.2 \, \text{V}, \, C_L = 200 \, \text{fF}. \)

Solution

In topology (a), the large capacitive load \(C_L\) is driven directly by the common-source stage, whose frequency response \(A_i(s) = \frac{V_o}{I_i}\) features a dominant pole at,

\[f_{cs} = \frac{1}{2\pi R_0} \frac{1}{C_0} \quad R_0 = R_{\text{OL}} R_D \quad C_0 = C_L + C_{\text{DS1}} \]

In topology (b), the CS stage drives the much smaller input capacitance of the common-drain stage, \(C_{sc} < C_{\text{DS1}} + C_{\text{GS2}}\), which moves the CS dominant pole at higher frequencies:

\[f_{cs} = \frac{1}{2\pi} \frac{1}{R_0 \left(C_{\text{DS1}} + C_{\text{GS2}} + C_{\text{GS2}}\right)} \ll C_L \]

The CD stage introduces an additional pole at

\[f_{cb} = \frac{1}{2\pi} \frac{g_{\text{m}}}{C_{\text{GS2}} + C_{\text{DS2}} + C_L} \approx \frac{1}{2\pi \frac{g_{\text{m}}}{C_L}} \quad f_{cb} \ll f_{cs} \quad \Rightarrow \quad f_D \approx \frac{1}{2\pi R_0 C_L} \]
dc analysis

\[g_{m1} = \frac{g_m}{I_{D1}} \quad I_{D1} = (15 \text{ V}^{-1}) (100 \text{ mA}) = 1.5 \text{ mS} \quad R_{o1} = \frac{V_{m}}{I_{D1}} = 26.4 \text{ k}\Omega \]

\[W_1 = L_1 \quad \frac{g_{m1}}{2K_mI_{D1}} = 5.75 \mu \text{m} \]

\[g_{m2} = \frac{2I_{D2}}{V_{O2}} = \frac{2I_{D2}}{V_{O2}} = 20 \text{ mS} \quad R_{o2} = \frac{V_{m}L_2}{I_{D2}} = 660 \Omega \]

\[W_2 = L_2 \quad \frac{g_{m2}}{K_mV_{O2}} = 25.5 \mu \text{m} \]

Low-frequency gain

(a) \[A_{vo} = -g_{m1} \frac{r_{o1} \| R_D}{-5.21} \]

(b) \[A_{vo} = \frac{V_o}{V_i} = \frac{V_o}{V_{i2}} \frac{V_{i2}}{V_i} = \left(\frac{g_{m2}}{g_{m1} + \frac{1}{r_{o2}}} \right) \left(-g_{m1} \frac{r_{o1} \| R_D} \right) = -4.08 \]

Dominant pole

(a) \[\frac{1}{C_{B1}} \]

single pole at

\[f_c = \frac{1}{2\pi R_o(C_{B1} + C_{B2} + C_L)} = 224 \text{ MHz} \]

\[R_0 = r_{o1} \| R_D \]

(b) common-drain stage

\[C_{B2} \]
Pole frequency
\[f_{CD} = \frac{g_m V_i + V_{il}}{C_{ds2} + C_{ds1} + C_L} = 15.7 \text{ GHz} \]

Input capacitance
\[C_{CD} = C_{ds2} + g_{m2} \left(1 - \frac{V_o}{V_{il}} \right) = C_{ds2} + g_{m2} \left(1 - \frac{g_{m2}}{g_{m1} + V_{il}} \right) \]
\[\text{Miller's theorem} \]
\[= 14.8 \text{ fF} \]

CS stage
\[f_{CS} = \frac{1}{2 \pi R_C (C_{ds1} + C_{gs1} + C_{CD})} = 2.37 \text{ GHz} < f_{CD} \]

Dominant pole
\[f_{CS} = 2.37 \text{ GHz} \Rightarrow f_{CS} = 224 \text{ MHz} \]
\[CS < CD \quad \text{CS above} \]