## Supplementary Figures



Supplementary Figure 1. Previous Synthesis of Compound $7^{1}$


Supplementary Figure 2. NOESY spectrum of 13


Supplementary Figure 3. NOEY spectrum of 14


19

NOE


19'

Supplementary Figure 4. NOE Analysis of Compound 19

## Compound 19 in $\mathrm{CDCl}_{3}$



19

Natural Palau'amine in $\mathrm{d}_{6}$-DMSO (Scheuer)

palau'amine (1)

Supplementary Figure 5. Comparison of Coupling Constant of Compound 19 and Natural Palau'amine (1)



TLC (hexane/EtOAc = 3:1)

Supplementary Figure 6. TLC Analysis in the Conversion of Compound $\mathbf{1 8}$ to $\mathbf{1 9}$


Supplementary Figure 7. Optimized structures of 18A+2THF(I) and 18A+2THF(II).


Supplementary Figure 8. Potential energy profiles for the cyclization reaction of $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathrm{I}) \rightarrow \mathbf{1 8 B}+\mathbf{2 T H F}(\mathrm{I})$ and $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathrm{II}) \rightarrow \mathbf{1 8 B}+\mathbf{2 T H F}($ II $)$. The potential energies (in $\mathrm{kcal} / \mathrm{mol}$ ) relative to $\mathbf{1 8 A} \mathbf{+ 2 \mathbf { 2 } H F}(\mathbf{I})$ are shown in parenthesis.



2.0000
2.1475
~


Supplementary Figure 10. ${ }^{13} \mathrm{C}$-NMR spectrum of S1


1.5876
0.8165
0.6994
$0.9502^{1.6308}$
1.6099

Supplementary Figure 11. ${ }^{1} \mathrm{H}$-NMR spectrum of 11


Supplementary Figure 12. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 1}$


Supplementary Figure 13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{S} 2$


Supplementary Figure $14 .{ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S} \mathbf{2}$


Supplementary Figure 15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 12




Supplementary Figure 16. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 2}$


Supplementary Figure 17. ${ }^{1} \mathrm{H}$-NMR spectrum of 13


Supplementary Figure 18. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 3}$


Supplementary Figure 19. COSY spectrum of 13


Supplementary Figure 20. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 4}$


Supplementary Figure 21. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 4}$


Supplementary Figure 22. COSY spectrum of 14


Supplementary Figure 23. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 15


Supplementary Figure $24 .{ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 5}$


Supplementary Figure 25. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 8}$


Supplementary Figure 26. ${ }^{13} \mathrm{C}$-NMR spectrum of 18


Supplementary Figure 27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 19


Supplementary Figure 28. ${ }^{13} \mathrm{C}$-NMR spectrum of 19


Supplementary Figure 29. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 20


Supplementary Figure 30. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 0}$


Supplementary Figure 31. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 21

Supplementary Figure 32. ${ }^{13} \mathrm{C}$-NMR spectrum of 21


Supplementary Figure 33. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 22

Supplementary Figure 34. ${ }^{13} \mathrm{C}$-NMR spectrum of 22


Supplementary Figure 35. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 3}$


Elemental composition search on mass 943.37628

```
m/z= 938.37628-948.37628
```

Isotope Min Max
o-16 $0 \quad 8$
C-12 0
H-1 0
Si-28 0
$\begin{array}{lll}\mathrm{N}-14 & 0 & 7\end{array}$
S-32 0
Charge - 1
Mass tolerance 5.00 ppm


ŌTBS

Mass tolerance 5.00 ppm
max results 100

| $\mathrm{m} / \mathrm{z}$ | Theo. Mass | Delta <br> (ppm) | RDB equiv. | Composition |
| :---: | :---: | :---: | :---: | :---: |
| 943.37628 | 943.37641 | -0.13 | 27.0 | $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{O}_{8} \mathrm{~N}_{7} \mathrm{~S} \mathrm{Si}$ |
|  | 943.37571 | 0.61 | 21.0 | $\mathrm{C}_{49} \mathrm{H}_{65} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{Si}_{2}$ |
|  | 943.37705 | -0.81 | 26.0 | $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{O}_{4} \mathrm{~N}_{7} \mathrm{~S}_{2} \mathrm{Si}_{2}$ |
|  | 943.37437 | 2.03 | 21.5 | $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{O}_{7} \mathrm{~N}_{6} \mathrm{~S}_{2} \mathrm{Si} 2$ |
|  | 943.37978 | -3.71 | 22.0 | $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{O}_{8} \mathrm{~N}_{7} \mathrm{~S}_{2} \mathrm{Si}$ |

Supplementary Figure 36. HRMS (ESI) spectrum of 23


Supplementary Figure $37 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 24


Supplementary Figure 38. ${ }^{13} \mathrm{C}$-NMR spectrum of 24


Supplementary Figure 39. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 25


Supplementary Figure $\mathbf{4 0} .{ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 5}$


Supplementary Figure 41. ${ }^{1} \mathrm{H}$-NMR spectrum of 28

142799_16_SO2C12_pn \#21-23 RT: 0.34-0.38 AV: 2 NL: 7.86E5
T: FTMS $\{1,1\}+\mathrm{p}$ ESI Full ms [150.00-2000.00]


Elemental composition search on mass 1011.36643
$\mathrm{m} / \mathrm{z}=1006.36643-1016.36643$
Isotope Min Max
C-12 060
H-1 $0 \quad 120$
0-16 0 9
N-14 $0 \quad 8$
Si-28 $0 \quad 1$
S-32 $0 \quad 1$
Cl-35 0 1
Charge 1
Mass tolerance 5.00 ppm
Nitrogen rule not used
RDB equiv -1.00-100.00
max results 100 $\mathrm{m} / \mathrm{z} \mid$ Theo. Mass
1011.36643

| 1011.36651 | -0.08 | 34.5 | C 59 H 56 O 6 N 6 Cl S |
| :---: | :---: | :---: | :---: |
| 1011.36628 | 0.15 | 34.5 | C 58 H 56 O 7 N 6 Cl Si |
| 1011.36563 | 0.79 | 25.5 | $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{~N}_{8} \mathrm{Cl}$ S Si |
| 1011.36762 | -1.18 | 34.0 | $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{Cl}$ Si |
| 1011.36782 | -1.37 | 34.5 | $\mathrm{C}_{56} \mathrm{H}_{55} \mathrm{O}_{7} \mathrm{~N} 8 \mathrm{~S} \mathrm{Si}$ |
| 1011.36468 | 1.73 | 39.5 | C60 H $51 \mathrm{O}_{6} \mathrm{~N} 8 \mathrm{~S}$ |
| 1011.36445 | 1.96 | 39.5 | $\mathrm{C}_{59} \mathrm{H}_{51} \mathrm{O}_{7} \mathrm{~N}_{8} \mathrm{Si}$ |
| 1011.36383 | 2.57 | 30.0 | C56 H58 O9 $\mathrm{N}_{5} \mathrm{Cl}$ S |
| 1011.36916 | -2.70 | 34.0 | C58 H $57 \mathrm{O}_{8} \mathrm{~N}_{5} \mathrm{~S} \mathrm{Si}$ |
| 1011.36965 | -3.18 | 29.5 | C 55 H 60 O 7 N 6 Cl S Si |
| 1011.36249 | 3.90 | 30.5 | $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{~N} 8 \mathrm{Cl}$ S |
| 1011.37050 | -4.03 | 33.5 | C60 H $59 \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{SSi}$ |
| 1011.36226 | 4.13 | 30.5 | $\mathrm{C}_{53} \mathrm{H}_{56} \mathrm{O}_{9} \mathrm{~N}_{8} \mathrm{Cl} \mathrm{Si}^{\text {c }}$ |
| 1011.36200 | 4.38 | 35.0 | $\mathrm{C}_{57} \mathrm{H}_{53} \mathrm{O}_{9} \mathrm{~N}_{7} \mathrm{~S}$ |
| 1011.37099 | -4.51 | 29.0 | C57 H $62 \mathrm{O} 8 \mathrm{~N}_{3} \mathrm{Cl}$ S Si |

Supplementary Figure 42. HRMS (ESI) spectrum of 28


Supplementary Figure 43. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 30


Elemental composition search on mass 1115.42078
$\mathrm{m} / \mathrm{z}=1110.42078-1120.42078$
Isotope Min Max
C-12 0
H-1 $0 \quad 120$
0-16 0 11
N-14 $0 \quad 10$
Si-28 0 1
Cl-35 0 1
Charge 1
Mass tolerance 5.00 ppm
Nitrogen rule not used
RDB equiv -1.00-100.00
max results 100
m/z $\mid$ Theo. Mass $\mid$ Delta $\mid$ RDB $\mid$ Composition

| 1115.42078 | 1115.42083 | -0.05 | 30.5 | $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{10} \mathrm{Cl}$ Si |
| ---: | ---: | ---: | ---: | ---: |
| 1115.41769 | 2.77 | 35.5 | $\mathrm{C}_{60} \mathrm{H} 60 \mathrm{O}_{10} \mathrm{~N}_{10} \mathrm{Cl}$ |  |

Supplementary Figure 44. HRMS (ESI) spectrum of 30


Supplementary Figure $\mathbf{4 5} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3 2}$

142801_18_NaN3_pn\#17-20 RT: 0.28-0.31 AV: 2 NL: 1.80E6
142801_18_NaN3_pn\#17-20 RT: 0.28-0.31 A
T: FTMS $\{1,1\}+$ p ESI Full ms [150.00-2000.00]


Elemental composition search on mass 984.29480
$\mathrm{m} / \mathrm{z}=979.29480-989.29480$
Isotope Min Max
C-12 060
H-1 $0 \quad 120$
O-16 $0 \quad 10$
N-14 $0 \quad 13$
Cl-35 $0 \quad 1$
Charge 1
Mass tolerance 5.00 ppm


Nitrogen rule not used
32
RDB equiv -1.00-100.00
max results 100

| $\mathrm{m} / \mathrm{z}$ 984.29480 | Theo. Mass 984.29389 | ```Delta (ppm) 0.93``` | $\begin{array}{r} \text { RDB } \\ \text { equiv. } \\ 32.5 \end{array}$ | Composition $\mathrm{C}_{47} \mathrm{H}_{43} \mathrm{O}_{10 \mathrm{~N}}^{13 \mathrm{Cl}}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 984.29608 | -1.30 | 41.5 | $\mathrm{C}_{53} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~N}_{13}$ |
|  | 984.29742 | -2.67 | 41.0 | $\mathrm{C}_{55} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{~N}_{10}$ |
|  | 984.29204 | 2.80 | 40.0 | $\mathrm{C}_{60} \mathrm{H}_{45} \mathrm{O}_{8} \mathrm{~N}_{4} \mathrm{Cl}$ |
|  | 984.29204 | 2.81 | 45.5 | $\mathrm{C}_{59} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~N}_{11} \mathrm{Cl}$ |
|  | 984.29791 | -3.16 | 36.5 | $\mathrm{C}_{52} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{~N}_{11} \mathrm{Cl}$ |
|  | 984.29877 | -4.03 | 40.5 | $\mathrm{C}_{57} \mathrm{H}_{42} \mathrm{O}_{10} \mathrm{~N}_{7}$ |
|  | 984.29070 | 4.16 | 40.5 | $\mathrm{C}_{58} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{~N} 7 \mathrm{Cl}$ |
|  | 984.29925 | -4.53 | 36.0 | $\mathrm{C}_{54} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{~N} 8 \mathrm{Cl}$ |
|  | 984.29021 | 4.66 | 50.5 | $\mathrm{C}_{60} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{13}$ |

Supplementary Figure 46. HRMS (ESI) spectrum of 32


Supplementary Figure 47. ${ }^{1} \mathrm{H}$-NMR spectrum of palau'amine (1)


Supplementary Figure $48 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of palau'amine (1)
${ }^{1} \mathrm{H}$-NMR Spectrum of Natural Palau'amine (Scheuer, $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, TFA salt) ${ }^{2}$

${ }^{1} \mathrm{H}$-NMR Spectrum of Natural Palau'amine (Quinn, $600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, TFA salt) ${ }^{3}$

${ }^{1} \mathrm{H}$-NMR Spectrum of Synthetic Palau'amine $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, TFA salt)


Supplementary Figure 49. Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra of natural and synthetic Palau'amine (1)
${ }^{13}$ C-NMR Spectrum of Natural Palau'amine (Scheuer, $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, TFA salt) ${ }^{2}$

${ }^{13}$ C-NMR Spectrum of Synthetic Palau'amine ( $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, TFA salt)


Supplementary Figure 50. Comparison of ${ }^{13} \mathrm{C}$-NMR Spectra of natural and synthetic Palau'amine (1)

## Reverse-Phase HPLC

(Atlantis dC18, $5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}, 100 \% \mathrm{H}_{2} \mathrm{O}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right), 1 \mathrm{~mL} / \mathrm{min}$ )
Synthetic Palau'amine (1)

palau'amine (1)•3TFA


Brank ( $100 \% \mathrm{H}_{2} \mathrm{O}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)$ )


## Supplementary Figure 51. HPLC Analysis of Synthetic Palau'amine (1)

## Supplementary Tables

| Position | Natural (Scheuer) ${ }^{2-3}$ | Natural (Quinn) ${ }^{4}$ | Synthetic |
| :---: | :--- | :--- | :--- |
| $\mathbf{3}$ | $6.85(\mathrm{dd}, 3.9,1.5)$ | $6.89(\mathrm{dd}, 3.9,1.6)$ | $6.87(\mathrm{dd}, 4.0,1.5)$ |
| $\mathbf{4}$ | $6.35(\mathrm{dd}, 3.9,2.8)$ | $6.39(\mathrm{dd}, 3.9,2.8)$ | $6.37(\mathrm{dd}, 4.0,2.5)$ |
| $\mathbf{5}$ | $6.99(\mathrm{dd}, 2.8,1.5)$ | $7.03(\mathrm{dd}, 2.8,1.6)$ | $7.01(\mathrm{dd}, 2.5,1.5)$ |
| $\mathbf{6}$ | $6.33(\mathrm{~s})$ | $6.37(\mathrm{~s})$ | $6.36(\mathrm{~s})$ |
| $\mathbf{1 1}$ | $3.08(\mathrm{~d}, 14.1)$ | $3.11(\mathrm{~d}, 13.8)$ | $3.09(\mathrm{~d}, 14.0)$ |
| $\mathbf{1 2}$ | $2.52(\mathrm{dddd})$ | $2.50(\mathrm{~m})$ | $2.49(\mathrm{~m})$ |
| $\mathbf{1 3}$ | $3.96(\mathrm{dd}, 10.4,7.3) \alpha$ | $3.97(\mathrm{dd}, 10.2,7.2) \alpha$ | $3.95(\mathrm{dd}, 10.0,7.0) \alpha$ |
|  | $3.28(\mathrm{dd}, 10.4,10.3) \beta$ | $3.31(\mathrm{t}, 10.2) \beta$ | $3.29(\mathrm{t}, 10.2) \beta$ |
| $\mathbf{1 7}$ | $4.35(\mathrm{~d}, 7.9)$ | $4.34(\mathrm{~d}, 7.8)$ | $4.33(\mathrm{~d}, 7.5)$ |
| $\mathbf{1 8}$ | $2.47(\mathrm{dddd})$ | $2.48(\mathrm{~m})$ | $2.47(\mathrm{~m})$ |
| $\mathbf{1 9}$ | $3.32(\mathrm{dd}, 13.2,7.0) \mathrm{a}$ | $3.32(\mathrm{dd}, 13.2,6.6) \mathrm{a}$ | $3.31(\mathrm{dd}, 13.2,6.5) \mathrm{a}$ |
|  | $3.24(\mathrm{dd}, 13.2,7.0) \mathrm{b}$ | $3.27(\mathrm{dd}, 13.2,6.6) \mathrm{b}$ | $3.26(\mathrm{dd}, 13.2,6.5) \mathrm{b}$ |
| $\mathbf{2 0}$ | $5.96(\mathrm{~s})$ | $5.98(\mathrm{~s})$ | $5.96(\mathrm{~s})$ |

Supplementary Table 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Comparison of natural and synthetic Palau'amine (1)

palau'amine (1)•3TFA

| Position | Natural (Scheuer) $^{\mathbf{2 - 3}}$ | Natural (Quinn) $^{\mathbf{4}}$ | Synthetic |
| :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | 122.5 | 122.5 | 122.5 |
| $\mathbf{3}$ | 115.6 | 115.7 | 115.7 |
| $\mathbf{4}$ | 113.8 | 113.9 | 113.9 |
| $\mathbf{5}$ | 125.2 | 125.2 | 125.2 |
| $\mathbf{6}$ | 69.0 | 69.0 | 69.0 |
| $\mathbf{8}$ | $157.8^{3,5-6}(159.6)^{2}$ | 157.8 | 157.9 |
| $\mathbf{1 0}$ | 80.8 | 80.7 | 80.8 |
| $\mathbf{1 1}$ | 56.3 | 56.3 | 56.4 |
| $\mathbf{1 2}$ | 41.8 | 41.8 | 41.9 |
| $\mathbf{1 3}$ | 46.1 | 46.0 | 46.0 |
| $\mathbf{1 5}$ | $159.5^{3,5-6}(157.8)^{2}$ | 159.5 | 159.6 |
| $\mathbf{1 6}$ | 72.1 | 72.0 | 72.1 |
| $\mathbf{1 7}$ | 74.0 | 74.0 | 74.0 |
| $\mathbf{1 8}$ | 48.6 | 48.6 | 48.6 |
| $\mathbf{1 9}$ | 41.9 | 41.8 | 41.9 |
| $\mathbf{2 0}$ | 83.7 | 83.7 | 83.8 |
| $\mathbf{2 2}$ | 157.9 | 157.9 | 157.8 |

Supplementary Table 2. ${ }^{13} \mathrm{C}$-NMR Comparison of natural and synthetic Palau'amine (1)

| $\mathbf{1 8 A}$ |  |  |  |
| :---: | ---: | ---: | ---: |
|  | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ |
| C | 0.2517 | -0.8517 | -0.5261 |
| C | 0.4778 | 0.6326 | -0.8613 |
| C | 1.1659 | -1.0999 | 0.7118 |
| C | 1.9689 | 0.8622 | -0.5282 |
| C | 2.4667 | -0.4152 | 0.1769 |
| H | 0.6704 | -1.4404 | -1.3470 |
| H | -0.1529 | 1.2658 | -0.2310 |
| H | 2.5395 | 0.9631 | -1.4570 |
| H | 3.1320 | -0.1934 | 1.0170 |
| C | -1.1634 | -1.2803 | -0.3230 |
| N | -1.9358 | -0.7106 | 0.5214 |
| C | -1.6217 | -2.5390 | -1.0555 |
| O | -1.5711 | -2.6841 | -2.2528 |
| O | -2.0543 | -3.4493 | -0.2095 |
| C | -2.5409 | -4.6763 | -0.7842 |


| H | -3.4014 | -4.4640 | -1.4182 |
| :---: | :---: | :---: | :---: |
| H | -1.7502 | -5.1453 | -1.3683 |
| H | -2.8222 | -5.2980 | 0.0595 |
| C | -3.2275 | -1.2136 | 0.7487 |
| O | -4.0593 | -1.3989 | -0.1176 |
| O | -3.4021 | -1.3916 | 2.0319 |
| C | -4.6521 | -1.9635 | 2.5848 |
| C | -5.8289 | -1.0549 | 2.2566 |
| H | -6.6881 | -1.3747 | 2.8493 |
| H | -5.5945 | -0.0228 | 2.5260 |
| H | -6.0980 | -1.1004 | 1.2031 |
| C | -4.8203 | -3.3785 | 2.0497 |
| H | -5.0005 | -3.3814 | 0.9751 |
| H | -3.9291 | -3.9699 | 2.2703 |
| H | -5.6744 | -3.8426 | 2.5464 |
| C | -4.3725 | -1.9715 | 4.0794 |
| H | -5.2200 | -2.4149 | 4.6039 |
| H | -3.4784 | -2.5578 | 4.2971 |
| H | -4.2277 | -0.9539 | 4.4467 |
| C | 1.3273 | -2.5606 | 1.0662 |
| H | 1.6187 | -2.7432 | 2.0954 |
| C | 1.1636 | -3.5943 | 0.2474 |
| H | 0.9156 | -3.4857 | -0.8039 |
| H | 1.3044 | -4.6087 | 0.6042 |
| N | 0.6575 | -0.3335 | 1.8545 |
| C | 1.4294 | -0.2951 | 2.9165 |
| O | 2.5200 | -0.8155 | 3.1862 |
| C | 0.8919 | 0.6399 | 4.0220 |
| F | -0.4117 | 1.0104 | 3.8468 |
| F | 0.9613 | 0.0889 | 5.2308 |
| F | 1.5905 | 1.7832 | 4.0560 |
| C | 0.1268 | 0.9230 | -2.3190 |
| H | 0.2166 | 2.0067 | -2.4711 |
| H | 0.8837 | 0.4377 | -2.9479 |
| N | -1.1766 | 0.4300 | -2.7172 |
| C | -2.2117 | 1.1292 | -2.2610 |
| O | -2.1888 | 2.1060 | -1.4787 |
| C | -3.5350 | 0.6618 | -2.7960 |
| C | -4.7842 | 1.2750 | -2.6630 |
| N | -3.6379 | -0.4787 | -3.5522 |
| C | -5.6977 | 0.4746 | -3.3933 |
| C | -4.9451 | -0.5785 | -3.9256 |
| H | -4.9885 | 2.1868 | -2.1227 |
| H | -6.7559 | 0.6444 | -3.5285 |
| H | -5.2858 | -1.3992 | -4.5424 |
| Li | -4.7484 | -0.7899 | -1.7642 |
| Li | -1.7582 | -1.1926 | -3.6315 |
| Li | -1.1286 | 0.4786 | 1.9678 |
| O | 3.1002 | -1.2594 | -0.7655 |
| Si | 4.6327 | -1.8828 | -0.4806 |
| C | 4.9931 | -2.9874 | -1.9695 |
| C | 5.8323 | -0.4429 | -0.3841 |
| H | 5.6582 | 0.1456 | 0.5216 |
| H | 6.8690 | -0.7899 | -0.3555 |
| H | 5.7179 | 0.2207 | -1.2450 |
| C | 4.6697 | -2.8346 | 1.1316 |
| H | 4.1767 | -3.8049 | 1.0339 |
| H | 5.7011 | -2.9992 | 1.4560 |
| H | 4.1461 | -2.2717 | 1.9121 |
| C | 5.1727 | -2.1288 | -3.2291 |
| H | 6.0307 | -1.4562 | -3.1403 |
| H | 5.3434 | -2.7721 | -4.1008 |
| H | 4.2849 | -1.5214 | -3.4293 |
| C | 6.2787 | -3.7854 | -1.7081 |
| H | 6.5180 | -4.4083 | -2.5782 |
| H | 7.1359 | -3.1287 | -1.5279 |


| H | 6.1731 | -4.4475 | -0.8435 |
| :--- | ---: | ---: | ---: |
| C | 3.8250 | -3.9594 | -2.1871 |
| H | 4.0435 | -4.6241 | -3.0318 |
| H | 3.6462 | -4.5840 | -1.3061 |
| H | 2.9004 | -3.4186 | -2.4050 |
| C | 2.2023 | 2.1207 | 0.2924 |
| H | 3.2752 | 2.2515 | 0.4805 |
| H | 1.7019 | 2.0182 | 1.2640 |
| O | 1.7094 | 3.2431 | -0.4217 |
| Si | 0.9008 | 4.4892 | 0.3534 |
| C | -0.6308 | 3.7974 | 1.1834 |
| H | -1.212 | 3.2299 | 0.4550 |
| H | -0.3579 | 3.1546 | 2.0263 |
| H | -1.2542 | 4.6038 | 1.5815 |
| C | 2.0432 | 5.2396 | 1.6393 |
| H | 2.3887 | 4.4741 | 2.3406 |
| H | 2.9235 | 5.6902 | 1.1729 |
| H | 1.5316 | 6.0135 | 2.2177 |
| C | 0.4535 | 5.7346 | -0.9949 |
| C | 0.1597 | 7.0990 | -0.3528 |
| H | -0.1666 | 7.8103 | -1.1209 |
| H | -0.6380 | 7.0342 | 0.3950 |
| H | 1.0458 | 7.5167 | 0.1339 |
| C | 1.6261 | 5.8789 | -1.9751 |
| H | 2.5424 | 6.1978 | -1.4678 |
| H | 1.8343 | 4.9341 | -2.4821 |
| H | 1.3872 | 6.6327 | -2.7351 |
| C | -0.7940 | 5.2576 | -1.7531 |
| H | -0.9974 | 5.9314 | -2.5945 |
| H | -0.6854 | 4.2415 | -2.1412 |
| H | -1.6758 | 5.2548 | -1.1059 |

Supplementary Table 3. Cartesian Coordinates from DFT calculations (in $\AA$ ) of 18A

| $\mathrm{TS}(\mathbf{1 8 A} / \mathbf{1 8 B})$ |  |  |  |
| :---: | ---: | ---: | ---: |
|  | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ |
| C | 0.4927 | -0.9379 | -0.3224 |
| C | 0.4224 | 0.4967 | -0.8469 |
| C | 1.4548 | -0.8209 | 0.8916 |
| C | 1.8610 | 1.0187 | -0.7171 |
| C | 2.5983 | -0.0032 | 0.1805 |
| H | 1.0129 | -1.5402 | -1.0740 |
| H | -0.2416 | 1.0714 | -0.1966 |
| H | 2.3544 | 1.0092 | -1.6941 |
| H | 3.2156 | 0.4836 | 0.9417 |
| C | -0.8994 | -1.4797 | -0.1664 |
| N | -1.6977 | -0.9177 | 0.7084 |
| C | -1.0832 | -2.9433 | -0.5655 |
| O | -1.0604 | -3.3976 | -1.6868 |
| O | -1.1469 | -3.6891 | 0.5190 |
| C | -1.2008 | -5.1090 | 0.3140 |
| H | -2.0919 | -5.3667 | -0.2577 |
| H | -0.3094 | -5.4385 | -0.2198 |
| H | -1.2385 | -5.5438 | 1.3076 |
| C | -2.9543 | -1.4324 | 0.9161 |
| O | -3.5400 | -2.2422 | 0.2083 |
| O | -3.4603 | -0.9054 | 2.0221 |
| C | -4.8145 | -1.2113 | 2.5020 |
| C | -5.8397 | -0.7192 | 1.4882 |
| H | -6.8344 | -0.7763 | 1.9352 |
| H | -5.6378 | 0.3213 | 1.2248 |
| H | -5.8362 | -1.3203 | 0.5806 |
| C | -4.9416 | -2.7000 | 2.8017 |


| H | -4.9215 | -3.2973 | 1.8921 |
| :---: | :---: | :---: | :---: |
| H | -4.1305 | -3.0198 | 3.4594 |
| H | -5.8890 | -2.8746 | 3.3155 |
| C | -4.8977 | -0.3969 | 3.7858 |
| H | -5.8768 | -0.5356 | 4.2468 |
| H | -4.1296 | -0.7205 | 4.4908 |
| H | -4.7579 | 0.6644 | 3.5722 |
| C | 1.9244 | -2.1400 | 1.4567 |
| H | 2.3071 | -2.0806 | 2.4708 |
| C | 1.9364 | -3.3078 | 0.8247 |
| H | 1.6023 | -3.4273 | -0.2013 |
| H | 2.3072 | -4.2011 | 1.3157 |
| N | 0.8507 | 0.0184 | 1.9324 |
| C | 1.6322 | 0.3961 | 2.9165 |
| O | 2.8140 | 0.1585 | 3.2019 |
| C | 0.9409 | 1.3977 | 3.8690 |
| F | -0.4213 | 1.4074 | 3.7647 |
| F | 1.2152 | 1.1585 | 5.1481 |
| F | 1.3323 | 2.6527 | 3.6004 |
| C | -0.1989 | 0.4176 | -2.2289 |
| H | -0.5279 | 1.4096 | -2.5484 |
| H | 0.5635 | 0.0625 | -2.9329 |
| N | -1.3081 | -0.5346 | -2.2447 |
| C | -2.5322 | 0.0139 | -2.0220 |
| O | -2.7534 | 1.1012 | -1.4754 |
| C | -3.6720 | -0.8025 | -2.5305 |
| C | -5.0399 | -0.5474 | -2.3987 |
| N | -3.4597 | -1.9448 | -3.2603 |
| C | -5.7001 | -1.5847 | -3.0986 |
| C | -4.6886 | -2.4040 | -3.6176 |
| H | -5.4842 | 0.2839 | -1.8723 |
| H | -6.7646 | -1.7132 | -3.2298 |
| H | -4.7950 | -3.2969 | -4.2186 |
| Li | -4.4461 | -2.5312 | -1.4115 |
| Li | -1.4754 | -2.2418 | -3.2339 |
| Li | -1.0718 | 0.3322 | 2.1020 |
| O | 3.3765 | -0.8621 | -0.6310 |
| Si | 5.0076 | -1.1097 | -0.3235 |
| C | 5.5608 | -2.3596 | -1.6266 |
| C | 5.8886 | 0.5356 | -0.5257 |
| H | 5.5869 | 1.2321 | 0.2621 |
| H | 6.9739 | 0.4175 | -0.4608 |
| H | 5.6521 | 0.9933 | -1.4897 |
| C | 5.2691 | -1.7416 | 1.4192 |
| H | 4.9498 | -2.7815 | 1.5207 |
| H | 6.3249 | -1.6726 | 1.6968 |
| H | 4.6855 | -1.1426 | 2.1267 |
| C | 5.5437 | -1.7094 | -3.0171 |
| H | 6.2620 | -0.8875 | -3.0872 |
| H | 5.8098 | -2.4492 | -3.7819 |
| H | 4.5528 | -1.3149 | -3.2615 |
| C | 6.9846 | -2.8351 | -1.3030 |
| H | 7.3315 | -3.5349 | -2.0726 |
| H | 7.6948 | -2.0026 | -1.2707 |
| H | 7.0272 | -3.3525 | -0.3398 |
| C | 4.6094 | -3.5645 | -1.6228 |
| H | 4.9518 | -4.3140 | -2.3468 |
| H | 4.5649 | -4.0433 | -0.6394 |
| H | 3.5937 | -3.2644 | -1.8926 |
| C | 1.9179 | 2.4356 | -0.1674 |
| H | 2.9562 | 2.7856 | -0.1286 |
| H | 1.5247 | 2.4370 | 0.8580 |
| O | 1.1623 | 3.2962 | -1.0063 |
| Si | 0.0869 | 4.4257 | -0.3932 |
| C | -1.1937 | 3.5635 | 0.6707 |
| H | -1.7394 | 2.8048 | 0.1002 |


| H | -0.7034 | 3.0915 | 1.5280 |
| ---: | ---: | ---: | ---: |
| H | -1.9108 | 4.2874 | 1.0683 |
| C | 1.0272 | 5.6599 | 0.6606 |
| H | 1.4408 | 5.1721 | 1.5482 |
| H | 1.8543 | 6.1076 | 0.1044 |
| H | 0.3708 | 6.4652 | 1.0020 |
| C | -0.6980 | 5.2439 | -1.9042 |
| C | -1.9119 | 6.0766 | -1.4653 |
| H | -2.3393 | 6.5959 | -2.3312 |
| H | -2.6968 | 5.4472 | -1.0364 |
| H | -1.6426 | 6.8371 | -0.7249 |
| C | 0.3243 | 6.1600 | -2.5909 |
| H | 0.6204 | 6.9904 | -1.9432 |
| H | 1.2272 | 5.6105 | -2.8734 |
| H | -0.1077 | 6.5871 | -3.5040 |
| C | -1.1562 | 4.1631 | -2.8935 |
| H | -1.6844 | 4.6286 | -3.7350 |
| H | -0.2994 | 3.6146 | -3.2927 |
| H | -1.8318 | 3.4368 | -2.4289 |

Supplementary Table 4. Cartesian Coordinates from DFT calculations (in $\AA$ ) of TS (18A/18B)

| $\mathbf{1 8 B}$ |  |  |  |
| :--- | ---: | ---: | ---: |
|  |  | $\boldsymbol{y}$ | $\boldsymbol{z}$ |
| C | 0.4856 | -0.8897 | -0.3357 |
| C | 0.4082 | 0.5312 | -0.8615 |
| C | 1.4417 | -0.7706 | 0.8691 |
| C | 1.8540 | 1.0243 | -0.8274 |
| C | 2.5891 | 0.0392 | 0.1248 |
| H | 1.0280 | -1.4782 | -1.0877 |
| H | -0.1962 | 1.1180 | -0.1662 |
| H | 2.3198 | 0.9410 | -1.8138 |
| H | 3.1869 | 0.5668 | 0.8741 |
| C | -0.9976 | -1.3412 | -0.3971 |
| N | -1.7348 | -0.8489 | 0.7155 |
| C | -1.0120 | -2.8713 | -0.5162 |
| O | -0.9227 | -3.4752 | -1.5710 |
| O | -1.0083 | -3.4734 | 0.6497 |
| C | -0.9007 | -4.9017 | 0.6327 |
| H | -1.7636 | -5.3327 | 0.1250 |
| H | 0.0154 | -5.2017 | 0.1243 |
| H | -0.8773 | -5.2041 | 1.6751 |
| C | -2.9134 | -1.3729 | 0.9604 |
| O | -3.5369 | -2.2393 | 0.3089 |
| O | -3.4267 | -0.8655 | 2.1162 |
| C | -4.8176 | -1.0392 | 2.4950 |
| C | -5.7400 | -0.5033 | 1.4028 |
| H | -6.571 | -0.4272 | 1.7937 |
| H | -5.4125 | 0.4932 | 1.0962 |
| H | -5.7526 | -1.1514 | 0.5278 |
| C | -5.1083 | -2.4975 | 2.8375 |
| H | -5.0547 | -3.1288 | 1.9529 |
| H | -4.3862 | -2.8568 | 3.5744 |
| H | -6.1085 | -2.5746 | 3.2706 |
| C | -4.9354 | -0.1748 | 3.7458 |
| H | -5.9471 | -0.2374 | 4.1502 |
| H | -4.2320 | -0.5174 | 4.5075 |
| H | -4.7154 | 0.8680 | 3.5075 |
| C | 1.9374 | -2.0722 | 1.4518 |
| H | 2.2666 | -2.0055 | 2.4841 |
| C | 2.0444 | -3.2299 | 0.8104 |
| H | 1.7616 | -3.3522 | -0.2309 |
| H | 2.4365 | -4.1090 | 1.3109 |
|  |  |  |  |


| N | 0.8592 | 0.0920 | 1.9033 |
| :---: | :---: | :---: | :---: |
| C | 1.6519 | 0.4944 | 2.8655 |
| O | 2.8415 | 0.2753 | 3.1399 |
| C | 0.9572 | 1.5046 | 3.8057 |
| F | -0.4046 | 1.4650 | 3.7451 |
| F | 1.2798 | 1.3202 | 5.0844 |
| F | 1.3001 | 2.7628 | 3.4840 |
| C | -0.3882 | 0.3337 | -2.1271 |
| H | -0.9071 | 1.2284 | -2.4633 |
| H | 0.2495 | -0.0357 | -2.9374 |
| N | -1.3882 | -0.7371 | -1.7699 |
| C | -2.7426 | -0.2097 | -1.8209 |
| O | -3.0124 | 0.8977 | -1.4128 |
| C | -3.7274 | -1.0792 | -2.4591 |
| C | -5.1207 | -0.9303 | -2.4558 |
| N | -3.3584 | -2.2293 | -3.1130 |
| C | -5.6260 | -2.0440 | -3.1478 |
| C | -4.5073 | -2.7969 | -3.5451 |
| H | -5.6718 | -0.1244 | -1.9948 |
| H | -6.6612 | -2.2733 | -3.3528 |
| H | -4.4930 | -3.7150 | -4.1163 |
| Li | -4.3450 | -2.8298 | -1.2198 |
| Li | -1.3846 | -2.3983 | -3.1107 |
| Li | -1.0734 | 0.1975 | 2.1838 |
| O | 3.3984 | -0.8314 | -0.6418 |
| Si | 5.0240 | -1.0496 | -0.2849 |
| C | 5.6421 | -2.3083 | -1.5528 |
| C | 5.8825 | 0.6083 | -0.4881 |
| H | 5.5475 | 1.3104 | 0.2811 |
| H | 6.9673 | 0.5092 | -0.3904 |
| H | 5.6663 | 1.0489 | -1.4648 |
| C | 5.2590 | -1.6487 | 1.4721 |
| H | 4.9749 | -2.6978 | 1.5820 |
| H | 6.3037 | -1.5363 | 1.7761 |
| H | 4.6330 | -1.0592 | 2.1507 |
| C | 5.6530 | -1.6831 | -2.9545 |
| H | 6.3439 | -0.8370 | -3.0132 |
| H | 5.9737 | -2.4255 | -3.6956 |
| H | 4.6587 | -1.3288 | -3.2423 |
| C | 7.0668 | -2.7414 | -1.1772 |
| H | 7.4516 | -3.4522 | -1.9182 |
| H | 7.7563 | -1.8916 | -1.1469 |
| H | 7.0936 | -3.2327 | -0.1999 |
| C | 4.7223 | -3.5371 | -1.5564 |
| H | 5.1007 | -4.2863 | -2.2628 |
| H | 4.6667 | -4.0052 | -0.5685 |
| H | 3.7059 | -3.2669 | -1.8535 |
| C | 1.9460 | 2.4648 | -0.3480 |
| H | 2.9826 | 2.8176 | -0.3888 |
| H | 1.6191 | 2.5055 | 0.7005 |
| O | 1.1351 | 3.2916 | -1.1688 |
| Si | 0.0174 | 4.3684 | -0.5354 |
| C | -1.2383 | 3.4627 | 0.5229 |
| H | -1.7983 | 2.7181 | -0.0512 |
| H | -0.7385 | 2.9591 | 1.3567 |
| H | -1.9475 | 4.1762 | 0.9529 |
| C | 0.9116 | 5.6296 | 0.5251 |
| H | 1.3627 | 5.1452 | 1.3962 |
| H | 1.7065 | 6.1299 | -0.0331 |
| H | 0.2203 | 6.3923 | 0.8942 |
| C | -0.7957 | 5.1532 | -2.0487 |
| C | -1.9929 | 6.0102 | -1.6132 |
| H | -2.4449 | 6.4923 | -2.4881 |
| H | -2.7671 | 5.4057 | -1.1318 |
| H | -1.6971 | 6.8017 | -0.9172 |
| C | -1.2817 | 4.0431 | -2.9914 |


| H | -1.7851 | 4.4826 | -3.8612 |
| :--- | ---: | ---: | ---: |
| H | -0.4425 | 3.4415 | -3.3506 |
| H | -1.9933 | 3.3732 | -2.4962 |
| C | 0.2230 | 6.0356 | -2.7826 |
| H | 0.5434 | 6.8777 | -2.1622 |
| H | 1.1123 | 5.4662 | -3.0682 |
| H | -0.2223 | 6.4461 | -3.6969 |

Supplementary Table 5. Cartesian Coordinates from DFT calculations (in $\AA$ ) of 18B

| 18B' |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\boldsymbol{x}$ | $y$ | $z$ |
| C | 0.4856 | -0.8897 | -0.3357 |
| C | 0.4082 | 0.5312 | -0.8615 |
| C | 1.4417 | -0.7706 | 0.8691 |
| C | 1.8540 | 1.0243 | -0.8274 |
| C | 2.5891 | 0.0392 | 0.1248 |
| H | 1.0280 | -1.4782 | -1.0877 |
| H | -0.1962 | 1.1180 | -0.1662 |
| H | 2.3198 | 0.9410 | -1.8138 |
| H | 3.1869 | 0.5668 | 0.8741 |
| C | -0.9976 | -1.3412 | -0.3971 |
| N | -1.7348 | -0.8489 | 0.7155 |
| C | -1.0120 | -2.8713 | -0.5162 |
| O | -0.9227 | -3.4752 | -1.5710 |
| O | -1.0083 | -3.4734 | 0.6497 |
| C | -0.9007 | -4.9017 | 0.6327 |
| H | -1.7636 | -5.3327 | 0.1250 |
| H | 0.0154 | -5.2017 | 0.1243 |
| H | -0.8773 | -5.2041 | 1.6751 |
| C | -2.9134 | -1.3729 | 0.9604 |
| O | -3.5369 | -2.2393 | 0.3089 |
| O | -3.4267 | -0.8655 | 2.1162 |
| C | -4.8176 | -1.0392 | 2.4950 |
| C | -5.7400 | -0.5033 | 1.4028 |
| H | -6.7571 | -0.4272 | 1.7937 |
| H | -5.4125 | 0.4932 | 1.0962 |
| H | -5.7526 | -1.1514 | 0.5278 |
| C | -5.1083 | -2.4975 | 2.8375 |
| H | -5.0547 | -3.1288 | 1.9529 |
| H | -4.3862 | -2.8568 | 3.5744 |
| H | -6.1085 | -2.5746 | 3.2706 |
| C | -4.9354 | -0.1748 | 3.7458 |
| H | -5.9471 | -0.2374 | 4.1502 |
| H | -4.2320 | -0.5174 | 4.5075 |
| H | -4.7154 | 0.8680 | 3.5075 |
| C | 1.9374 | -2.0722 | 1.4518 |
| H | 2.2666 | -2.0055 | 2.4841 |
| C | 2.0444 | -3.2299 | 0.8104 |
| H | 1.7616 | -3.3522 | -0.2309 |
| H | 2.4365 | -4.1090 | 1.3109 |
| N | 0.8592 | 0.0920 | 1.9033 |
| C | 1.6519 | 0.4944 | 2.8655 |
| O | 2.8415 | 0.2753 | 3.1399 |
| C | 0.9572 | 1.5046 | 3.8057 |
| F | -0.4046 | 1.4650 | 3.7451 |
| F | 1.2798 | 1.3202 | 5.0844 |
| F | 1.3001 | 2.7628 | 3.4840 |
| C | -0.3882 | 0.3337 | -2.1271 |
| H | -0.9071 | 1.2284 | -2.4633 |
| H | 0.2495 | -0.0357 | -2.9374 |
| N | -1.3882 | -0.7371 | -1.7699 |
| C | -2.7426 | -0.2097 | -1.8209 |


| O | -3.0124 | 0.8977 | -1.4128 |
| :---: | :---: | :---: | :---: |
| C | -3.7274 | -1.0792 | -2.4591 |
| C | -5.1207 | -0.9303 | -2.4558 |
| N | -3.3584 | -2.2293 | -3.1130 |
| C | -5.6260 | -2.0440 | -3.1478 |
| C | -4.5073 | -2.7969 | -3.5451 |
| H | -5.6718 | -0.1244 | -1.9948 |
| H | -6.6612 | -2.2733 | -3.3528 |
| H | -4.4930 | -3.7150 | -4.1163 |
| Li | -4.3450 | -2.8298 | -1.2198 |
| Li | -1.3846 | -2.3983 | -3.1107 |
| Li | -1.0734 | 0.1975 | 2.1838 |
| O | 3.3984 | -0.8314 | -0.6418 |
| Si | 5.0240 | -1.0496 | -0.2849 |
| C | 5.6421 | -2.3083 | -1.5528 |
| C | 5.8825 | 0.6083 | -0.4881 |
| H | 5.5475 | 1.3104 | 0.2811 |
| H | 6.9673 | 0.5092 | -0.3904 |
| H | 5.6663 | 1.0489 | -1.4648 |
| C | 5.2590 | -1.6487 | 1.4721 |
| H | 4.9749 | -2.6978 | 1.5820 |
| H | 6.3037 | -1.5363 | 1.7761 |
| H | 4.6330 | -1.0592 | 2.1507 |
| C | 5.6530 | -1.6831 | -2.9545 |
| H | 6.3439 | -0.8370 | -3.0132 |
| H | 5.9737 | -2.4255 | -3.6956 |
| H | 4.6587 | -1.3288 | -3.2423 |
| C | 7.0668 | -2.7414 | -1.1772 |
| H | 7.4516 | -3.4522 | -1.9182 |
| H | 7.7563 | -1.8916 | -1.1469 |
| H | 7.0936 | -3.2327 | -0.1999 |
| C | 4.7223 | -3.5371 | -1.5564 |
| H | 5.1007 | -4.2863 | -2.2628 |
| H | 4.6667 | -4.0052 | -0.5685 |
| H | 3.7059 | -3.2669 | -1.8535 |
| C | 1.9460 | 2.4648 | -0.3480 |
| H | 2.9826 | 2.8176 | -0.3888 |
| H | 1.6191 | 2.5055 | 0.7005 |
| O | 1.1351 | 3.2916 | -1.1688 |
| Si | 0.0174 | 4.3684 | -0.5354 |
| C | -1.2383 | 3.4627 | 0.5229 |
| H | -1.7983 | 2.7181 | -0.0512 |
| H | -0.7385 | 2.9591 | 1.3567 |
| H | -1.9475 | 4.1762 | 0.9529 |
| C | 0.9116 | 5.6296 | 0.5251 |
| H | 1.3627 | 5.1452 | 1.3962 |
| H | 1.7065 | 6.1299 | -0.0331 |
| H | 0.2203 | 6.3923 | 0.8942 |
| C | -0.7957 | 5.1532 | -2.0487 |
| C | -1.9929 | 6.0102 | -1.6132 |
| H | -2.4449 | 6.4923 | -2.4881 |
| H | -2.7671 | 5.4057 | -1.1318 |
| H | -1.6971 | 6.8017 | -0.9172 |
| C | -1.2817 | 4.0431 | -2.9914 |
| H | -1.7851 | 4.4826 | -3.8612 |
| H | -0.4425 | 3.4415 | -3.3506 |
| H | -1.9933 | 3.3732 | -2.4962 |
| C | 0.2230 | 6.0356 | -2.7826 |
| H | 0.5434 | 6.8777 | -2.1622 |
| H | 1.1123 | 5.4662 | -3.0682 |
| H | -0.2223 | 6.4461 | -3.6969 |

Supplementary Table 6. Cartesian Coordinates from DFT calculations (in $\AA$ ) of $\mathbf{1 8 B} \mathbf{B}^{\prime}$

|  | $\mathbf{1 8 A}$ | $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathbf{I})$ | $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathrm{II})$ |
| :---: | :---: | :---: | :---: |
| $d[\mathrm{C} 10-\mathrm{N} 14] / \AA$ | 2.94 | 2.84 | 3.21 |
| $d\left[\mathrm{Li} 1-\mathrm{O}\left(\mathrm{MeO}_{2} \mathrm{C}-\right)\right] / \AA$ | 2.04 | 1.99 | 5.58 |
| $d[\mathrm{Li} 1-\mathrm{O}(\mathrm{THF})] / \AA$ |  | 1.94 | 1.91 |
| $d[\mathrm{Li} 2-\mathrm{O}(\mathrm{Boc})] / \AA$ | 1.89 | 1.90 | 1.98 |
| $d[\mathrm{Li} 2-\mathrm{O}(\mathrm{THF} 2)] / \AA$ |  | 1.95 | 1.89 |

Supplementary Table 7. Geometrical parameters of 18A, 18A+2THF(I) and 18A+2THF(II).

|  | Compound 21 |
| :---: | :---: |
| Formula | $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{SSi}_{2}$ |
| Formula Weight | 958.29 |
| Crystal system | monoclinic |
| Space group | P2 ${ }_{1} / \mathrm{n}(\not 114)$ |
| Lattice Type | Primitive |
| $\mathrm{a}, \AA$ | $13.0627(8)$ |
| $\mathrm{b}, \AA$ | $22.718(2)$ |
| $\mathrm{c}, \AA$ | $18.8564(9)$ |
| $\beta$ | $107.908(2)$ |
| $\mathrm{V}, \AA^{3}$ | $5324.6(5)$ |
| Z | 4 |
| deale, g cm |  |
| $\mu(\mathrm{Mo} \mathrm{K} \alpha), \mathrm{cm}^{-1}$ | 1.195 |
| Number of Observations | 1.686 |
| Variables | 11799 |
| T | 647 |
| R int | 173 K |
| R 1 | 0.1118 |
| wR2 | 0.0943 |
| Goodness of Fit Indicator | 0.2443 |
| 1.091 |  |

[^0]
## Supplementary Discussion

## Investigation of the solvent effects on chelate formation

The effects of solvent molecules (THF) on the chelate formation are examined by adding explicitly two THF molecules to $\mathbf{1 8 A}$ in the DFT calculations. This system is immersed in the self-consistent reaction field (continuous) model. We placed two THF molecules around the two lithium ions that are close to the amide and pyrrole anions and optimized the whole structure without any geometrical constraints. The optimized two lowest energy structures, which are denoted as $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathbf{I})$ and $\mathbf{1 8 A} \mathbf{+ 2 T H F}($ II $)$, are given in Supplementary Figure 50 and the geometrical parameters are shown in Supplementary Table 7. 18A+2THF(II) is slightly more stable than $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathbf{I})$ by $2.3 \mathrm{kcal} / \mathrm{mol}$.

The structure of $\mathbf{1 8 A}$ moiety in $\mathbf{1 8 A} \mathbf{+ 2 T H F}(\mathbf{I})$ is essentially similar to $\mathbf{1 8 A}$ without any explicit solvent molecules, where one of the lithium ions (Li1) forms a coordination to the carbonyl group of methyl ester and the other (Li2) to the carbonyl group of the Boc group. The oxygen atoms of the two THF molecules, $\mathrm{O}(\mathrm{THF} 1)$ and $\mathrm{O}(\mathrm{THF} 2)$, are coordinates to Li1 and Li2, respectively, and the distance between the oxygen atoms of THF and lithium ions are around $1.94 \AA$. On the other hand, the structure of $\mathbf{1 8 A} \mathbf{+ 2 T H F}$ (II) does not exhibit a coordination of the lithium ion to the carbonyl group of methyl ester, and only the coordination to the carbonyl group of the Boc group is seen. As a result, the distance between C 10 and $\mathrm{N} 14(3.21 \AA)$ is longer than that of $\mathbf{1 8 A + 2 T H F}(\mathbf{I})(2.84 \AA)$.

From these two structures, the potential energy profiles to $\mathbf{1 8 B} \mathbf{+ 2 T H F}(\mathbf{I})$ or $\mathbf{1 8 B} \mathbf{+ 2 T H F}(\mathbf{I I})$ are investigated, and the results are shown in Supplementary Figure 51. As seen in the figure, the energy barrier from $\mathbf{1 8 A} \mathbf{+ 2 T H F}(\mathbf{I})$ to $\mathbf{1 8 B} \mathbf{+ 2 T H F}(\mathrm{I})$ is only $1.7 \mathrm{kcal} / \mathrm{mol}$ and it is quite close to those of $\mathbf{1 8 A} \rightarrow \mathbf{1 8 B}(1.5 \mathrm{kcal} / \mathrm{mol})$. On the other hand, the energy barrier from $\mathbf{1 8 A} \mathbf{+ 2 T H F}(\mathrm{II})$ to 18B+2THF(II) is appreciably higher. Considering that the energy difference between $\mathbf{1 8 A}+\mathbf{2 T H F}(\mathbf{I})$ and $\mathbf{1 8 A}+\mathbf{2 T H F}($ II $)$ is only $2.3 \mathrm{kcal} / \mathrm{mol}$, the coordination of lithium ions to both the carbonyl group of methyl ester and the Boc group is a key intermediate step to the facile formation of the trans-bicyclo[3.3.0]octane skeleton.

## Supplementary Method

## General Procedures.

All the reaction were carried out in a round-bottomed flask with an appropriate number of necks and side arms connected to a three-way stopcock and /or a rubber septum cap under an argon atmosphere. All vessels were first evacuated by rotary pump and then flushed with argon prior to use. Solution and solvent were introduced by hypodermic syringe through a rubber septum. During the reaction, the vessel was kept under a positive pressure of argon. Dry THF was freshly prepared by distillation from benzophenone ketyl before use. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMF}$, ethanol, MeCN , methanol, pyridine and toluene were purchased from Kanto Chemical Co. Inc.

Infrared (IR) spectra were recorded on JASCO FT/IR-4100 spectrophotometer using 5 mm KBr plate. Wavelengths of maximum absorbance are quoted in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a JEOL ECA-400 (400 MHz), JEOL ECA-500 (500 MHz), and Bruker AV-500 (500 MHz) in $\mathrm{CDCl}_{3}, d-\mathrm{MeCN}$ and $\mathrm{D}_{2} \mathrm{O}$. Chemical shifts are reported in part per million (ppm), and signal are expressed as singlet ( s ), doublet ( d ), triplet ( t ), quartet ( q ), multiplet ( m ) and broad (br). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a JEOL ECA-400 (100 MHz), Bruker AV-400N (100 MHz) and Bruker AV-500 ( 125 MHz ) in $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{D}_{2} \mathrm{O}$. Chemical shifts are reported in part per million (ppm). High resolution mass (HRMS) spectra were recorded on a Thermo Scientific Exactive, Instrumental Analysis Division, Equipment Manager Center Creative Research Institution, Hokkaido University and a Waters SYNAPT-G2 Si HDMS, Tokushima Bunri University. High performance liquid chromatography (HPLC) was recorded on a HITACHI D-2500 Chromato-Integrater. Analytical thin layer chromatography (TLC) was performed using 0.25 mm E. Merck Silica gel (60F-254) plates. Reaction components were visualized phosphomolybdic acid or ninhydrin or $p$-anisaldehyde in $10 \%$ sulfuric acid in ethanol. Kanto Chem. Co. Silica Gel 60N (particle size $0.040-0.050 \mathrm{~mm}$ ) was used for column chromatography.

## General procedure for preparation of intermediates and 1



Compound S1:
To a solution of alcohol $7(8.42 \mathrm{~g}, 19.8 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL})$ were added imidazole $(4.04 \mathrm{~g}, 59.7$ mmol) and $\mathrm{TBSCl}(3.57 \mathrm{~g}, 23.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 200 mL ) was added. The mixture was extracted with EtOAc ( $200 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=10 / 1$ to $1 / 1$ ) to afford silyl ether $\mathbf{S 1}(9.62 \mathrm{~g}, 17.8 \mathrm{mmol}, 90 \%$ ) as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.00(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (dd, $J=12.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{dd}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=$ $15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dt}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{tt}, J=10.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 170.26,145.43$, $136.24,134.81,129.54,128.84,118.52,77.09,75.16,69.25,62.18,46.39,42.65,40.99,36.74$, 25.85, 21.66, 18.18, -5.63, -5.70; IR (KBr): 3479, 3288, 2953, 2928, 2857, 1716, 1597, 1551, 1471, 1433, 1363, 1257, 1171, 1088, 1006, 911, 837, $814 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{NaSSi}$, 562.2014; found, 562.2018.


## Compound 11:

To a solution of $\mathrm{SmI}_{2}$ in THF ( $0.1 \mathrm{M}, 178 \mathrm{mmol}, 1.78 \mathrm{~L}$ ) were added $\mathrm{MeOH}(89 \mathrm{~mL})$ and a solution of alcohol S1 ( $9.62 \mathrm{~g}, 17.8 \mathrm{mmol})$ in THF $(89 \mathrm{~mL})$ at room temperature. After being stirred for 2 h ,
the mixture was stirred under air atmosphere for 30 min until the color of solution was turned to yellow (ca. 30 min ), and then a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 2 L ) was added. After being stirred for $30 \mathrm{~min}, \mathrm{FmocOSu}(9.00 \mathrm{~g}, 26.7 \mathrm{mmol})$ was added. The mixture was stirred for 30 min and the organic layer was separated. The aqueous layer was extracted with EtOAc (2 L x 3). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=2 / 1$ to $0 / 1$ ) to afford carbamate $11(9.26 \mathrm{~g}, 16.0 \mathrm{mmol}, 90 \%)$ as pare yellow amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=18.2,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{qn}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.25(\mathrm{~m}, 2 \mathrm{H})$, 2.55-2.30 (m, 2H), 2.25-2.10(m, 1H), 1.75-1.50(m, 1H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.87,156.83,143.85,141.27,137.58,127.62,126.99,124.96,119.93,117.01$, $76.32,68.53,66.62,63.61,48.01,47.22,43.94,43.82,41.83,33.63,25.85,18.11,-5.58,-5.59$; IR (KBr): 8261, 2928, 2857, 2360, 1705, 1673, 1519, 1449, 1252, 1106, 910, $837 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{NaSi}, 600.2864$; found, 600.2868 .


Compound S2:
To a solution of carbamate $11(9.26 \mathrm{~g}, 16.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ were added 2,6-DTBP (20.8 $\mathrm{mL}, 96.0 \mathrm{mmol})$ and TBSOTf $(11.0 \mathrm{~mL}, 48.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 200 mL ). The organic layer was separated, and the aqueous layer was extracted with EtOAc ( $200 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=5 / 1$ to $1 / 2$ ) to afford silyl ether $\mathbf{S 2}(9.63 \mathrm{~g}, 13.9 \mathrm{mmol}, 87 \%)$ as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=17.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.17(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.22(\mathrm{~m}$, $1 \mathrm{H}), 2.52-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.66,157.18,144.32,144.28$, $141.62,138.32,127.93,127.32,125.33,120.25,115.73,76.79,68.50,66.93,63.30,49.28,47.62$, $44.24,43.50,41.87,33.66,26.21,26.16,18.49,18.35,-3.49,-4.45,-5.23$; IR (KBr): 3734, 3271, 2953, 2928, 2856, 2360, 2341, 1714, 1682, 1520, 1471, 1252, 1132, $837 \mathrm{~cm}^{-1} ;$ HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{NaSi}_{2}, 714.3729$; found, 714.3734.


## Compound 12:

To a solution of silyl ether $\mathbf{S} 2(9.63 \mathrm{~g}, 13.9 \mathrm{mmol})$ in $\mathrm{MeCN}(139 \mathrm{~mL})$ were added $\mathrm{Boc}_{2} \mathrm{O}(3.64 \mathrm{~mL}$, $16.7 \mathrm{mmol})$ and DMAP $(170 \mathrm{mg}, 1.39 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred $0^{\circ} \mathrm{C}$ for 2 h , the reaction was quenched with brine ( 150 mL ). The mixture was extracted with EtOAc ( $200 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=8 / 1$ to $2 / 1$ ) to afford $\mathbf{1 2}(10.5 \mathrm{~g}, 13.3 \mathrm{mmol}, 96 \%)$ as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{dd}, J=17.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=13.6,11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.35$ (m, 1H), 3.30-3.15 (m, 1H), $2.64(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-$ $2.18(\mathrm{br} \mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 170.16,156.72$, $151.05,143.91,141.29,137.49,127.61,127.00,125.01,119.93,115.40,84.18,68.51,66.53,62.02$, $50.04,47.29,43.91,42.28,41.97,38.03,28.01,25.91,25.82,18.19,18.00,-3.78,-4.97,-5.47,-$ 5.55 (one peak missing in $\mathrm{CDCl}_{3}$ ); IR ( KBr ): 3734, 2929, 2360, 2341, 1771, 1717, 1522, 1472, 1252, 1152, $837 \mathrm{~cm}^{-1}:$ HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{NaSi}_{2}, 814.4253$; found, 814.4251.


Compound 13:
To a solution of $\mathbf{1 2}(10.5 \mathrm{~g}, 13.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(132 \mathrm{~mL})$ were added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(23.6 \mathrm{~mL}, 132$ mmol) and TESOTf ( $11.6 \mathrm{~mL}, 66.0 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution $(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} x 3)$. The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure to give crude silyl ketene aminal S3. The crude $\mathbf{S 3}$ was used for next step without purification. To a solution of residue in THF $(66 \mathrm{~mL})$ were added $\mathrm{MeOH}(66 \mathrm{~mL})$ and NBS $(3.05 \mathrm{~mL}, 17.2 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 50 mL ). The organic layer was separated, and the aqueous layer was extracted with EtOAc ( $50 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=10 / 1$ to $4 / 1)$ to afford bromide $13(9.41 \mathrm{~g}, 10.8 \mathrm{mmol}, 82 \%$ for 2 steps) as a white amorphous material and recovered $12(1.46 \mathrm{~g}, 1.85 \mathrm{mmol}, 14 \%) . ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32 (tdd, $J=7.6,2.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{dd}, J=18.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.6$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}$, $9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 166.13,156.96,150.49,143.95,143.84,141.33,137.34,127.66,127.09,127.07,124.98$, $119.95,116.57,84.11,76.88,69.17,66.71,60.12,51.06,48.94,47.26,44.64,41.93,40.27,27.96$, 25.96, 25.86, 18.22, 18.05, -3.77, -4.85, -5.42, -5.50; IR (KBr): 3734, 3649, 3373, 2928, 2856, 2360, 2341, 1770, 1718, 1523, 1472, 1370, 1253, 1150, $835 \mathrm{~cm}^{-1} \mathrm{HRMS}(\mathrm{ESI}, m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{64} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{BrNaSi}_{2}$, 892.3358; found, 892.3360.


Compound 14:
To a solution of bromide $\mathbf{1 3}(9.41 \mathrm{~g}, 10.8 \mathrm{mmol})$ in $\mathrm{MeOH}(108 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.64 \mathrm{~g}, 11.9$ mmol ) at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc $(100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane $/ \mathrm{EtOAc}=10 / 1$ to $4 / 1$ ) to afford ester $14(7.99 \mathrm{~g}, 9.72 \mathrm{mmol}, 90 \%)$ as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=18.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}$, $J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dd}, J=6.4,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.99,156.58,144.07$, 143.93, 141.32, 141.29, 135.55, 127.62, 127.00, 125.00, 119.91, 116.39, 80.88, 76.32, 66.50, 61.95, $56.58,52.28,50.70,47.31,44.34,44.22,28.30,25.93,25.88,18.23,17.99,-3.58,-5.26,-5.47,-$ 5.55; IR (KBr): 3724, 3343, 2953, 2929, 2895, 2857, 2360, 2341, 1698, 1521, 1472, 1389, 1366, 1252, 1136, 1005, 938, $837 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{67} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{NaSi}_{2}$, 844.4359; found, 844.4368.


Compound 15;
To a solution of ester $\mathbf{1 4}(7.99 \mathrm{~g}, 9.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(97 \mathrm{~mL})$ were added 2,6-DTBP ( 31.5 mL , $145.8 \mathrm{mmol})$ and TFAA $(13.6 \mathrm{~mL}, 97.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred $0^{\circ} \mathrm{C}$ for 1 h , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 100 mL ) was added. The organic layer was separated, and the aqueous layer was extracted with EtOAc ( $100 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=10 / 1$ to $4 / 1$ ) to afford a mixture of trifluoroacetamide $\mathbf{1 5}$ and di-trifluoroacetamide 16. The mixture of $\mathbf{1 5}$ and $\mathbf{1 6}$ in $\mathrm{MeOH}(200 \mathrm{~mL})$ was heated to $40^{\circ} \mathrm{C}$ for 3 h and concentrated under reduced pressure to afford trifluoroacetamide $\mathbf{1 5}$ ( $8.93 \mathrm{~g}, 9.72 \mathrm{mmol}$, quant.) as a white amorphous material. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60{ }^{\circ} \mathrm{C}\right.$ ): $\delta$ 7.76 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=7.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (t, $J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.48(\mathrm{dd}, J=17.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, 1H), 4.83 (br s, 1H), 4.45 (dd, $J=17.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.33(\mathrm{~m}, 3 \mathrm{H})$, 3.07 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), \quad 0.19 \quad(\mathrm{~s}, \quad 3 \mathrm{H}), \quad 0.08 \quad(\mathrm{~s}, \quad 9 \mathrm{H}) ; \quad{ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(125 \quad \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 60 \quad{ }^{\circ} \mathrm{C}\right)$ : $\delta 169.14,156.58,156.28,155.02(\mathrm{q}, ~ J=35.6 \mathrm{~Hz}), 144.19,144.10,141.48,141.45,132.41,127.72$, $127.06,125.05,124.98,120.01,116.40,116.01(\mathrm{q}, ~ J=286.9 \mathrm{~Hz}), 85.00,79.45,79.30,67.01,65.42$, $63.82,55.89,53.13,52.46,47.50,44.74,43.24,27.89,26.11,26.00,18.33,18.25,-4.08,-4.58$, 5.35, -5.36; IR (KBr): 3734, 2929, 2857, 2360, 2342, 1717, 1508, 1472, 1371, 1253, 1205, 1155, $838 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z$ ) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{66} \mathrm{O}_{9} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{NaSi}_{2}$, 940.4182; found, 940.4187.


Compound 18;
To a solution of $5 \%$ piperidine in $\mathrm{MeCN}(194 \mathrm{~mL})$ was added trifluoroacetamide $15(8.93 \mathrm{~g}, 9.72$ $\mathrm{mmol})$ at room temperature. After being stirred for 10 min , water $(200 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc ( $200 \mathrm{~mL} x 3$ ). The combined organic layers were washed with brine ( 300 mL ), dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure to give crude $\mathbf{S 4}$. To a solution of crude $\mathbf{S 4}$ in $\mathrm{MeCN}(49 \mathrm{~mL})$ were added 2,6-DTBP ( $5.45 \mathrm{~mL}, 25.2 \mathrm{mmol}$ ) and 2-(trichloroacetyl)pyrrole $\mathbf{1 7}(2.67 \mathrm{~g}, 12.6 \mathrm{mmol})$ at room temperature. The mixture was stirred for 48 h and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=10 / 1$ to $1 / 1)$ to afford pyrrole $18(6.37 \mathrm{~g}, 8.07 \mathrm{mmol}, 83 \%$ for 2 steps) as a white solid material. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$ ): $\delta 9.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $6.51(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=17.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{brd}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$ ): $\delta 169.63,161.32,156.14,155.00(\mathrm{q}, J=37.1 \mathrm{~Hz})$, 132.46, 126.06, 121.50, 116.49, 115.99 (q, $J=287.5 \mathrm{~Hz}$ ), 109.81, 108.98, 84.97, 79.57, 78.85, 65.65, $63.36,56.12,52.54,52.40,44.16,41.31,27.98,26.08,26.07,18.41,18.22,-4.15,-4.54,-5.24,-$ 5.28; IR (KBr): 3734, 3257, 2954, 2930, 2858, 2360, 2342, 1743, 1636, 1559, 1520, 1472, 1437, 1372, 1254, 1205, 1155, $838 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{O}_{8} \mathrm{~N}_{4} \mathrm{~F}_{3} \mathrm{NaSi}_{2}$, 811.3716; found, 811.3714.


Compound 19:
To a solution of pyrrole $\mathbf{1 8}(120 \mathrm{mg}, 0.152 \mathrm{mmol})$ in THF $(7.6 \mathrm{~mL})$ was added 1.0 M THF solution of LHMDS ( $464 \mu \mathrm{~L}, 0.464 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. The mixture was warmed up to $0^{\circ} \mathrm{C}$ and the resulting yellow solution was further stirred at this temperature for 10 min . After the mixture was cooled to $78{ }^{\circ} \mathrm{C}, 1.0 \mathrm{M}$ THF solution of $\mathrm{AcOH}(152 \mu \mathrm{~L}, 0.152 \mathrm{mmol})$ was slowly added. The mixture was stirred at room temperature for 3 h . The reaction was quenched with 1.0 M THF solution of AcOH $(319 \mu \mathrm{~L}, 0.319 \mathrm{mmol})$, and to the mixture was added brine $(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with EtOAc ( $10 \mathrm{~mL} x 3$ ). The combined organic layer was dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=10 / 1$ to $2 / 1$ ) to afford tetracyclic compound 19 ( $85.1 \mathrm{mg}, 0.112 \mathrm{mmol}, 74 \%$ ) as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 7.43$ (dd, $\left.J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=10.3,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dtd}, J=11.0,7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 161.85,157.47(\mathrm{q}, J=$ 36.4 Hz ), 156.61, $153.21,136.43,126.34,120.02,118.72,115.73$ (q, $J=287.4 \mathrm{~Hz}), 115.67,113.89$, $83.01,82.23,74.16,65.16,62.99,60.86,52.89,46.54,40.82,27.76,25.82,25.75,18.22,17.97,-$ 4.04, -5.20, -5.45, -5.54; IR (KBr): 3372, 2954, 2930, 2858, 2360, 2342, 1734, 1653, 1472, 1419, 1369, 1254, 1158, 1108, 1107, $837 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z$ ): [M-H] calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{~F}_{3} \mathrm{Si}_{2}$, 755.3489; found, 755.3499.


Compound 20:
To a solution of tetracyclic compound $19(681 \mathrm{mg}, 0.900 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ were added 2,6-DTBP ( $1.17 \mathrm{~mL}, 5.40 \mathrm{mmol}$ ) and TMSOTf $(812 \mu \mathrm{~L}, 4.50 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 30 min at room temperature, the reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution $(20 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with EtOAc ( 20 mL x3). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure to give crude $\mathbf{S 5}$. The crude amine $\mathbf{S 5}$ was used for the next step without purification due to its instability. To a solution of amine $\mathbf{S 5}$ in DCE $(18 \mathrm{~mL})$ were added 2,6-DTBP ( $389 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$ ) and $\mathrm{CbzNCS}(869 \mathrm{mg}, 4.50 \mathrm{mmol}$ ) at room temperature. The mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 12 h and concentrated under reduced pressure to give crude $\mathbf{S 6}$. The crude thiourea $\mathbf{S 6}$ was also used for the next step without purification. A solution of thiourea $\mathbf{S 6}$ in EtOH $(18 \mathrm{~mL})$ was stirred at room temperature until remaining excess CbzNCS disappeared. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(37.0 \mathrm{mg}, 0.990 \mathrm{mmol})$ was added. After being stirred for 30 min , brine ( 20 mL ) was added. The mixture was extracted with EtOAc ( $20 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}=1 / 0\right.$ to $\left.4 / 1\right)$ to afford alcohol 20 ( $675 \mathrm{mg}, 0.792 \mathrm{mmol}, 88 \%$ ) as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{dd}$, $J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $3.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.20(\mathrm{~m}$,
$1 \mathrm{H}), 3.13(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.39$, 157.17, 155.94 ( $q, J=35.1 \mathrm{~Hz}$ ), 152.24, 135.84, 133.96, 128.88, 128.71, 128.69, 128.21, 122.28, $121.57,121.55,115.51(\mathrm{q}, ~ J=116.3 \mathrm{~Hz}), 110.71,85.19,82.94,77.62,68.44,66.02,63.94,61.46$, $53.38,47.49,40.65,25.85,25.84,18.32,17.94,-4.03,-5.17,-5.60,-5.61$; IR (KBr): 3734, 2930, 2857, 2360, 2341, 1732, 1623, 1541, 1471, 1417, 1210, $835 \mathrm{~cm}^{-1}$; HRMS (APCI, $m / z$ ): [M-H] calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{O}_{7} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{SSi}_{2}, 850.3318$; found, 850.3335.


20


21

## Compound 21;

To a solution of $\mathbf{2 0}(675 \mathrm{mg}, 0.792 \mathrm{mmol})$ in THF $(7.9 \mathrm{~mL})$ were added MeI ( $297 \mu \mathrm{~L}, 4.75 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(656 \mathrm{mg}, 4.75 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 1 h , the reaction was quenched with brine ( 10 mL ). The mixture was extracted with EtOAc ( $10 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=5 / 1$ to $1 / 1$ ) to afford isothiourea 21 ( $569 \mathrm{mg}, 0.657 \mathrm{mmol}, 83 \%$ ) as a white crystal. mp (from ethanol): $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.51$ (br s, 1H), 7.45-7.30 (m, 5H), $7.08(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=3.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=11.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dddd}, J=10.5,5.5,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 157.72,155.97$ $(\mathrm{q}, ~ J=36.0 \mathrm{~Hz}), 151.54,151.13,134.21,134.15,128.99,128.84,128.74,122.98,121.75,115.83(\mathrm{q}$, $J=288.0 \mathrm{~Hz}), 114.52,114.14,110.43,84.76,83.37,80.65,68.54,66.19,62.61,61.79,53.44,46.17$, $40.19,25.82,25.68,18.13,17.99,14.61,-3.95,-5.41,-5.53,-5.69$; IR (KBr): 3220, 2953, 2857, 2360, 2410, 1732, 1645, 1542, 1472, 1416, 1387, 1222, 1005, $835 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(E S I, m / z):[M+H]^{+}$ calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{NaSSi}_{2}, 888.3440$; found, 888.3446.


Compound 22;
To a solution of isothiourea $21(569 \mathrm{mg}, 0.657 \mathrm{mmol})$ in THF ( 6.6 mL ) was added 1.0 M THF solution of LHMDS $(2.63 \mathrm{~mL}, 2.63 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred for $30 \mathrm{~min}, \mathrm{MsCl}(236 \mu \mathrm{~L}$, 2.63 mmol ) was added. After being stirred for 1 h at $-40^{\circ} \mathrm{C}$, the reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 10 mL ). The mixture was extracted with EtOAc ( $10 \mathrm{~mL} x 3$ ). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane $/ \mathrm{EtOAc}=10 / 1$ to $2 / 1$ ) to afford pentacyclic $22(362 \mathrm{mg}, 0.427$ mmol, $65 \%$ ) as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60{ }^{\circ} \mathrm{C}$, as a mixture of romater): $\delta 7.48-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=3.51 .5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{t}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}$, $J=11.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $60^{\circ} \mathrm{C}$, as a mixture of rotamer): $\delta 163.23,156.27,155.94(\mathrm{q}, J=36.4 \mathrm{~Hz}), 149.78,134.16,133.01$, $129.25,128.92,128.85,124.15,122.64,115.71(\mathrm{q}, ~ J=287.9 \mathrm{~Hz}), 114.13,113.61,112.36,87.41$, $84.52,71.91,69.52,66.20,63.77,63.33,54.08,46.88,41.30,25.92,25.82,18.37,17.89,15.19$, 4.27, $-4.96,-5.50,-5.54$ (some peaks are broadened due to the rotamer.); IR ( KBr ): 2930, 2360, $2342,1733,1654,1559,1472,1421,1388,1287,1158,837 \mathrm{~cm}^{-1} ;$ HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{NaSSi}_{2}, 870.3334$; found, 870.3348.


Compound 23;
To a solution of pentacyclic $22(362 \mathrm{mg}, 0.427 \mathrm{mmol})$ in toluene $(8.5 \mathrm{~mL})$ was added 1.0 M toluene solution of DIBAL ( $897 \mu \mathrm{~L}, 0.897 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After being stirred for 10 min , a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(900 \mu \mathrm{~L})$ and ether $(20 \mathrm{~mL})$ were added. After being stirred at room temperature for 1 h , to the mixture was added anhydrous $\mathrm{MgSO}_{4}$. The mixture was vigorously stirred for 1 h , filtered, and concentrated under reduced pressure to give a crude $\mathbf{S} 7$, which was used for the next step without purification. To a solution of crude $\mathbf{S} 7$ in DCE $(8.5 \mathrm{~mL})$ were added $\mathrm{CbzNCS}(165$ $\mathrm{mg}, 0.854 \mathrm{mmol})$ and $2,6-\mathrm{DTBP}(92 \mu \mathrm{~L}, 0.427 \mathrm{mmol})$ at room temperature. The mixture was stirred for 2 h and concentrated under reduced pressure. The residue was purified by silica gel, previously treated with $N, N$-dimethylaniline, column chromatography (hexane/EtOAc $=10 / 1$ to $2 / 1$ ) to afford thiourea 23 ( $363 \mathrm{mg}, 0.384 \mathrm{mmol}, 90 \%$ for 2 steps) as a yellow amorphous material. The thioura 23 was needed to immediately use for the next step due to its instability. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60$ ${ }^{\circ} \mathrm{C}$, as a mixture of romater): $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.32-6.95(\mathrm{~m}, 12 \mathrm{H}), 6.17(\mathrm{dd}, J=18.0$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.92$ (m, 4H), $4.78(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (dd, $J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 1 \mathrm{H})$, $2.55(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, 3H), 0.04 (s, 3H); IR (KBr): 3734, 3628, 2929, 2360, 2341, 1732, 1646, 1591, 1558, 1522, 1388, 1348, 1286, 1103, $837 \mathrm{~cm}^{-1} ;$ HRMS (ESI, $m / z$ ): $[\mathrm{M}-\mathrm{H}]$ calcd for $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{O}_{7} \mathrm{~N}_{6} \mathrm{~S}_{2} \mathrm{Si}_{2}, 943.3744$; found, 943.3763. Since thiourea 23 was gradually decomposed during the NMR experiment at $60^{\circ} \mathrm{C}$, the spectra of time-consuming ${ }^{13} \mathrm{C}-\mathrm{NMR}$ was difficult to obtain. Thus, we added a direct chart of HRMS.




24

Compound 24;
To a solution of thiourea $23(363 \mathrm{mg}, 0.384 \mathrm{mmol})$ in DCE $(7.7 \mathrm{~mL})$ were added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(336 \mu \mathrm{~L}$, 2.30 mmol ), o-nitrobenzylaminehydrochloride ( $350 \mathrm{mg}, 2.30 \mathrm{mmol}$ ) and EDCI ( $440 \mathrm{mg}, 2.30 \mathrm{mmol}$ ) in this order at room temperature. After being stirred at $50^{\circ} \mathrm{C}$ for 12 h , the reaction was cooled to room temperature and quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ( $10 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane $/ \mathrm{EtOAc}=10 / 1$ to $1 / 1$ ) to afford guanidine $24(335 \mathrm{mg}, 0.315 \mathrm{mmol}$, $82 \%$ ) as a white amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$, as a mixture of rotamer): $\delta$ $9.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}$, $2 \mathrm{H}), 6.21(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{br} \mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{dd}, J=14.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=$ $10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$, as a mixture of rotamer): $\delta 163.61,159.44,156.40,150.10$, $148.99,137.89$, $134.66,134.44,133.89,133.72,133.46,129.21,129.07,128.99,128.93,128.89$, $128.34,127.67,127.55,124.94,124.44,122.56,117.78,113.35,112.14,87.11,85.70,72.04,69.23$, $66.42,66.40,65.60,64.60,53.31,47.41,42.61,41.85,26.16,25.86,18.52,17.94,14.95,-4.20$, 4.97, $-5.25,-5.35$ (some peaks are broadened due to the rotamer.); IR ( KBr ): 3734, 3628, 2929, $2360,2341,1732,1646,1591,1558,1522,1388,1348,1286,1103,837 \mathrm{~cm}^{-1} ;$ HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{71} \mathrm{O}_{9} \mathrm{~N}_{8} \mathrm{SSi}_{2}, 1063.4598$; found, 1063.4606.


Compound 25;
To a mixture of HF pyr-THF (1:3, 6.3 mL ) was added guanidine $24(335 \mathrm{mg}, 0.315 \mathrm{mmol})$ at room temperature. The mixture was stirred for 50 h and cooled to $0^{\circ} \mathrm{C}$. After the addition of TMSOMe $(12 \mathrm{~mL})$, the mixture was concentrated under reduced pressure. The crude diol $\mathbf{S 8}$ was used for the next step without purification. To the solution of crude $\mathbf{S 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.3 \mathrm{~mL})$ were added 2,6-lutidine $(142 \mu \mathrm{~L}, 1.26 \mathrm{mmol})$ and $\operatorname{TIPSOTf}(169 \mu \mathrm{~L}, 0.630 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 1 h , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc ( $10 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc $=4 / 1$ to $1 / 2$ ) to afford silyl ether $25(209 \mathrm{mg}, 0.211$ mmol, $67 \%$ for 2 steps) as a yellow amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ): $\delta 9.20$ (s, $1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.18-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.14$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $5.51(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{dd}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}$, $J=15.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 2 \mathrm{H})$, $3.58(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.93-1.85 (m, 1H), 1.12-1.03 (m, 21H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ): $\delta 164.00,160.09$, $156.71,148.94,138.67,135.53,135.33,134.91,134.37,131.72,129.81,129.60,129.39,129.20$, $129.03,128.21,128.16,125.54,124.86,123.34,118.32,117.51,112.94,112.43,88.05,86.48,72.32$, $69.68,66.62,66.03,65.47,64.29,53.63,47.47,42.80,41.48,18.17,14.93,12.39$ (one peak missing in $\mathrm{CD}_{3} \mathrm{CN}$ ) (some peaks are broadened due to the rotamer); $\mathrm{IR}(\mathrm{KBr}): 3734,3628,2942,2360,2342$, 1733, 1646, 1590, 1558, 1523, 1388, 1348, 1288, $1093 \mathrm{~cm}^{-1}$; HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{51} \mathrm{H}_{63} \mathrm{O}_{9} \mathrm{~N}_{8} \mathrm{SSi}$, 991.4203 ; found, 991.4212 .


Compound 28;
To a solution of silyl ether $\mathbf{2 5}(44.0 \mathrm{mg}, 44.4 \mathrm{~mol})$ were added $0.40 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{OsO}_{4}$ $(121 \mu \mathrm{~L}, 48.4 \mu \mathrm{~mol})$ and TMEDA $(7.2 \mu \mathrm{~L}, 48.4 \mu \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 min and warmed to room temperature. To the mixture were added $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(0.2 \mathrm{~mL})$. The mixture was stirred, in the flask wrapped with foil, for 3 h . To the mixture was added 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$, and the mixture was extracted with EtOAc ( 2 mL x 3 ). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure to give crude diol $\mathbf{S 9}$, which was used for the next step without purification. To a solution of crude $\mathbf{S 9}$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(47.5 \mathrm{mg}, 222 \mu \mathrm{~mol})$ at room temperature. After being stirred under dark condition for $1 \mathrm{~h}, \mathrm{a}$ saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 2 mL ) was added. The mixture was extracted with EtOAc (2 $\mathrm{mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. Azeotropic treatment with hexane provided crude cyclic hemi-aminal 26 $(35.2 \mathrm{mg})$ and it was used for the next step without purification. To a solution of cyclic hemi-aminal 26 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ were slowly added 2,6-lutidine ( $12.3 \mu \mathrm{~L}, 106 \mu \mathrm{~mol}$ ) and 0.50 M of solution of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(78.0 \mu \mathrm{~L}, 39.0 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$, successively. After being stirred for 10 min , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 2 mL ) was added. The mixture was extracted with EtOAc ( $2 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel, previously treated with $N, N$-dimethylaniline, flash column chromatography (hexane $/ \mathrm{EtOAc}=4 / 1$ to $1 / 2$ ) to afford chloride $\mathbf{2 8}(18.9 \mathrm{mg}, 18.6$ $\mu \mathrm{mol}, 42 \%$ for 3 steps) along with inseparable minor diastereomer at C 20 position as a pale yellow amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 60^{\circ} \mathrm{C}$ ): $\delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.25(\mathrm{~m}$,

13H), 6.99 (brs, 1H), $6.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-4.95(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{br} \mathrm{d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.98$ (s, 21H); IR (KBr): 3734, 3628, 3383, $2961,2865,2360,2342,1717,1636,1577,1556,1523,1427,1395,1351,1289,11367,1099,1023$, 881, $801 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{~N}_{8} \mathrm{ClSSi}$, 1011.3656; found, 1011.3664. Since nitrobenzyl group of $\mathbf{2 8}$ was readily removed during the NMR experiment at $60^{\circ} \mathrm{C}$, the spectra of time-consuming ${ }^{13} \mathrm{C}$ NMR was difficult to obtain. Thus, we added a chart of HRMS.


Compound 30;
To a solution of chloride $28(18.9 \mathrm{mg}, 18.6 \mu \mathrm{~mol})$ in DCE $(370 \mu \mathrm{~L})$ was added $0.50 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $m$ CPBA (washed with phosphate buffer, $74.4 \mu \mathrm{~L}, 37.2 \mu \mathrm{~mol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction flask was wrapped with foil to protect nitrobenzyl group. After being stirred at $0{ }^{\circ} \mathrm{C}$ for $3 \mathrm{~h}, 1 \mathrm{M}$ solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ ( 3 drops) was added. After being stirred for 10 min , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 1 mL ) was added. The mixture was extracted with EtOAc ( $1 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The crude sulfoxide 29 was used for the next step without purification. To a solution of crude 29 in DCE $(0.9 \mathrm{~mL})$ were slowly added a 0.5 M DCE solution of $o-\mathrm{NO}_{2} \mathrm{BnNH}_{2}(112 \mu \mathrm{~L}, 55.8 \mu \mathrm{~mol})$ and a 0.5 M DCE solution of $\mathrm{Tf}_{2} \mathrm{NH}(112 \mu \mathrm{~L}, 55.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction flask was wrapped with foil to exclude light. After being stirred at $50^{\circ} \mathrm{C}$ for 2 h , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution (1 mL ) was added. The mixture was extracted with EtOAc ( $1 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel, previously treated with $N, N$-dimethylaniline, flash column chromatography (hexane/EtOAc $=4 / 1$ to $1 / 2$ ) afforded guanidine $30(14.5 \mathrm{mg}, 13.0 \mu \mathrm{~mol}, 70 \%$ ) along with inseparable minor diastereomer at C 20 position as a pale yellow amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 6{ }^{\circ} \mathrm{C}$ ): $\delta 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.30(\mathrm{~m}$, 16 H ), $7.00(\mathrm{brs}, 1 \mathrm{H}), 6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=3.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=16.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}$, $2 \mathrm{H}), 2.70(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.05(\mathrm{~m}, 21 \mathrm{H})$; IR (KBr): 3734, 3638, 3383, $2961,2865,2360,2342,1730,1635,1523,1396,1339,1289,1261,1101,1017,800 \mathrm{~cm}^{-1} ;$ HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{10} \mathrm{ClSi}$, 1115.4208; found, 1115.4208. Since nitrobenzyl group of $\mathbf{3 0}$ was readily removed during the NMR experiment at $60^{\circ} \mathrm{C}$, the spectra of time-consuming ${ }^{13} \mathrm{C}$ NMR was difficult to obtain. Thus, we added a chart of HRMS.


Compound 32;
Guanidine $30(14.5 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ was added HF-pyr-THF $(1: 5,260 \mu \mathrm{~L})$ at room temperature. The reaction flask was rapped with foil to protect nitrobenzyl group. The mixture was stirred for 3 h and cooled to $0^{\circ} \mathrm{C}$. After the addition of TMSOMe ( 1 mL ), the mixture was concentrated under reduced pressure. The crude alcohol $\mathbf{S 1 0}$ was used for the next step without purification. To a solution of crude $\mathbf{S 1 0}$ in pyridine $(260 \mu \mathrm{~L}$ ) was slowly added chloromethylsulfonyl chloride ( $2.3 \mu \mathrm{~L}, 26.0$ $\mu \mathrm{mol}$ ) at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 1 mL ) was added. The mixture was extracted with EtOAc ( $1 \mathrm{~mL} x 3$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The crude chloromethanesulfonylate $\mathbf{3 1}$ was used for the next step without purification. To a solution of crude 31 in DMF $(260 \mu \mathrm{~L})$ were slowly added a 1.0 M DMSO solution of $\mathrm{NaN}_{3}(52.0 \mu \mathrm{~L}, 26.0 \mu \mathrm{~mol})$ and $15-$ crown- $5(5.1 \mu \mathrm{~L}, 26.0 \mu \mathrm{~mol})$ at room temperature. The reaction flask was wrapped with foil to
exclude light. After being stirred for 15 h , a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 1 mL ) was added. The mixture was extracted with EtOAc ( 1 mL x 3 ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by PTLC (hexane/EtOAc $=1 / 4)$ to afforded azide $32(5.7 \mathrm{mg}, 58.5 \mu \mathrm{~mol}, 45 \%$ for 3 steps $)$ as a pale yellow amorphous material. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 6{ }^{\circ} \mathrm{C}$ ): $\delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.32(\mathrm{~m}, 14 \mathrm{H}), 7.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.98-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}$, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=12.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=12.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H})$; IR (KBr): 3380, 2920, 2360, 2102, 1727, 1633, 1523, 1323, 1397, 1352, 1289, 1192, $1136 \mathrm{~cm}^{-1}$;HRMS (ESI, $m / z$ ): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{47} \mathrm{H}_{43} \mathrm{O}_{10} \mathrm{~N}_{13} \mathrm{Cl}, 984.2939$; found, 984.2948 . Since nitrobenzyl group of $\mathbf{3 2}$ was readily removed during the NMR experiment at $60^{\circ} \mathrm{C}$, the spectra of time-consuming ${ }^{13} \mathrm{C}$ NMR was difficult to obtain. Thus, we added a chart of HRMS.


Palau'amine 1;
A solution of azide $32(2.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was irradiated by Hg -lamp ( 400 W ) at room temperature. After being stirred for 1.5 h , to the reaction mixture were added $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, TFA $(0.5 \mathrm{~mL})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.9 \mathrm{mg}, 3.8 \mu \mathrm{~mol})$. Then hydrogen gas was bubbled through the mixture for 10 min . After being stirred under hydrogen atmosphere (balloon) at room temperature for 1.5 h , the reaction mixture was filtered through a Cosmonice Filter S (pore size: $0.45 \mu \mathrm{~m}$, filter diameter 13 mm ). The filtrate was concentrated under reduced pressure. The residue was purified by semi-preparative HPLC (Atlantis dC18, $5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}, 100 \% \mathrm{H}_{2} \mathrm{O}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right), 1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{R}_{\mathrm{T}}=5.0 \mathrm{~min}$ ) to give pure palau'amine (1) as a formate salt. Azeotropic treatment with TFA provided pure palau'amine (1)•3TFA (1.2 mg, $1.6 \mu \mathrm{~mol}, 64 \%$ ) as a off-white solid. ${ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.01(\mathrm{dd}, J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=4.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J$ $=13.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=13.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta 159.57,157.94,157.83,125.21$, $122.50,115.70,113.89,83.76,80.77,74.03,72.06,69.02,56.35,48.58,46.03,41.87,41.87$; HRMS (ESI-TOF, $m / z$ ): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{9} \mathrm{Cl}, 420.1663$; found, 420.1663 .

## ORTEPS drawing of 21 from X-ray crystallographic analysis



Supplementary Dataset 1
Compound 21 CCDC 1417980

## X-ray Structure Report for Compound 21

## Experimental

Data Collection
A colorless block crystal of $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{SSi}_{2}$ having approximate dimensions of $0.600 \times 0.400 \mathrm{x}$ 0.300 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

$$
\begin{aligned}
& \mathrm{a}=13.0627(8) \AA \\
& \mathrm{b}=22.718(2) \AA \quad \mathrm{b}=107.908(2)^{\mathrm{O}} \\
& \mathrm{c}=18.8564(9) \AA \\
& \mathrm{V}=5324.6(5) \AA^{3}
\end{aligned}
$$

For $\mathrm{Z}=4$ and F.W. $=958.29$, the calculated density is $1.195 \mathrm{~g} / \mathrm{cm}^{3}$. The reflection conditions of:

$$
\mathrm{h} 01: \quad \mathrm{h}+\mathrm{l}=2 \mathrm{n}
$$

$$
0 \mathrm{k} 0: \quad \mathrm{k}=2 \mathrm{n}
$$

uniquely determine the space group to be:

$$
\mathrm{P} 2{ }_{1} / \mathrm{n}(\# 14)
$$

The data were collected at a temperature of $-100 \pm 1^{\circ} \mathrm{C}$ to a maximum $2 \theta$ value of $54.9^{\circ}$. A total of 75 oscillation images were collected. A sweep of data was done using w scans from 130.0 to $190.0^{\circ}$ in $3.0^{\circ}$ step, at $\chi=45.0^{\circ}$ and $\phi=70.0^{\circ}$. The exposure rate was $120.0\left[\mathrm{sec} . /{ }^{\circ}\right]$. A second sweep was performed using $\omega$ scans from 0.0 to $165.0^{\circ}$ in $3.0^{\circ}$ step, at $\chi=45.0^{\circ}$ and $\phi=250.0^{\circ}$. The exposure rate was $120.0\left[\mathrm{sec} . /^{\circ}\right]$. The crystal-to-detector distance was 127.40 mm . Readout was performed in the 0.100 mm pixel mode.

## Data Reduction

Of the 44677 reflections that were collected, 11824 were unique $\left(\mathrm{R}_{\mathrm{int}}=0.1118\right)$; equivalent reflections were merged.

The linear absorption coefficient, $\mu$, for Mo-K $\alpha$ radiation is $1.686 \mathrm{~cm}^{-1}$. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.457 to 0.951 . The data were corrected for Lorentz and polarization effects.

## Structure Solution and Refinement

The structure was solved by direct methods ${ }^{7}$ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{8}$ on $\mathrm{F}^{2}$ was based on 11799 observed reflections and 647 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$
\begin{gathered}
\mathrm{R} 1=\Sigma| | \mathrm{Fo}|-|\mathrm{Fc} \| / \Sigma| \mathrm{Fo}|=0.0943(1) \\
\mathrm{wR} 2=\left[\Sigma\left(\mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}\right) / \Sigma \mathrm{w}\left(\mathrm{Fo}^{2}\right)^{2}\right]^{1 / 2}=0.2443(2)
\end{gathered}
$$

The standard deviation of an observation of unit weight ${ }^{9}$ was 1.09 . A Sheldrick weighting scheme was used. Plots of $\Sigma \mathrm{w}(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$ versus $|\mathrm{Fo}|$, reflection order in data collection, sin è/ë and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 1.18 and $-0.68 \mathrm{e} / \AA^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber ${ }^{10}$. Anomalous dispersion effects were included in Fcalc ${ }^{11}$; the values for $\Delta f^{\prime}$ and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{12}$. The values for the mass attenuation coefficients are those of Creagh and Hubbell ${ }^{13}$. All calculations were performed using the CrystalStructure ${ }^{14-15}$ crystallographic software package.

## Supplementary References

1. Namba, K. et al. Toward palau'amine: $\mathrm{Hg}(\mathrm{OTf})_{2}$-catalyzed synthesis of the cyclopentane core. Chem. Eur. J. 15, 6560-6563 (2009).
2. Kinnel, R. B., Gehrken, H.-P. \& Scheuer, P. J. Palau'amine: a cytotoxic and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata. J. Am. Chem. Soc. 115, 3376-3377 (1993).
3. Kinnel, R. B., Gehrken, H.-P., Swali, R., Skoropowski, G. \& Scheuer, P. J. Palau'amine and its congeners: a family of bioactive bisguanidines from the marine sponge Stylotella aurantium. $J$. Org. Chem. 63, 3281-3286 (1998).
4. Buchanan, M. S. Carroll, A. R. \& Quinn, R. J. Revised structure of palau'amine. Tetrahedron Lett. 48, 4573-4574 (2007)
5. Seiple, I. B., Su, S., Young, I. S., Lewis, C. A., Yamaguchi, J. \& Baran, P. S. Total synthesis of palau'amine. Angew. Chem. Int. Ed. 49, 1095-1098 (2010).
6. Seiple, I. B. et al. Enantioselective total synthesis of (-)-palau'amine, (-)-axinellamines, and (-)-massadines. J. Am. Chem. Soc. 133, 14710-14726 (2011).
7. Altomare, A. et al. a new tool for crystal structure determination and refinement. J. Appl. Cryst. 32, 115-119 (1999).
8. Least Squares function minimized: $\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$ where $\mathrm{w}=$ Least Squares weights.
9. Standard deviation of an observation of unit weight: $\left[\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} /\left(\mathrm{N}_{\mathrm{o}}-\mathrm{N}_{\mathrm{V}}\right)\right]^{1 / 2}$, where: $\mathrm{N}_{\mathrm{o}}=$ number of observations, $\mathrm{N}_{\mathrm{V}}=$ number of variables
10. Cromer, D. T. \& Waber, J. T. International tables for x-ray crystallography. The Kynoch Press, Birmingham, England, 4, Table 2.2 A (1974).
11. Ibers, J. A. \& Hamilton, W. C. Acta Crystallogr. 17, 781 (1964).
12. Creagh, D. C. \& McAuley, W. J. International tables for crystallography. Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 219-222 (1992).
13. Creagh, D. C. \& Hubbell, J. H. International tables for crystallography. Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, 200-206 (1992).
14. CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.
15. CRYSTALS Issue 11: Carruthers, J. R. et al. Chemical Crystallography Laboratory, Oxford, UK. (1999)

[^0]:    Supplementary Table 8. Crystal Data of compound 21

