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Supplementary Figures 
 

 

Supplementary Figure 1. Previous Synthesis of Compound 71 
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Supplementary Figure 2. NOESY spectrum of 13 
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Supplementary Figure 3. NOEY spectrum of 14 
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Supplementary Figure 4. NOE Analysis of Compound 19 

 

 

 

 

 

Supplementary Figure 5. Comparison of Coupling Constant of Compound 19 and Natural 

Palau’amine (1) 
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         TLC (hexane/EtOAc = 3:1)  

 

Supplementary Figure 6. TLC Analysis in the Conversion of Compound 18 to 19 
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Supplementary Figure 7. Optimized structures of 18A+2THF(I) and 18A+2THF(II). 

 

 

 
 
Supplementary Figure 8. Potential energy profiles for the cyclization reaction of 

18A+2THF(I)→18B+2THF(I) and 18A+2THF(II)→18B+2THF(II).  The potential energies 

(in kcal/mol) relative to 18A+2THF(I) are shown in parenthesis. 
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 Supplementary Figure 9. 1H-NMR spectrum of S1  
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 Supplementary Figure 10. 13C-NMR spectrum of S1 
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 Supplementary Figure 11. 1H-NMR spectrum of 11  
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 Supplementary Figure 12. 13C-NMR spectrum of 11 
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 Supplementary Figure 13. 1H-NMR spectrum of S2 
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Supplementary Figure 14. 13C-NMR spectrum of S2  
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Supplementary Figure 15. 1H-NMR spectrum of 12  
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 Supplementary Figure 16. 13C-NMR spectrum of 12 
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 Supplementary Figure 17. 1H-NMR spectrum of 13  
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  Supplementary Figure 18. 13C-NMR spectrum of 13   
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Supplementary Figure 19. COSY spectrum of 13 
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 Supplementary Figure 20. 1H-NMR spectrum of 14 
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Supplementary Figure 21. 13C-NMR spectrum of 14    
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Supplementary Figure 22. COSY spectrum of 14 
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 Supplementary Figure 23. 1H-NMR spectrum of 15  
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Supplementary Figure 24. 13C-NMR spectrum of 15 
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Supplementary Figure 25. 1H-NMR spectrum of 18   
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Supplementary Figure 26. 13C-NMR spectrum of 18  
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Supplementary Figure 27. 1H-NMR spectrum of 19   

10
9

8
7

6
5

4
3

2
1

ppm

3.14
3.03
5.82

9.33
9.20

1.04

0.99

0.99

1.01
1.06
2.00

1.02
1.01
1.02
0.97

1.00

0.99

0.95
0.90
0.97

N

N

O

O
TB

S

B
ocH

N

O
TB

S

OH
N

O

F
3 C

H
H

19
1H

, 500 M
H

z, C
D

C
l3



 26 

Supplementary Figure 28. 13C-NMR spectrum of 19    
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Supplementary Figure 29. 1H-NMR spectrum of 20  
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Supplementary Figure 30. 13C-NMR spectrum of 20   
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Supplementary Figure 31. 1H-NMR spectrum of 21  
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Supplementary Figure 32. 13C-NMR spectrum of 21    

210
200

190
180

170
160

150
140

130
120

110
100

90
80

70
60

50
40

30
20

10
0

ppm

115
120

ppm 112.372
114.140
114.525
114.677

116.981

119.285

156
157

ppm

155.540
155.828
156.114
156.401

N

N

O

O
TB

S

N

O
TB

S

H
OH

N

O

F
3 C

H
H

C
bzH

N

M
eS

21
13C

, 125 M
H

z, C
D

C
l3



 31 

Supplementary Figure 33. 1H-NMR spectrum of 22    
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Supplementary Figure 34. 13C-NMR spectrum of 22   
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Supplementary Figure 35. 1H-NMR spectrum of 23   
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Supplementary Figure 36. HRMS (ESI) spectrum of 23 
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 Supplementary Figure 37. 1H-NMR spectrum of 24 
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Supplementary Figure 38. 13C-NMR spectrum of 24   
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Supplementary Figure 39. 1H-NMR spectrum of 25   
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Supplementary Figure 40. 13C-NMR spectrum of 25  
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Supplementary Figure 41. 1H-NMR spectrum of 28    
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Supplementary Figure 42. HRMS (ESI) spectrum of 28 
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Supplementary Figure 43. 1H-NMR spectrum of 30  
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Supplementary Figure 44. HRMS (ESI) spectrum of 30 
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Supplementary Figure 45. 1H-NMR spectrum of 32    
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Supplementary Figure 46. HRMS (ESI) spectrum of 32 
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Supplementary Figure 47. 1H-NMR spectrum of palau’amine (1)   
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Supplementary Figure 48. 13C-NMR spectrum of palau’amine (1)  
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Supplementary Figure 49. Comparison of 1H-NMR Spectra of natural and synthetic Palau’amine 

(1) 
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Supplementary Figure 50. Comparison of 13C-NMR Spectra of natural and synthetic Palau’amine 

(1) 
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Reverse–Phase HPLC 

(Atlantis dC18, 5 µm, 250 x 4.6 mm, 100% H2O (0.1% HCO2H), 1 mL/min) 

Synthetic Palau’amine (1)    

 

 

 

 

 

 

 

 

 

 

Brank (100% H2O (0.1% HCO2H)) 

 

 

 

 

 

 

 

 

Supplementary Figure 51. HPLC Analysis of Synthetic Palau’amine (1) 
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Supplementary Tables 
 

Position Natural (Scheuer)2-3 Natural (Quinn)4 Synthetic 

3 6.85 (dd, 3.9, 1.5) 6.89 (dd, 3.9, 1.6) 6.87 (dd, 4.0, 1.5) 

4 6.35 (dd, 3.9, 2.8) 6.39 (dd, 3.9, 2.8) 6.37 (dd, 4.0, 2.5) 

5 6.99 (dd, 2.8, 1.5) 7.03 (dd, 2.8, 1.6) 7.01 (dd, 2.5, 1.5) 

6 6.33 (s) 6.37 (s) 6.36 (s) 

11 3.08 (d, 14.1) 3.11 (d, 13.8) 3.09 (d, 14.0) 

12 2.52 (dddd) 2.50 (m) 2.49 (m) 

13 3.96 (dd, 10.4, 7.3)α 3.97 (dd, 10.2, 7.2)α 3.95 (dd, 10.0, 7.0)α 

  3.28 (dd, 10.4, 10.3)β 3.31 (t, 10.2)β 3.29 (t, 10.2)β 

17 4.35 (d, 7.9) 4.34 (d, 7.8) 4.33 (d, 7.5) 

18 2.47 (dddd) 2.48 (m) 2.47 (m) 

19 3.32 (dd, 13.2, 7.0)a 3.32 (dd, 13.2, 6.6)a 3.31 (dd, 13.2, 6.5)a 

  3.24 (dd, 13.2, 7.0)b 3.27 (dd, 13.2, 6.6)b 3.26 (dd, 13.2, 6.5)b 

20 5.96 (s) 5.98 (s) 5.96 (s) 

Supplementary Table 1. 1H-NMR Comparison of natural and synthetic Palau’amine (1) 
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Position Natural (Scheuer)2-3 Natural (Quinn)4 Synthetic 

2 122.5  122.5  122.5  

3 115.6  115.7  115.7  

4 113.8  113.9  113.9  

5 125.2  125.2  125.2  

6 69.0  69.0  69.0  

8 157.83, 5-6 (159.6)2 157.8  157.9  

10 80.8  80.7  80.8  

11 56.3  56.3  56.4  

12 41.8  41.8  41.9  

13 46.1  46.0  46.0  

15 159.53, 5-6 (157.8)2 159.5  159.6  

16 72.1  72.0  72.1  

17 74.0  74.0  74.0  

18 48.6  48.6  48.6  

19 41.9  41.8  41.9  

20 83.7  83.7  83.8  

22 157.9  157.9  157.8  

 Supplementary Table 2. 13C-NMR Comparison of natural and synthetic Palau’amine (1) 

 

 

 
18A    

 x y z 
C 0.2517 −0.8517 −0.5261 
C 0.4778 0.6326 −0.8613 
C 1.1659 −1.0999 0.7118 
C 1.9689 0.8622 −0.5282 
C 2.4667 −0.4152 0.1769 
H 0.6704 −1.4404 −1.3470 
H −0.1529 1.2658 −0.2310 
H 2.5395 0.9631 −1.4570 
H 3.1320 −0.1934 1.0170 
C −1.1634 −1.2803 −0.3230 
N −1.9358 −0.7106 0.5214 
C −1.6217 −2.5390 −1.0555 
O −1.5711 −2.6841 −2.2528 
O −2.0543 −3.4493 −0.2095 
C −2.5409 −4.6763 −0.7842 
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H −3.4014 −4.4640 −1.4182 
H −1.7502 −5.1453 −1.3683 
H −2.8222 −5.2980 0.0595 
C −3.2275 −1.2136 0.7487 
O −4.0593 −1.3989 −0.1176 
O −3.4021 −1.3916 2.0319 
C −4.6521 −1.9635 2.5848 
C −5.8289 −1.0549 2.2566 
H −6.6881 −1.3747 2.8493 
H −5.5945 −0.0228 2.5260 
H −6.0980 −1.1004 1.2031 
C −4.8203 −3.3785 2.0497 
H −5.0005 −3.3814 0.9751 
H −3.9291 −3.9699 2.2703 
H −5.6744 −3.8426 2.5464 
C −4.3725 −1.9715 4.0794 
H −5.2200 −2.4149 4.6039 
H −3.4784 −2.5578 4.2971 
H −4.2277 −0.9539 4.4467 
C 1.3273 −2.5606 1.0662 
H 1.6187 −2.7432 2.0954 
C 1.1636 −3.5943 0.2474 
H 0.9156 −3.4857 −0.8039 
H 1.3044 −4.6087 0.6042 
N 0.6575 −0.3335 1.8545 
C 1.4294 −0.2951 2.9165 
O 2.5200 −0.8155 3.1862 
C 0.8919 0.6399 4.0220 
F −0.4117 1.0104 3.8468 
F 0.9613 0.0889 5.2308 
F 1.5905 1.7832 4.0560 
C 0.1268 0.9230 −2.3190 
H 0.2166 2.0067 −2.4711 
H 0.8837 0.4377 −2.9479 
N −1.1766 0.4300 −2.7172 
C −2.2117 1.1292 −2.2610 
O −2.1888 2.1060 −1.4787 
C −3.5350 0.6618 −2.7960 
C −4.7842 1.2750 −2.6630 
N −3.6379 −0.4787 −3.5522 
C −5.6977 0.4746 −3.3933 
C −4.9451 −0.5785 −3.9256 
H −4.9885 2.1868 −2.1227 
H −6.7559 0.6444 −3.5285 
H −5.2858 −1.3992 −4.5424 
Li −4.7484 −0.7899 −1.7642 
Li −1.7582 −1.1926 −3.6315 
Li −1.1286 0.4786 1.9678 
O 3.1002 −1.2594 −0.7655 
Si 4.6327 −1.8828 −0.4806 
C 4.9931 −2.9874 −1.9695 
C 5.8323 −0.4429 −0.3841 
H 5.6582 0.1456 0.5216 
H 6.8690 −0.7899 −0.3555 
H 5.7179 0.2207 −1.2450 
C 4.6697 −2.8346 1.1316 
H 4.1767 −3.8049 1.0339 
H 5.7011 −2.9992 1.4560 
H 4.1461 −2.2717 1.9121 
C 5.1727 −2.1288 −3.2291 
H 6.0307 −1.4562 −3.1403 
H 5.3434 −2.7721 −4.1008 
H 4.2849 −1.5214 −3.4293 
C 6.2787 −3.7854 −1.7081 
H 6.5180 −4.4083 −2.5782 
H 7.1359 −3.1287 −1.5279 
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H 6.1731 −4.4475 −0.8435 
C 3.8250 −3.9594 −2.1871 
H 4.0435 −4.6241 −3.0318 
H 3.6462 −4.5840 −1.3061 
H 2.9004 −3.4186 −2.4050 
C 2.2023 2.1207 0.2924 
H 3.2752 2.2515 0.4805 
H 1.7019 2.0182 1.2640 
O 1.7094 3.2431 −0.4217 
Si 0.9008 4.4892 0.3534 
C −0.6308 3.7974 1.1834 
H −1.2212 3.2299 0.4550 
H −0.3579 3.1546 2.0263 
H −1.2542 4.6038 1.5815 
C 2.0432 5.2396 1.6393 
H 2.3887 4.4741 2.3406 
H 2.9235 5.6902 1.1729 
H 1.5316 6.0135 2.2177 
C 0.4535 5.7346 −0.9949 
C 0.1597 7.0990 −0.3528 
H −0.1666 7.8103 −1.1209 
H −0.6380 7.0342 0.3950 
H 1.0458 7.5167 0.1339 
C 1.6261 5.8789 −1.9751 
H 2.5424 6.1978 −1.4678 
H 1.8343 4.9341 −2.4821 
H 1.3872 6.6327 −2.7351 
C −0.7940 5.2576 −1.7531 
H −0.9974 5.9314 −2.5945 
H −0.6854 4.2415 −2.1412 
H −1.6758 5.2548 −1.1059 

Supplementary Table 3. Cartesian Coordinates from DFT calculations (in Å) of 18A 

 

 
TS(18A/18B)    

 x y z 
C 0.4927  −0.9379  −0.3224  
C 0.4224  0.4967  −0.8469  
C 1.4548  −0.8209  0.8916  
C 1.8610  1.0187  −0.7171  
C 2.5983  −0.0032  0.1805  
H 1.0129  −1.5402  −1.0740  
H −0.2416  1.0714  −0.1966  
H 2.3544  1.0092  −1.6941  
H 3.2156  0.4836  0.9417  
C −0.8994  −1.4797  −0.1664  
N −1.6977  −0.9177  0.7084  
C −1.0832  −2.9433  −0.5655  
O −1.0604  −3.3976  −1.6868  
O −1.1469  −3.6891  0.5190  
C −1.2008  −5.1090  0.3140  
H −2.0919  −5.3667  −0.2577  
H −0.3094  −5.4385  −0.2198  
H −1.2385  −5.5438  1.3076  
C −2.9543  −1.4324  0.9161  
O −3.5400  −2.2422  0.2083  
O −3.4603  −0.9054  2.0221  
C −4.8145  −1.2113  2.5020  
C −5.8397  −0.7192  1.4882  
H −6.8344  −0.7763  1.9352  
H −5.6378  0.3213  1.2248  
H −5.8362  −1.3203  0.5806  
C −4.9416  −2.7000  2.8017  



 54 

H −4.9215  −3.2973  1.8921  
H −4.1305  −3.0198  3.4594  
H −5.8890  −2.8746  3.3155  
C −4.8977  −0.3969  3.7858  
H −5.8768  −0.5356  4.2468  
H −4.1296  −0.7205  4.4908  
H −4.7579  0.6644  3.5722  
C 1.9244  −2.1400  1.4567  
H 2.3071  −2.0806  2.4708  
C 1.9364  −3.3078  0.8247  
H 1.6023  −3.4273  −0.2013  
H 2.3072  −4.2011  1.3157  
N 0.8507  0.0184  1.9324  
C 1.6322  0.3961  2.9165  
O 2.8140  0.1585  3.2019  
C 0.9409  1.3977  3.8690  
F −0.4213  1.4074  3.7647  
F 1.2152  1.1585  5.1481  
F 1.3323  2.6527  3.6004  
C −0.1989  0.4176  −2.2289  
H −0.5279  1.4096  −2.5484  
H 0.5635  0.0625  −2.9329  
N −1.3081  −0.5346  −2.2447  
C −2.5322  0.0139  −2.0220  
O −2.7534  1.1012  −1.4754  
C −3.6720  −0.8025  −2.5305  
C −5.0399  −0.5474  −2.3987  
N −3.4597  −1.9448  −3.2603  
C −5.7001  −1.5847  −3.0986  
C −4.6886  −2.4040  −3.6176  
H −5.4842  0.2839  −1.8723  
H −6.7646  −1.7132  −3.2298  
H −4.7950  −3.2969  −4.2186  
Li −4.4461  −2.5312  −1.4115  
Li −1.4754  −2.2418  −3.2339  
Li −1.0718  0.3322  2.1020  
O 3.3765  −0.8621  −0.6310  
Si 5.0076  −1.1097  −0.3235  
C 5.5608  −2.3596  −1.6266  
C 5.8886  0.5356  −0.5257  
H 5.5869  1.2321  0.2621  
H 6.9739  0.4175  −0.4608  
H 5.6521  0.9933  −1.4897  
C 5.2691  −1.7416  1.4192  
H 4.9498  −2.7815  1.5207  
H 6.3249  −1.6726  1.6968  
H 4.6855  −1.1426  2.1267  
C 5.5437  −1.7094  −3.0171  
H 6.2620  −0.8875  −3.0872  
H 5.8098  −2.4492  −3.7819  
H 4.5528  −1.3149  −3.2615  
C 6.9846  −2.8351  −1.3030  
H 7.3315  −3.5349  −2.0726  
H 7.6948  −2.0026  −1.2707  
H 7.0272  −3.3525  −0.3398  
C 4.6094  −3.5645  −1.6228  
H 4.9518  −4.3140  −2.3468  
H 4.5649  −4.0433  −0.6394  
H 3.5937  −3.2644  −1.8926  
C 1.9179  2.4356  −0.1674  
H 2.9562  2.7856  −0.1286  
H 1.5247  2.4370  0.8580  
O 1.1623  3.2962  −1.0063  
Si 0.0869  4.4257  −0.3932  
C −1.1937  3.5635  0.6707  
H −1.7394  2.8048  0.1002  
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H −0.7034  3.0915  1.5280  
H −1.9108  4.2874  1.0683  
C 1.0272  5.6599  0.6606  
H 1.4408  5.1721  1.5482  
H 1.8543  6.1076  0.1044  
H 0.3708  6.4652  1.0020  
C −0.6980  5.2439  −1.9042  
C −1.9119  6.0766  −1.4653  
H −2.3393  6.5959  −2.3312  
H −2.6968  5.4472  −1.0364  
H −1.6426  6.8371  −0.7249  
C 0.3243  6.1600  −2.5909  
H 0.6204  6.9904  −1.9432  
H 1.2272  5.6105  −2.8734  
H −0.1077  6.5871  −3.5040  
C −1.1562  4.1631  −2.8935  
H −1.6844  4.6286  −3.7350  
H −0.2994  3.6146  −3.2927  
H −1.8318  3.4368  −2.4289  

Supplementary Table 4. Cartesian Coordinates from DFT calculations (in Å) of TS (18A/18B) 

 

 
18B    

 x y z 
C 0.4856  −0.8897  −0.3357  
C 0.4082  0.5312  −0.8615  
C 1.4417  −0.7706  0.8691  
C 1.8540  1.0243  −0.8274  
C 2.5891  0.0392  0.1248  
H 1.0280  −1.4782  −1.0877  
H −0.1962  1.1180  −0.1662  
H 2.3198  0.9410  −1.8138  
H 3.1869  0.5668  0.8741  
C −0.9976  −1.3412  −0.3971  
N −1.7348  −0.8489  0.7155  
C −1.0120  −2.8713  −0.5162  
O −0.9227  −3.4752  −1.5710  
O −1.0083  −3.4734  0.6497  
C −0.9007  −4.9017  0.6327  
H −1.7636  −5.3327  0.1250  
H 0.0154  −5.2017  0.1243  
H −0.8773  −5.2041  1.6751  
C −2.9134  −1.3729  0.9604  
O −3.5369  −2.2393  0.3089  
O −3.4267  −0.8655  2.1162  
C −4.8176  −1.0392  2.4950  
C −5.7400  −0.5033  1.4028  
H −6.7571  −0.4272  1.7937  
H −5.4125  0.4932  1.0962  
H −5.7526  −1.1514  0.5278  
C −5.1083  −2.4975  2.8375  
H −5.0547  −3.1288  1.9529  
H −4.3862  −2.8568  3.5744  
H −6.1085  −2.5746  3.2706  
C −4.9354  −0.1748  3.7458  
H −5.9471  −0.2374  4.1502  
H −4.2320  −0.5174  4.5075  
H −4.7154  0.8680  3.5075  
C 1.9374  −2.0722  1.4518  
H 2.2666  −2.0055  2.4841  
C 2.0444  −3.2299  0.8104  
H 1.7616  −3.3522  −0.2309  
H 2.4365  −4.1090  1.3109  
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N 0.8592  0.0920  1.9033  
C 1.6519  0.4944  2.8655  
O 2.8415  0.2753  3.1399  
C 0.9572  1.5046  3.8057  
F −0.4046  1.4650  3.7451  
F 1.2798  1.3202  5.0844  
F 1.3001  2.7628  3.4840  
C −0.3882  0.3337  −2.1271  
H −0.9071  1.2284  −2.4633  
H 0.2495  −0.0357  −2.9374  
N −1.3882  −0.7371  −1.7699  
C −2.7426  −0.2097  −1.8209  
O −3.0124  0.8977  −1.4128  
C −3.7274  −1.0792  −2.4591  
C −5.1207  −0.9303  −2.4558  
N −3.3584  −2.2293  −3.1130  
C −5.6260  −2.0440  −3.1478  
C −4.5073  −2.7969  −3.5451  
H −5.6718  −0.1244  −1.9948  
H −6.6612  −2.2733  −3.3528  
H −4.4930  −3.7150  −4.1163  
Li −4.3450  −2.8298  −1.2198  
Li −1.3846  −2.3983  −3.1107  
Li −1.0734  0.1975  2.1838  
O 3.3984  −0.8314  −0.6418  
Si 5.0240  −1.0496  −0.2849  
C 5.6421  −2.3083  −1.5528  
C 5.8825  0.6083  −0.4881  
H 5.5475  1.3104  0.2811  
H 6.9673  0.5092  −0.3904  
H 5.6663  1.0489  −1.4648  
C 5.2590  −1.6487  1.4721  
H 4.9749  −2.6978  1.5820  
H 6.3037  −1.5363  1.7761  
H 4.6330  −1.0592  2.1507  
C 5.6530  −1.6831  −2.9545  
H 6.3439  −0.8370  −3.0132  
H 5.9737  −2.4255  −3.6956  
H 4.6587  −1.3288  −3.2423  
C 7.0668  −2.7414  −1.1772  
H 7.4516  −3.4522  −1.9182  
H 7.7563  −1.8916  −1.1469  
H 7.0936  −3.2327  −0.1999  
C 4.7223  −3.5371  −1.5564  
H 5.1007  −4.2863  −2.2628  
H 4.6667  −4.0052  −0.5685  
H 3.7059  −3.2669  −1.8535  
C 1.9460  2.4648  −0.3480  
H 2.9826  2.8176  −0.3888  
H 1.6191  2.5055  0.7005  
O 1.1351  3.2916  −1.1688  
Si 0.0174  4.3684  −0.5354  
C −1.2383  3.4627  0.5229  
H −1.7983  2.7181  −0.0512  
H −0.7385  2.9591  1.3567  
H −1.9475  4.1762  0.9529  
C 0.9116  5.6296  0.5251  
H 1.3627  5.1452  1.3962  
H 1.7065  6.1299  −0.0331  
H 0.2203  6.3923  0.8942  
C −0.7957  5.1532  −2.0487  
C −1.9929  6.0102  −1.6132  
H −2.4449  6.4923  −2.4881  
H −2.7671  5.4057  −1.1318  
H −1.6971  6.8017  −0.9172  
C −1.2817  4.0431  −2.9914  
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H −1.7851  4.4826  −3.8612  
H −0.4425  3.4415  −3.3506  
H −1.9933  3.3732  −2.4962  
C 0.2230  6.0356  −2.7826  
H 0.5434  6.8777  −2.1622  
H 1.1123  5.4662  −3.0682  
H −0.2223  6.4461  −3.6969  

Supplementary Table 5. Cartesian Coordinates from DFT calculations (in Å) of 18B 

 

 
18B′    

 x y z 
C 0.4856  −0.8897  −0.3357  
C 0.4082  0.5312  −0.8615  
C 1.4417  −0.7706  0.8691  
C 1.8540  1.0243  −0.8274  
C 2.5891  0.0392  0.1248  
H 1.0280  −1.4782  −1.0877  
H −0.1962  1.1180  −0.1662  
H 2.3198  0.9410  −1.8138  
H 3.1869  0.5668  0.8741  
C −0.9976  −1.3412  −0.3971  
N −1.7348  −0.8489  0.7155  
C −1.0120  −2.8713  −0.5162  
O −0.9227  −3.4752  −1.5710  
O −1.0083  −3.4734  0.6497  
C −0.9007  −4.9017  0.6327  
H −1.7636  −5.3327  0.1250  
H 0.0154  −5.2017  0.1243  
H −0.8773  −5.2041  1.6751  
C −2.9134  −1.3729  0.9604  
O −3.5369  −2.2393  0.3089  
O −3.4267  −0.8655  2.1162  
C −4.8176  −1.0392  2.4950  
C −5.7400  −0.5033  1.4028  
H −6.7571  −0.4272  1.7937  
H −5.4125  0.4932  1.0962  
H −5.7526  −1.1514  0.5278  
C −5.1083  −2.4975  2.8375  
H −5.0547  −3.1288  1.9529  
H −4.3862  −2.8568  3.5744  
H −6.1085  −2.5746  3.2706  
C −4.9354  −0.1748  3.7458  
H −5.9471  −0.2374  4.1502  
H −4.2320  −0.5174  4.5075  
H −4.7154  0.8680  3.5075  
C 1.9374  −2.0722  1.4518  
H 2.2666  −2.0055  2.4841  
C 2.0444  −3.2299  0.8104  
H 1.7616  −3.3522  −0.2309  
H 2.4365  −4.1090  1.3109  
N 0.8592  0.0920  1.9033  
C 1.6519  0.4944  2.8655  
O 2.8415  0.2753  3.1399  
C 0.9572  1.5046  3.8057  
F −0.4046  1.4650  3.7451  
F 1.2798  1.3202  5.0844  
F 1.3001  2.7628  3.4840  
C −0.3882  0.3337  −2.1271  
H −0.9071  1.2284  −2.4633  
H 0.2495  −0.0357  −2.9374  
N −1.3882  −0.7371  −1.7699  
C −2.7426  −0.2097  −1.8209  
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O −3.0124  0.8977  −1.4128  
C −3.7274  −1.0792  −2.4591  
C −5.1207  −0.9303  −2.4558  
N −3.3584  −2.2293  −3.1130  
C −5.6260  −2.0440  −3.1478  
C −4.5073  −2.7969  −3.5451  
H −5.6718  −0.1244  −1.9948  
H −6.6612  −2.2733  −3.3528  
H −4.4930  −3.7150  −4.1163  
Li −4.3450  −2.8298  −1.2198  
Li −1.3846  −2.3983  −3.1107  
Li −1.0734  0.1975  2.1838  
O 3.3984  −0.8314  −0.6418  
Si 5.0240  −1.0496  −0.2849  
C 5.6421  −2.3083  −1.5528  
C 5.8825  0.6083  −0.4881  
H 5.5475  1.3104  0.2811  
H 6.9673  0.5092  −0.3904  
H 5.6663  1.0489  −1.4648  
C 5.2590  −1.6487  1.4721  
H 4.9749  −2.6978  1.5820  
H 6.3037  −1.5363  1.7761  
H 4.6330  −1.0592  2.1507  
C 5.6530  −1.6831  −2.9545  
H 6.3439  −0.8370  −3.0132  
H 5.9737  −2.4255  −3.6956  
H 4.6587  −1.3288  −3.2423  
C 7.0668  −2.7414  −1.1772  
H 7.4516  −3.4522  −1.9182  
H 7.7563  −1.8916  −1.1469  
H 7.0936  −3.2327  −0.1999  
C 4.7223  −3.5371  −1.5564  
H 5.1007  −4.2863  −2.2628  
H 4.6667  −4.0052  −0.5685  
H 3.7059  −3.2669  −1.8535  
C 1.9460  2.4648  −0.3480  
H 2.9826  2.8176  −0.3888  
H 1.6191  2.5055  0.7005  
O 1.1351  3.2916  −1.1688  
Si 0.0174  4.3684  −0.5354  
C −1.2383  3.4627  0.5229  
H −1.7983  2.7181  −0.0512  
H −0.7385  2.9591  1.3567  
H −1.9475  4.1762  0.9529  
C 0.9116  5.6296  0.5251  
H 1.3627  5.1452  1.3962  
H 1.7065  6.1299  −0.0331  
H 0.2203  6.3923  0.8942  
C −0.7957  5.1532  −2.0487  
C −1.9929  6.0102  −1.6132  
H −2.4449  6.4923  −2.4881  
H −2.7671  5.4057  −1.1318  
H −1.6971  6.8017  −0.9172  
C −1.2817  4.0431  −2.9914  
H −1.7851  4.4826  −3.8612  
H −0.4425  3.4415  −3.3506  
H −1.9933  3.3732  −2.4962  
C 0.2230  6.0356  −2.7826  
H 0.5434  6.8777  −2.1622  
H 1.1123  5.4662  −3.0682  
H −0.2223  6.4461  −3.6969  

 Supplementary Table 6. Cartesian Coordinates from DFT calculations (in Å) of 18B′ 
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 18A 18A+2THF(I) 18A+2THF(II) 

d [C10−N14] / Å 2.94 2.84 3.21 

d [Li1−O(MeO2C−)] / Å 2.04 1.99 5.58 

d [Li1−O(THF1)] / Å  1.94 1.91 

d [Li2−O(Boc)] / Å 1.89 1.90 1.98 

d [Li2−O(THF2)] / Å  1.95 1.89 

Supplementary Table 7. Geometrical parameters of 18A, 18A+2THF(I) and 18A+2THF(II). 

 

  Compound 21 

Formula C44H70F3N5O9SSi2 

Formula Weight 958.29 

Crystal system monoclinic 

Space group P21/n (#14)  

Lattice Type Primitive 

a, Å 13.0627(8) 

b, Å 22.718(2) 

c, Å 18.8564(9) 

β  107.908(2) 

V, Å 3 5324.6(5) 

Z  4 

dcalc, g cm-3  1.195 

µ(Mo Kα), cm-1
  1.686 

Number of Observations 11799 

Variables 647 

T 173K 

Rint 0.1118 

R1 0.0943 

wR2 0.2443 

Goodness of Fit Indicator 1.091 

Supplementary Table 8. Crystal Data of compound 21 
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Supplementary Discussion 
 
Investigation of the solvent effects on chelate formation 

 The effects of solvent molecules (THF) on the chelate formation are examined by adding 

explicitly two THF molecules to 18A in the DFT calculations. This system is immersed in the 

self-consistent reaction field (continuous) model. We placed two THF molecules around the two 

lithium ions that are close to the amide and pyrrole anions and optimized the whole structure without 

any geometrical constraints. The optimized two lowest energy structures, which are denoted as 

18A+2THF(I) and 18A+2THF(II), are given in Supplementary Figure 50 and the geometrical 

parameters are shown in Supplementary Table 7. 18A+2THF(II) is slightly more stable than 

18A+2THF(I) by 2.3 kcal/mol. 

 

The structure of 18A moiety in 18A+2THF(I) is essentially similar to 18A without any explicit 

solvent molecules, where one of the lithium ions (Li1) forms a coordination to the carbonyl group of 

methyl ester and the other (Li2) to the carbonyl group of the Boc group. The oxygen atoms of the 

two THF molecules, O(THF1) and O(THF2), are coordinates to Li1 and Li2, respectively, and the 

distance between the oxygen atoms of THF and lithium ions are around 1.94 Å. On the other hand, 

the structure of 18A+2THF(II) does not exhibit a coordination of the lithium ion to the carbonyl 

group of methyl ester, and only the coordination to the carbonyl group of the Boc group is seen. As a 

result, the distance between C10 and N14 (3.21 Å) is longer than that of 18A+2THF(I) (2.84 Å). 

 

 From these two structures, the potential energy profiles to 18B+2THF(I) or 18B+2THF(II) are 

investigated, and the results are shown in Supplementary Figure 51.  As seen in the figure, the 

energy barrier from 18A+2THF(I) to 18B+2THF(I) is only 1.7 kcal/mol and it is quite close to 

those of 18A → 18B (1.5 kcal/mol). On the other hand, the energy barrier from 18A+2THF(II) to 

18B+2THF(II) is appreciably higher.  Considering that the energy difference between 

18A+2THF(I) and 18A+2THF(II) is only 2.3 kcal/mol, the coordination of lithium ions to both the 

carbonyl group of methyl ester and the Boc group is a key intermediate step to the facile formation 

of the trans-bicyclo[3.3.0]octane skeleton. 
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Supplementary Method 
 

General Procedures. 

All the reaction were carried out in a round-bottomed flask with an appropriate number of necks and 

side arms connected to a three-way stopcock and /or a rubber septum cap under an argon atmosphere. 

All vessels were first evacuated by rotary pump and then flushed with argon prior to use. Solution 

and solvent were introduced by hypodermic syringe through a rubber septum. During the reaction, 

the vessel was kept under a positive pressure of argon. Dry THF was freshly prepared by distillation 

from benzophenone ketyl before use. Anhydrous CH2Cl2, DMF, ethanol, MeCN, methanol, pyridine 

and toluene were purchased from Kanto Chemical Co. Inc. 

Infrared (IR) spectra were recorded on JASCO FT/IR-4100 spectrophotometer using 5 mm KBr 

plate. Wavelengths of maximum absorbance are quoted in cm–1. 1H-NMR spectra were recorded on 

a JEOL ECA–400 (400 MHz), JEOL ECA-500 (500 MHz), and Bruker AV–500 (500 MHz) in 

CDCl3, d–MeCN and D2O. Chemical shifts are reported in part per million (ppm), and signal are 

expressed as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (br). 13C-NMR 

spectra were recorded on a JEOL ECA–400 (100 MHz), Bruker AV–400N (100 MHz) and Bruker 

AV–500 (125 MHz) in CDCl3, C6D6, CD3CN and D2O. Chemical shifts are reported in part per 

million (ppm). High resolution mass (HRMS) spectra were recorded on a Thermo Scientific 

Exactive, Instrumental Analysis Division, Equipment Manager Center Creative Research Institution, 

Hokkaido University and a Waters SYNAPT-G2 Si HDMS, Tokushima Bunri University. High 

performance liquid chromatography (HPLC) was recorded on a HITACHI D-2500 

Chromato-Integrater. Analytical thin layer chromatography (TLC) was performed using 0.25 mm E. 

Merck Silica gel (60F-254) plates. Reaction components were visualized phosphomolybdic acid or 

ninhydrin or p-anisaldehyde in 10% sulfuric acid in ethanol. Kanto Chem. Co. Silica Gel 60N 

(particle size 0.040–0.050 mm) was used for column chromatography. 
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General procedure for preparation of intermediates and 1 

 

 

Compound S1:  

To a solution of alcohol 7 (8.42 g, 19.8 mmol) in DMF (50 mL) were added imidazole (4.04 g, 59.7 

mmol) and TBSCl (3.57 g, 23.7 mmol) at 0 ºC. After being stirred at 0 ºC for 1 h, a saturated 

aqueous NH4Cl solution (200 mL) was added. The mixture was extracted with EtOAc (200 mL x3). 

The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel flash column chromatography 

(hexane/EtOAc = 10/1 to 1/1) to afford silyl ether S1 (9.62 g, 17.8 mmol, 90%) as a white 

amorphous material. 1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 

2H), 6.00 (dd, J = 17.6, 10.8 Hz, 1H), 5.43 (d, J = 10.8 Hz, 1H), 5.34 (d, J = 17.6 Hz, 1H), 4.68 (dd, 

J = 12.4, 4.0 Hz, 1H), 4.56 (dd, J = 12.0, 7.6 Hz, 1H), 4.40 (s, 1H), 3.93 (dd, J = 10.9, 5.2 Hz, 1H), 

3.79 (dd, J = 10.4, 4.0 Hz, 1H), 3.68 (dd, J = 10.8, 5.6 Hz, 1H), 2.70–2.60 (m, 1H), 2.57 (dd, J = 

15.8, 7.2 Hz, 1H), 2.44 (s, 3H), 2.41 (dt, J = 15.6, 4.0 Hz, 1H), 2.22–2.12 (m, 1H), 1.74 (tt, J = 10.8, 

4.4 Hz, 1H), 0.90 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz, CDCl3):  δ 170.26, 145.43, 

136.24, 134.81, 129.54, 128.84, 118.52, 77.09, 75.16, 69.25, 62.18, 46.39, 42.65, 40.99, 36.74, 

25.85, 21.66, 18.18, –5.63, –5.70; IR (KBr): 3479, 3288, 2953, 2928, 2857, 1716, 1597, 1551, 1471, 

1433, 1363, 1257, 1171, 1088, 1006, 911, 837, 814 cm–1；HRMS (ESI, m/z): [M+Na]+ calcd for 

C24H37O7N3NaSSi, 562.2014; found, 562.2018. 

 

 

Compound 11:  

To a solution of SmI2 in THF (0.1 M, 178 mmol, 1.78 L) were added MeOH (89 mL) and a solution 

of alcohol S1 (9.62 g, 17.8 mmol) in THF (89 mL) at room temperature. After being stirred for 2 h, 
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the mixture was stirred under air atmosphere for 30 min until the color of solution was turned to 

yellow (ca. 30 min), and then a saturated aqueous NaHCO3 solution (2 L) was added. After being 

stirred for 30 min, FmocOSu (9.00 g, 26.7 mmol) was added. The mixture was stirred for 30 min and 

the organic layer was separated. The aqueous layer was extracted with EtOAc (2 L x 3). The 

combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel flash column chromatography 

(hexane/EtOAc = 2/1 to 0/1) to afford carbamate 11 (9.26 g, 16.0 mmol, 90%) as pare yellow 

amorphous material. 1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.6 Hz, 

2H), 7.40 (d, J = 7.2 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 6.78 (br s, 1H), 5.87 (dd, J = 18.2, 10.8 Hz, 

1H), 5.40 (d, J = 10.8 Hz, 1H), 5.33 (d, J = 17.6 Hz, 1H), 5.28 (br s, 1H), 4.42 (qn, J = 7.6 Hz, 2H), 

4.21 (t, J = 7.2 Hz, 1H), 4.04 (br s, 1H), 3.86–3.78 (m, 2H), 3.78–3.70 (m, 1H), 3.45–3.25 (m, 2H), 

2.55–2.30 (m, 2H), 2.25–2.10 (m, 1H), 1.75–1.50 (m, 1H), 0.89 (s, 9H), 0.07 (s, 6H); 13C NMR (125 

MHz, CDCl3): δ 175.87, 156.83, 143.85, 141.27, 137.58, 127.62, 126.99, 124.96, 119.93, 117.01, 

76.32, 68.53, 66.62, 63.61, 48.01, 47.22, 43.94, 43.82, 41.83, 33.63, 25.85, 18.11, –5.58, –5.59; IR 

(KBr): 8261, 2928, 2857, 2360, 1705, 1673, 1519, 1449, 1252, 1106, 910, 837 cm–1; HRMS (ESI, 

m/z): [M+Na]+ calcd for C32H43O5N3NaSi, 600.2864; found, 600.2868. 

 

 

 

Compound S2:  

To a solution of carbamate 11 (9.26 g, 16.0 mmol) in CH2Cl2 (160 mL) were added 2,6-DTBP (20.8 

mL, 96.0 mmol) and TBSOTf (11.0 mL, 48.0 mmol) at –78 ºC. After being stirred at –78 ºC for 3 h, 

the reaction was quenched with saturated aqueous NaHCO3 solution (200 mL). The organic layer 

was separated, and the aqueous layer was extracted with EtOAc (200 mL x3). The combined organic 

layers were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The 

residue was purified by silica gel flash column chromatography (hexane/EtOAc = 5/1 to 1/2) to 

afford silyl ether S2 (9.63 g, 13.9 mmol, 87%) as a white amorphous material. 1H NMR (400 MHz, 

CDCl3): δ 7.76 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.31 (t, J = 7.2 

Hz, 2H), 6.63 (br s, 1H), 5.90 (dd, J = 17.6, 11.2 Hz, 1H), 5.48 (br s, 1H), 5.24 (d, J = 11.2 Hz, 1H), 
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5.17 (d, J = 17.6 Hz, 1H), 4.40 (t, J = 6.8 Hz, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.98 (s, 1H), 3.84 (d, J = 

10.8 Hz, 1H), 3.77 (d, J = 10.0 Hz, 1H), 3.52 (t, J = 10.0 Hz, 1H), 3.48–3.38 (m, 1H), 3.32–3.22 (m, 

1H), 2.52–2.38 (m, 2H), 1.72–1.60 (m, 1H), 1.60–1.45 (m, 1H), 0.90 (s, 9H), 0.89 (s, 9H), 0.08 (s, 

3H), 0.06 (s, 6H), 0.03 (s, 3H); 13C NMR (100 MHz, CDCl3):  δ 175.66, 157.18, 144.32, 144.28, 

141.62, 138.32, 127.93, 127.32, 125.33, 120.25, 115.73, 76.79, 68.50, 66.93, 63.30, 49.28, 47.62, 

44.24, 43.50, 41.87, 33.66, 26.21, 26.16, 18.49, 18.35, –3.49, –4.45, –5.23; IR (KBr): 3734, 3271, 

2953, 2928, 2856, 2360, 2341, 1714, 1682, 1520, 1471, 1252, 1132, 837 cm–1; HRMS (ESI, m/z): 

[M+Na]+ calcd for C38H57O5N3NaSi2, 714.3729; found, 714.3734. 

 

 

Compound 12: 

To a solution of silyl ether S2 (9.63 g, 13.9 mmol) in MeCN (139 mL) were added Boc2O (3.64 mL, 

16.7 mmol) and DMAP (170 mg, 1.39 mmol) at 0 ºC. After being stirred 0 ºC for 2 h, the reaction 

was quenched with brine (150 mL). The mixture was extracted with EtOAc (200 mL x3). The 

combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel flash column chromatography 

(hexane/EtOAc = 8/1 to 2/1) to afford 12 (10.5 g, 13.3 mmol, 96%) as a white amorphous material. 
1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 

2H), 7.31 (t, J = 7.4 Hz, 2H), 5.99 (dd, J = 17.6, 11.2 Hz, 1H), 5.45 (br t, 1H), 5.23 (s, 1H), 5.21 (d, 

J = 11.2 Hz, 1H), 5.18 (d, J = 17.6 Hz, 1H), 4.41 (dd, J = 13.6, 11.2 Hz, 2H), 4.21 (t, J = 11.2 Hz, 

1H), 3.79 (d, J = 10.0 Hz, 1H), 3.79 (d, J = 10.0 Hz, 1H), 3.51 (dd, J = 10.0, 6.4 Hz, 1H), 3.45–3.35 

(m, 1H), 3.30–3.15 (m, 1H), 2.64 (dd, J = 14.4, 5.6 Hz, 1H), 2.38 (dd, J = 14.4, 8.0 Hz, 1H), 2.24–

2.18 (br dd, J = 14.4, 8.0 Hz, 1H), 1.70–1.60 (m, 1H), 1.60–1.50 (m, 1H), 1.54 (s, 9H), 0.92 (s, 9H), 

0.89 (s, 9H), 0.19 (s, 3H), 0.07 (s, 3H), 0.06 (s, 6H); 13C NMR (100 MHz, CDCl3):  δ 170.16, 156.72, 

151.05, 143.91, 141.29, 137.49, 127.61, 127.00, 125.01, 119.93, 115.40, 84.18, 68.51, 66.53, 62.02, 

50.04, 47.29, 43.91, 42.28, 41.97, 38.03, 28.01, 25.91, 25.82, 18.19, 18.00, –3.78, –4.97, –5.47, –

5.55 (one peak missing in CDCl3); IR (KBr): 3734, 2929, 2360, 2341, 1771, 1717, 1522, 1472, 1252, 

1152, 837 cm–1: HRMS (ESI, m/z): [M+Na]+ calcd for C43H65O7N3NaSi2, 814.4253; found, 

814.4251. 
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Compound 13: 

To a solution of 12 (10.5 g, 13.3 mmol) in CH2Cl2 (132 mL) were added iPr2NEt (23.6 mL, 132 

mmol) and TESOTf (11.6 mL, 66.0 mmol) at –78 ºC. After being stirred at –78 ºC for 3 h, the 

reaction was quenched with a saturated aqueous NaHCO3 solution (100 mL). The organic layer was 

separated, and the aqueous layer was extracted with CH2Cl2 (150 mL x3). The combined organic 

layers were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure to give 

crude silyl ketene aminal S3. The crude S3 was used for next step without purification. To a solution 

of residue in THF (66 mL) were added MeOH (66 mL) and NBS (3.05 mL, 17.2 mmol) at –78 ºC. 

After being stirred at –78 ºC for 1 h, the reaction was quenched with a saturated aqueous NaHCO3 

solution (50 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc 

(50 mL x3). The combined organic layers were dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel flash column 

chromatography (hexane/EtOAc = 10/1 to 4/1) to afford bromide 13 (9.41 g, 10.8 mmol, 82% for 2 

steps) as a white amorphous material and recovered 12 (1.46 g, 1.85 mmol, 14%).; 1H NMR (400 

MHz, CDCl3): δ 7.76 (d, J = 7.2 Hz, 2H), 7.59 (dd, J = 7.6, 4.8 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 

7.32 (tdd, J = 7.6, 2.8, 1.2 Hz, 2H), 5.91 (dd, J = 18.0, 11.2 Hz, 1H), 5.25 (d, J = 10.8 Hz, 1H), 5.22 

(d, J = 18.0 Hz, 1H), 5.14 (br s, 1H), 4.91 (s, 1H), 4.61 (d, J = 4.8 Hz, 1H), 4.44 (d, J = 6.8 Hz, 2H), 

4.21 (t, J = 6.8 Hz, 1H), 3.89 (d, J = 10.4 Hz, 1H), 3.77 (br d, J = 10.0 Hz, 1H), 3.62 (dd, J = 10.6, 

4.0 Hz, 1H), 3.42–3.28 (m, 2H), 2.68–2.58 (m, 1H), 2.32–2.18 (m, 1H), 1.76–1.62 (m, 1H), 1.52 (s, 

9H), 0.91 (s, 9H), 0.90 (s, 9H), 0.21 (s, 3H), 0.09 (s, 3H), 0.06 (s, 6H); 13C NMR (100 MHz, 

CDCl3):  δ 166.13, 156.96, 150.49, 143.95, 143.84, 141.33, 137.34, 127.66, 127.09, 127.07, 124.98, 

119.95, 116.57, 84.11, 76.88, 69.17, 66.71, 60.12, 51.06, 48.94, 47.26, 44.64, 41.93, 40.27, 27.96, 

25.96, 25.86, 18.22, 18.05, –3.77, –4.85, –5.42, –5.50; IR (KBr): 3734, 3649, 3373, 2928, 2856, 

2360, 2341, 1770, 1718, 1523, 1472, 1370, 1253, 1150, 835 cm–1HRMS (ESI, m/z): [M+Na]+ calcd 

for C43H64O7N3BrNaSi2, 892.3358; found, 892.3360. 
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Compound 14: 

To a solution of bromide 13 (9.41 g, 10.8 mmol) in MeOH (108 mL) was added K2CO3 (1.64 g, 11.9 

mmol) at 0 ºC. After being stirred at 0 °C for 10 min, the reaction was quenched with a saturated 

aqueous NH4Cl solution (100 mL) was added. The mixture was extracted with EtOAc (100 mL). 

The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel flash column chromatography 

(hexane/EtOAc = 10/1 to 4/1) to afford ester 14 (7.99 g, 9.72 mmol, 90%) as a white amorphous 

material. 1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.39 (t, J 

= 7.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 6.10 (d, J = 18.0, 11.2 Hz, 1H), 5.61 (br s, 1H), 5.27 (d, J = 

11.2 Hz, 1H), 5.20 (d, J = 18.0 Hz, 1H), 4.50–4.38 (m, 1H), 4.45 (dd, J = 10.4, 6.8 Hz, 1H), 4.40 (dd, 

J = 10.4, 6.8 Hz, 1H), 4.21 (m, 1H), 4.21 (s, 1H), 3.75 (dd, J = 10.4, 2.4 Hz, 1H), 3.67 (d, J = 11.6 

Hz, 1H), 3.65 (s, 3H), 3.52 (dd, J = 10.4, 6.4 Hz, 1H), 3.45–3.20 (m, 2H), 2.43 (dd, J = 6.4, 2.8 Hz, 

1H), 1.90–1.75 (m, 1H), 1.65–1.59 (m, 1H), 1.48 (s, 9H), 0.90 (s, 9H), 0.89 (s, 9H), 0.22 (s, 3H), 

0.09 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 171.99, 156.58, 144.07, 

143.93, 141.32, 141.29, 135.55, 127.62, 127.00, 125.00, 119.91, 116.39, 80.88, 76.32, 66.50, 61.95, 

56.58, 52.28, 50.70, 47.31, 44.34, 44.22, 28.30, 25.93, 25.88, 18.23, 17.99, –3.58, –5.26, –5.47, –

5.55; IR (KBr): 3724, 3343, 2953, 2929, 2895, 2857, 2360, 2341, 1698, 1521, 1472, 1389, 1366, 

1252, 1136, 1005, 938, 837 cm–1; HRMS (ESI, m/z): [M+Na]+ calcd for C44H67O8N3NaSi2, 

844.4359; found, 844.4368. 
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Compound 15; 

To a solution of ester 14 (7.99 g, 9.72 mmol) in CH2Cl2 (97 mL) were added 2,6-DTBP (31.5 mL, 

145.8 mmol) and TFAA (13.6 mL, 97.2 mmol) at 0 ºC. After being stirred 0 °C for 1 h, a saturated 

aqueous NaHCO3 solution (100 mL) was added. The organic layer was separated, and the aqueous 

layer was extracted with EtOAc (100 mL x3). The combined organic layers were dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by 

silica gel flash column chromatography (hexane/EtOAc = 10/1 to 4/1) to afford a mixture of 

trifluoroacetamide 15 and di-trifluoroacetamide 16. The mixture of 15 and 16 in MeOH (200 mL) 

was heated to 40 ºC for 3 h and concentrated under reduced pressure to afford trifluoroacetamide 15 

(8.93 g, 9.72 mmol, quant.) as a white amorphous material. 1H NMR (400 MHz, CDCl3, 60 ºC): δ 

7.76 (d, J = 7.6 Hz, 2H), 7.58 (dd, J = 7.2, 4.0 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.6 Hz, 

2H), 6.48 (dd, J = 17.6, 11.2 Hz, 1H), 5.65 (br s, 1H), 5.24 (d, J = 11.2 Hz, 1H), 5.16 (d, J = 17.6 Hz, 

1H), 4.83 (br s, 1H), 4.45 (dd, J = 17.2, 6.8 Hz, 1H), 4.38 (dd, J = 17.2, 7.2 Hz, 1H), 4.22 (t, J = 7.2 

Hz, 1H), 3.98 (d, J = 10.0 Hz, 1H), 3.92 (dd, J = 10.4, 2.8 Hz, 1H), 3.69 (s, 3H), 3.52–3.33 (m, 3H), 

3.07 (d, J = 10.0 Hz, 1H), 1.78–1.65 (m, 1H), 1.55–1.45 (m, 1H), 1.50 (s, 9H), 0.95 (s, 9H), 0.91 (s, 

9H), 0.19 (s, 3H), 0.08 (s, 9H); 13C NMR (125 MHz, CDCl3, 60 ºC): 

δ 169.14, 156.58, 156.28, 155.02 (q, J = 35.6 Hz), 144.19, 144.10, 141.48, 141.45, 132.41, 127.72, 

127.06, 125.05, 124.98, 120.01, 116.40, 116.01 (q, J = 286.9 Hz), 85.00, 79.45, 79.30, 67.01, 65.42, 

63.82, 55.89, 53.13, 52.46, 47.50, 44.74, 43.24, 27.89, 26.11, 26.00, 18.33, 18.25, –4.08, –4.58, –

5.35, –5.36; IR (KBr): 3734, 2929, 2857, 2360, 2342, 1717, 1508, 1472, 1371, 1253, 1205, 1155, 

838 cm–1; HRMS (ESI, m/z) [M+Na]+ calcd for C46H66O9N3F3NaSi2, 940.4182; found, 940.4187. 
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Compound 18; 

To a solution of 5% piperidine in MeCN (194 mL) was added trifluoroacetamide 15 (8.93 g, 9.72 

mmol) at room temperature. After being stirred for 10 min, water (200 mL) was added. The mixture 

was extracted with EtOAc (200 mL x3). The combined organic layers were washed with brine (300 

mL), dried over MgSO4, filtered, and concentrated under reduced pressure to give crude S4. To a 

solution of crude S4 in MeCN (49 mL) were added 2,6-DTBP (5.45 mL, 25.2 mmol) and 

2-(trichloroacetyl)pyrrole 17 (2.67 g, 12.6 mmol) at room temperature. The mixture was stirred for 

48 h and concentrated under reduced pressure. The residue was purified by silica gel flash column 

chromatography (hexane/EtOAc = 10/1 to 1/1) to afford pyrrole 18 (6.37 g, 8.07 mmol, 83% for 2 

steps) as a white solid material. 1H NMR (400 MHz, CDCl3, 60 ºC): δ 9.23 (br s, 1H), 6.90 (s, 1H), 

6.51 (s, 2H), 6.54 (dd, J = 17.6, 11.2 Hz, 1H), 6.23 (br d, J = 2.3 Hz, 1H), 5.26 (d, J = 11.2 Hz, 1H), 

5.19 (d, J = 17.6 Hz, 1H), 4.85 (br s, 1H), 3.99 (d, J = 9.6 Hz, 1H), 3.93 (d, J = 10.8 Hz, 1H), 3.85–

3.75 (m, 1H), 3.71(s, 3H), 3.51 (dd, J = 10.8, 6.8 Hz, 1H), 3.44 (dd, J = 12.8, 6.0 Hz, 1H), 3.14 (d, J 

= 8.4 Hz, 1H), 1.75–1.60 (m, 2H), 1.49 (s, 9H), 0.94 (s, 9H), 0.93 (s, 9H), 0.19 (s, 3H), 0.12 (s, 6H), 

0.08 (s, 3H); 13C NMR (125 MHz, CDCl3, 60 ºC):  δ 169.63, 161.32, 156.14, 155.00 (q, J = 37.1 Hz), 

132.46, 126.06, 121.50, 116.49, 115.99 (q, J = 287.5 Hz), 109.81, 108.98, 84.97, 79.57, 78.85, 65.65, 

63.36, 56.12, 52.54, 52.40, 44.16, 41.31, 27.98, 26.08, 26.07, 18.41, 18.22, –4.15, –4.54, –5.24, –

5.28; IR (KBr): 3734, 3257, 2954, 2930, 2858, 2360, 2342, 1743, 1636, 1559, 1520, 1472, 1437, 

1372, 1254, 1205, 1155, 838 cm–1; HRMS (ESI, m/z): [M+Na]+ calcd for C36H59O8N4F3NaSi2, 

811.3716; found, 811.3714. 
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Compound 19: 

To a solution of pyrrole 18 (120 mg, 0.152 mmol) in THF (7.6 mL) was added 1.0 M THF solution 

of LHMDS (464 µL, 0.464 mmol) at –78 ºC. The mixture was warmed up to 0 °C and the resulting 

yellow solution was further stirred at this temperature for 10 min. After the mixture was cooled to –

78 ºC, 1.0 M THF solution of AcOH (152 µL, 0.152 mmol) was slowly added. The mixture was 

stirred at room temperature for 3 h. The reaction was quenched with 1.0 M THF solution of AcOH 

(319 µL, 0.319 mmol), and to the mixture was added brine (10 mL). The organic layer was separated, 

and the aqueous layer was extracted with EtOAc (10 mL x3). The combined organic layer was dried 

over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue was purified 

by silica gel flash column chromatography (hexane/EtOAc = 10/1 to 2/1) to afford tetracyclic 

compound 19 (85.1 mg, 0.112 mmol, 74%) as a white amorphous material. 1H NMR (500 MHz, 

CDCl3): δ 7.43 (dd, J =3.0, 1.5 Hz, 1H), 7.29 (br s, 1H), 7.08 (dd, J = 3.0, 1.5 Hz, 1H), 6.48 (t, J = 

3.0 Hz, 1H), 5.91 (dd, J = 17.5, 11.0 Hz, 1H), 5.56 (br s, 1H), 5.31 (d, J = 11.0 Hz, 1H), 5.08 (d, J = 

17.5 Hz, 1H), 4.98 (d, J = 7.5 Hz, 1H), 3.88 (dd, J = 11.5, 8.0 Hz, 1H), 3.88 (dd, J = 10.3, 7.5 Hz, 

1H), 3.61 (dd, J = 10.3, 7.5 Hz, 1H), 3.45 (dd, J = 11.5, 10.0 Hz, 1H), 2.87-2.75 (m, 1H), 2.45 (d, J 

= 14.5 Hz, 1H), 1.88 (dtd, J = 11.0, 7.5, 3.5 Hz, 1H), 1.30 (s, 9H), 0.91 (s, 9H), 0.86 (s, 9H), 0.07 (s, 

3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.04 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 161.85, 157.47 (q, J = 

36.4 Hz), 156.61, 153.21, 136.43, 126.34, 120.02, 118.72, 115.73 (q, J = 287.4 Hz), 115.67, 113.89, 

83.01, 82.23, 74.16, 65.16, 62.99, 60.86, 52.89, 46.54, 40.82, 27.76, 25.82, 25.75, 18.22, 17.97, –

4.04, –5.20, –5.45, –5.54; IR (KBr): 3372, 2954, 2930, 2858, 2360, 2342, 1734, 1653, 1472, 1419, 

1369, 1254, 1158, 1108, 1107, 837 cm–1; HRMS (ESI, m/z): [M–H] calcd for C35H54O7N4F3Si2, 

755.3489; found, 755.3499. 
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Compound 20: 

To a solution of tetracyclic compound 19 (681 mg, 0.900 mmol) in CH2Cl2 (18 mL) were added 

2,6-DTBP (1.17 mL, 5.40 mmol) and TMSOTf (812 µL, 4.50 mmol) at 0 ºC. After being stirred for 

30 min at room temperature, the reaction was quenched with a saturated aqueous NaHCO3 solution 

(20 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (20 mL 

x3). The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure to give crude S5. The crude amine S5 was used for the next step without 

purification due to its instability. To a solution of amine S5 in DCE (18 mL) were added 2,6-DTBP 

(389 µL, 1.8 mmol) and CbzNCS (869 mg, 4.50 mmol) at room temperature. The mixture was 

heated to 70 ºC for 12 h and concentrated under reduced pressure to give crude S6. The crude 

thiourea S6 was also used for the next step without purification. A solution of thiourea S6 in EtOH 

(18 mL) was stirred at room temperature until remaining excess CbzNCS disappeared. The mixture 

was cooled to 0 ºC and NaBH4 (37.0 mg, 0.990 mmol) was added. After being stirred for 30 min, 

brine (20 mL) was added. The mixture was extracted with EtOAc (20 mL x3). The combined 

organic layers were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. 

The residue was purified by silica gel flash column chromatography (CHCl3/EtOAc = 1/0 to 4/1) to 

afford alcohol 20 (675 mg, 0.792 mmol, 88%) as a white amorphous material. 1H NMR (500 MHz, 

CDCl3): δ 10.80 (s, 1H), 7.89 (s, 1H), 7.39–7.34 (m, 3H), 7.32–7.26 (m, 2H), 7.17 (s, 1H), 7.02 (dd, 

J = 2.5, 1.5 Hz, 1H), 6.92 (dd, J = 3.5, 1.5 Hz, 1H), 6.26 (dd, J = 17.5, 11.0 Hz, 1H), 6.24 (dd, J = 

3.5, 2.5 Hz, 1H), 5.70 (d, J = 2.5 Hz, 1H), 5.53 (d, J = 11.0 Hz, 1H), 5.25 (d, J = 17.5 Hz, 1H), 5.15 

(d, J = 12.0 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 4.65 (d, J = 4.5 Hz, 1H), 4.23 (dd, J = 10.0, 8.0 Hz, 

1H), 4.13 (br s, 1H), 3.74 (dd, J = 10.5, 3.5 Hz, 1H), 3.63 (dd, J = 10.0, 5.0 Hz, 1H), 3.40–3.20 (m, 
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1H), 3.13 (t, J = 10.0 Hz, 1H), 2.69 (d, J = 14.0 Hz, 1H), 1.90–1.83 (m, 1H), 0.91 (s, 9H), 0.87 (s, 

9H), 0.14 (s, 3H), 0.09 (s, 3H), 0.05 (s, 3H), 0.05 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 178.39, 

157.17, 155.94 (q, J = 35.1 Hz), 152.24, 135.84, 133.96, 128.88, 128.71, 128.69, 128.21, 122.28, 

121.57, 121.55, 115.51 (q, J = 116.3 Hz), 110.71, 85.19, 82.94, 77.62, 68.44, 66.02, 63.94, 61.46, 

53.38, 47.49, 40.65, 25.85, 25.84, 18.32, 17.94, –4.03, –5.17, –5.60, –5.61; IR (KBr): 3734, 2930, 

2857, 2360, 2341, 1732, 1623, 1541, 1471, 1417, 1210, 835 cm–1; HRMS (APCI, m/z): [M–H] calcd 

for C39H55O7N5F3SSi2, 850.3318; found, 850.3335. 

 

 

Compound 21; 

To a solution of 20 (675 mg, 0.792 mmol) in THF (7.9 mL) were added MeI (297 µL, 4.75 mmol) 

and K2CO3 (656 mg, 4.75 mmol) at 0 ºC. After being stirred for 1 h, the reaction was quenched with 

brine (10 mL). The mixture was extracted with EtOAc (10 mL x3). The combined organic layers 

were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue 

was purified by silica gel flash column chromatography (hexane/EtOAc = 5/1 to 1/1) to afford 

isothiourea 21 (569 mg, 0.657 mmol, 83%) as a white crystal. mp (from ethanol): 151–153 ºC; 1H 

NMR (500 MHz, CDCl3): δ 8.51 (br s, 1H), 7.45–7.30 (m, 5H), 7.08 (dd, J = 3.0, 1.5 Hz, 1H), 6.88 

(dd, J = 3.5, 1.5 Hz, 1H), 6.81 (br s, 1H), 6.21 (dd, J = 3.5, 3.0 Hz, 1H), 5.99 (dd, J = 17.5, 11.0 Hz, 

1H), 5.57 (d, J = 12.5 Hz, 1H), 5.53 (d, J = 12.5 Hz, 1H), 5.34 (d, J = 11.0 Hz, 1H), 5.13 (d, J = 1.5 

Hz, 1H), 5.08 (d, J = 17.5 Hz, 1H), 4.77 (d, J = 5.0 Hz, 1H), 3.85 (dd, J = 11.0, 8.0 Hz, 1H), 3.77 

(dd, J = 10.0, 3.5 Hz, 1H), 3.58 (dd, J =10.0, 5.5 Hz, 1H), 3.23 (t, J = 11.0 Hz, 1H), 2.56 (d, J = 14.0 

Hz, 1H), 2.48–2.35 (m, 1H), 2.29 (s, 3H), 1.87 (dddd, J = 10.5, 5.5, 5.0, 3.5 Hz, 1H), 0.89 (s, 9H), 

0.86 (s, 9H), 0.15 (s, 3H), 0.07 (s, 3H), 0.03 (s, 6H); 13C NMR (125 MHz, CDCl3): δ 157.72, 155.97 

(q, J = 36.0 Hz), 151.54, 151.13, 134.21, 134.15, 128.99, 128.84, 128.74, 122.98, 121.75, 115.83 (q, 

J = 288.0 Hz), 114.52, 114.14, 110.43, 84.76, 83.37, 80.65, 68.54, 66.19, 62.61, 61.79, 53.44, 46.17, 

40.19, 25.82, 25.68, 18.13, 17.99, 14.61, –3.95, –5.41, –5.53, –5.69; IR (KBr): 3220, 2953, 2857, 

2360, 2410, 1732, 1645, 1542, 1472, 1416, 1387, 1222, 1005, 835 cm–1; HRMS (ESI, m/z): [M+H]+ 

calcd for C40H58O7N5F3NaSSi2, 888.3440; found, 888.3446. 
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Compound 22; 

To a solution of isothiourea 21 (569 mg, 0.657 mmol) in THF (6.6 mL) was added 1.0 M THF 

solution of LHMDS (2.63 mL, 2.63 mmol) at –78 ºC. After being stirred for 30 min, MsCl (236 µL, 

2.63 mmol) was added. After being stirred for 1 h at –40 ºC, the reaction was quenched with a 

saturated aqueous NaHCO3 solution (10 mL). The mixture was extracted with EtOAc (10 mL x3). 

The combined organic layers were washed with brine (20 mL), dried over anhydrous MgSO4, 

filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash 

column chromatography (hexane/EtOAc = 10/1 to 2/1) to afford pentacyclic 22 (362 mg, 0.427 

mmol, 65%) as a white amorphous material. 1H NMR (500 MHz, CDCl3, 60 ºC, as a mixture of 

romater): δ 7.48–7.38 (m, 5H), 7.36 (s, 1H), 6.94 (br s, 1H), 6.92 (dd, J = 3.5 1.5 Hz, 1H), 6.25 (t, J 

= 3.5 Hz, 1H), 6.15 (s, 1H), 5.90 (dd, J = 17.5, 11.0 Hz, 1H), 5.35 (d, J = 12.0 Hz, 1H), 5.29 (d, J = 

12.0 Hz, 1H), 4.77 (d, J = 10.5 Hz, 1H), 4.76 (d, J = 18.0 Hz, 1H), 4.58 (d, J = 3.0 Hz, 1H), 4.19 (dd, 

J = 11.0, 8.5 Hz, 1H), 3.83 (dd, J =10.5, 4.5 Hz, 1H), 3.52 (dd, J = 10.0, 7.5 Hz, 1H), 3.31 (t, J = 

11.0 Hz, 1H), 3.01–2.89 (m, 1H), 2.72 (d, J = 14.0 Hz, 1H), 2.41 (s, 3H), 1.93–1.85 (m, 1H), 0.92 (s, 

9H), 0.90 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz, CDCl3, 

60 ºC, as a mixture of rotamer): δ 163.23, 156.27, 155.94 (q, J = 36.4 Hz), 149.78, 134.16, 133.01, 

129.25, 128.92, 128.85, 124.15, 122.64, 115.71 (q, J = 287.9 Hz), 114.13, 113.61, 112.36, 87.41, 

84.52, 71.91, 69.52, 66.20, 63.77, 63.33, 54.08, 46.88, 41.30, 25.92, 25.82, 18.37, 17.89, 15.19, –

4.27, –4.96, –5.50, –5.54 (some peaks are broadened due to the rotamer.); IR (KBr): 2930, 2360, 

2342, 1733, 1654, 1559, 1472, 1421, 1388, 1287, 1158, 837 cm–1; HRMS (ESI, m/z): [M+Na]+ calcd 

for C40H56O6N5F3NaSSi2, 870.3334; found, 870.3348. 
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Compound 23; 

To a solution of pentacyclic 22 (362 mg, 0.427 mmol) in toluene (8.5 mL) was added 1.0 M toluene 

solution of DIBAL (897 µL, 0.897 mmol) at –78 ºC. After being stirred for 10 min, a saturated 

aqueous NH4Cl solution (900 µL) and ether (20 mL) were added. After being stirred at room 

temperature for 1 h, to the mixture was added anhydrous MgSO4. The mixture was vigorously stirred 

for 1 h, filtered, and concentrated under reduced pressure to give a crude S7, which was used for the 

next step without purification. To a solution of crude S7 in DCE (8.5 mL) were added CbzNCS (165 

mg, 0.854 mmol) and 2,6-DTBP (92 µL, 0.427 mmol) at room temperature. The mixture was stirred 

for 2 h and concentrated under reduced pressure. The residue was purified by silica gel, previously 

treated with N,N-dimethylaniline, column chromatography (hexane/EtOAc = 10/1 to 2/1) to afford 

thiourea 23 (363 mg, 0.384 mmol, 90% for 2 steps) as a yellow amorphous material. The thioura 23 

was needed to immediately use for the next step due to its instability. 1H NMR (500 MHz, C6D6, 60 

ºC, as a mixture of romater): δ 9.78 (s, 1H), 7.50 (s, 1H), 7.32–6.95 (m, 12H), 6.17 (dd, J = 18.0, 

11.5 Hz, 1H), 6.13 (t, J = 3.0 Hz, 1H), 5.29 (d, J = 2.5 Hz, 1H), 5.14 (d, J = 18.0 Hz, 1H), 5.05–4.92 

(m, 4H), 4.78 (d, J = 12.0 Hz, 1H), 4.71 (d, J = 12.5 Hz, 1H), 4.38 (dd, J =10.5, 8.0 Hz, 1H), 3.85 

(dd, J = 9.5, 5.0 Hz, 1H), 3.62 (dd, J = 9.5, 8.5 Hz, 1H), 3.30 (t, J = 10.5 Hz, 1H), 3.28–3.15 (m, 1H), 

2.55 (d, J = 14.0 Hz, 1H), 1.95 (s, 3H), 1.04 (s, 9H), 0.92 (s, 9H), 0.37 (s, 3H), 0.28 (s, 3H), 0.05 (s, 

3H), 0.04 (s, 3H); IR (KBr): 3734, 3628, 2929, 2360, 2341, 1732, 1646, 1591, 1558, 1522, 1388, 

1348, 1286, 1103, 837 cm–1;HRMS (ESI, m/z): [M–H] calcd for C47H63O7N6S2Si2, 943.3744; found, 

943.3763. Since thiourea 23 was gradually decomposed during the NMR experiment at 60 °C, the 

spectra of time-consuming 13C-NMR was difficult to obtain. Thus, we added a direct chart of 

HRMS.  
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Compound 24; 

To a solution of thiourea 23 (363 mg, 0.384 mmol) in DCE (7.7 mL) were added iPr2NEt (336 µL, 

2.30 mmol), o-nitrobenzylaminehydrochloride (350 mg, 2.30 mmol) and EDCI (440 mg, 2.30 mmol) 

in this order at room temperature. After being stirred at 50 ºC for 12 h, the reaction was cooled to 

room temperature and quenched with a saturated aqueous NH4Cl solution (10 mL). The mixture was 

extracted with EtOAc (10 mL x3). The combined organic layers were dried over anhydrous MgSO4, 

filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash 

column chromatography (hexane/EtOAc = 10/1 to 1/1) to afford guanidine 24 (335 mg, 0.315 mmol, 

82%) as a white amorphous material. 1H NMR (500 MHz, CDCl3, 60 ºC, as a mixture of rotamer): δ 

9.26 (br s, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.47 (t, J 

= 7.0 Hz, 1H), 7.45–7.35 (m, 7H), 7.32 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 6.93–6.87 (m, 

2H), 6.21 (t, J = 3.5 Hz, 1H), 6.18 (dd, J = 18.0, 11.0 Hz, 1H), 6.02 (s, 1H), 5.30 (d, J = 13.0 Hz, 

1H), 5.27 (d, J = 12.0 Hz, 1H), 5.19 (d, J = 13.0 Hz, 1H), 5.11 (d, J = 11.0 Hz, 1H), 5.09 (d, J = 13.0 

Hz, 1H), 5.02 (d, J = 18.0 Hz, 1H), 4.93 (br d, J = 10.5 Hz, 1H), 4.82 (dd, J = 14.5, 7.0 Hz, 1H), 

4.66 (dd, J = 14.5, 5.0 Hz, 1H), 4.30–4.20 (m, 2H), 3.64 (dd, J = 10.0, 8.0 Hz, 1H), 3.56 (dd, J = 

10.0, 8.5 Hz, 1H), 3.28 (t, J = 10.5 Hz, 1H), 3.24–3.14 (m, 1H), 2.73 (d, J = 14.0 Hz, 1H), 2.33 (s, 

3H), 1.98–1.89 (m, 1H), 0.92 (s, 9H), 0.88 (s, 9H), 0.07 (s, 3H), 0.07 (s, 3H), 0.03 (s, 3H), 0.02 (s, 

3H); 13C NMR (125 MHz, CDCl3, 60 ºC, as a mixture of rotamer): δ 163.61, 159.44, 156.40, 150.10, 

148.99, 137.89, 134.66, 134.44, 133.89, 133.72, 133.46, 129.21, 129.07, 128.99, 128.93, 128.89, 

128.34, 127.67, 127.55, 124.94, 124.44, 122.56, 117.78, 113.35, 112.14, 87.11, 85.70, 72.04, 69.23, 

66.42, 66.40, 65.60, 64.60, 53.31, 47.41, 42.61, 41.85, 26.16, 25.86, 18.52, 17.94, 14.95, –4.20, –

4.97, –5.25, –5.35 (some peaks are broadened due to the rotamer.); IR (KBr): 3734, 3628, 2929, 

2360, 2341, 1732, 1646, 1591, 1558, 1522, 1388, 1348, 1286, 1103, 837 cm–1; HRMS (ESI, m/z): 

[M+H]+ calcd for C54H71O9N8SSi2, 1063.4598; found, 1063.4606. 
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Compound 25; 

To a mixture of HF·pyr–THF (1:3, 6.3 mL) was added guanidine 24 (335 mg, 0.315 mmol) at room 

temperature. The mixture was stirred for 50 h and cooled to 0 ºC. After the addition of TMSOMe 

(12 mL), the mixture was concentrated under reduced pressure. The crude diol S8 was used for the 

next step without purification. To the solution of crude S8 in CH2Cl2 (6.3 mL) were added 

2,6-lutidine (142 µL, 1.26 mmol) and TIPSOTf (169 µL, 0.630 mmol) at 0 ºC. After being stirred at 

room temperature for 1 h, a saturated aqueous NaHCO3 solution (10 mL) was added. The mixture 

was extracted with EtOAc (10 mL x3). The combined organic layers were dried over anhydrous 

MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel 

flash column chromatography (hexane/EtOAc = 4/1 to 1/2) to afford silyl ether 25 (209 mg, 0.211 

mmol, 67% for 2 steps) as a yellow amorphous material. 1H NMR (500 MHz, CD3CN): δ 9.20 (s, 

1H), 8.04 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.57–7.47 (m, 4H), 7.48–7.38 (m, 3H), 7.37–

7.26 (m, 5H), 6.95 (br s, 1H), 6.71 (dd, J = 4.0, 1.5 Hz, 1H), 6.23 (br s, 1H), 6.18–6.05 (m, 1H), 6.14 

(s, 1H), 5.51 (t, J = 6.0 Hz, 1H), 5.33 (d, J = 12.0 Hz, 1H), 5.29 (d, J = 12.0 Hz, 1H), 5.02 (d, J = 

13.0 Hz, 1H), 4.99 (d, J = 13.0 Hz, 1H), 5.02–4.95 (m, 2H), 4.80 (dd, J = 15.5, 7.0 Hz, 1H), 4.62 (dd, 

J = 15.5, 5.0 Hz, 1H), 4.07 (t, J = 4.0 Hz, 1H), 3.97 (dd, J = 10.5, 8.0 Hz, 1H), 3.80–3.75 (m, 2H), 

3.58 (t, J = 9.5 Hz, 1H), 3.25 (t, J = 10.5 Hz, 1H), 3.07–2.95 (m, 1H), 2.84 (d, J = 14.5 Hz, 1H), 2.30 

(s, 3H), 1.93–1.85 (m, 1H), 1.12–1.03 (m, 21H); 13C NMR (125 MHz, CD3CN): δ 164.00, 160.09, 

156.71, 148.94, 138.67, 135.53, 135.33, 134.91, 134.37, 131.72, 129.81, 129.60, 129.39, 129.20, 

129.03, 128.21, 128.16, 125.54, 124.86, 123.34, 118.32, 117.51, 112.94, 112.43, 88.05, 86.48, 72.32, 

69.68, 66.62, 66.03, 65.47, 64.29, 53.63, 47.47, 42.80, 41.48, 18.17, 14.93, 12.39 (one peak missing 

in CD3CN) (some peaks are broadened due to the rotamer); IR (KBr): 3734, 3628, 2942, 2360, 2342, 

1733, 1646, 1590, 1558, 1523, 1388, 1348, 1288, 1093 cm–1; HRMS (ESI, m/z): [M+H]+ calcd for 

C51H63O9N8SSi, 991.4203; found, 991.4212. 
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Compound 28; 

To a solution of silyl ether 25 (44.0 mg, 44.4 µmol) were added 0.40 M CH2Cl2 solution of OsO4 

(121 µL, 48.4 µmol) and TMEDA (7.2 µL, 48.4 µmol) at –78 ºC. The mixture was stirred for 10 min 

and warmed to room temperature. To the mixture were added MeOH (1 mL) and 1N HCl (0.2 mL). 

The mixture was stirred, in the flask wrapped with foil, for 3 h. To the mixture was added 1M 

solution of Na2SO3, and the mixture was extracted with EtOAc (2 mL x3). The combined organic 

layers were washed with saturated aqueous NaHCO3 (2 mL), dried over anhydrous MgSO4, filtered, 

and concentrated under reduced pressure to give crude diol S9, which was used for the next step 

without purification. To a solution of crude S9 in MeOH (2.0 mL) and H2O (0.5 mL) was added 

NaIO4 (47.5 mg, 222 µmol) at room temperature. After being stirred under dark condition for 1 h, a 

saturated aqueous NaHCO3 solution (2 mL) was added. The mixture was extracted with EtOAc (2 

mL x3). The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure. Azeotropic treatment with hexane provided crude cyclic hemi-aminal 26 

(35.2 mg) and it was used for the next step without purification. To a solution of cyclic hemi-aminal 

26 in CH2Cl2 (1.8 mL) were slowly added 2,6-lutidine (12.3 µL, 106 µmol) and 0.50 M of solution 

of SO2Cl2 (78.0 µL, 39.0 µmol) at 0 ºC, successively. After being stirred for 10 min, a saturated 

aqueous NaHCO3 solution (2 mL) was added. The mixture was extracted with EtOAc (2 mL x3). 

The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel, previously treated with N,N-dimethylaniline, 

flash column chromatography (hexane/EtOAc = 4/1 to 1/2) to afford chloride 28 (18.9 mg, 18.6 

µmol, 42% for 3 steps) along with inseparable minor diastereomer at C20 position as a pale yellow 

amorphous material. 1H NMR (500 MHz, CD3CN, 60 ºC): δ 7.99 (d, J = 8.0 Hz, 1H), 7.62–7.25 (m, 
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13H), 6.99 (brs, 1H), 6.94 (br s, 1H), 6.67 (dd, J = 3.5, 1.5 Hz, 1H), 6.60 (s,1H), 6.19 (t, J = 3.5 Hz, 

1H), 5.95 (s,1H), 5.35 (d, J = 12.5 Hz, 1H), 5.26 (d, J = 12.5 Hz, 1H), 5.24–4.95 (m, 4H), 4.49 (br d, 

J = 13.5 Hz, 1H), 4.02–3.78 (m, 3H), 3.74 (dd, J = 10.0, 6.0 Hz, 1H), 3.25–3.12 (m, 2H), 2.75 (d, J = 

13.5 Hz, 1H), 2.32 (s, 3H), 2.10–2.05 (m, 1H), 1.12–0.98 (s, 21H); IR (KBr): 3734, 3628, 3383, 

2961, 2865, 2360, 2342, 1717, 1636, 1577, 1556, 1523, 1427, 1395, 1351, 1289, 11367, 1099, 1023, 

881, 801 cm–1; HRMS (ESI, m/z): [M+H]+ calcd for C50H60O9N8ClSSi, 1011.3656; found, 

1011.3664. Since nitrobenzyl group of 28 was readily removed during the NMR experiment at 60 °C, 

the spectra of time-consuming 13C NMR was difficult to obtain. Thus, we added a chart of HRMS. 

 

 

 
Compound 30; 

To a solution of chloride 28 (18.9 mg, 18.6 µmol) in DCE (370 µL) was added 0.50 M CH2Cl2 

solution of mCPBA (washed with phosphate buffer, 74.4 µL, 37.2 µmol) at 0 ºC. The reaction flask 

was wrapped with foil to protect nitrobenzyl group. After being stirred at 0 ºC for 3 h, 1M solution 

of Na2SO3 (3 drops) was added. After being stirred for 10 min, a saturated aqueous NaHCO3 

solution (1 mL) was added. The mixture was extracted with EtOAc (1 mL x3). The combined 

organic layers were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. 

The crude sulfoxide 29 was used for the next step without purification. To a solution of crude 29 in 

DCE (0.9 mL) were slowly added a 0.5 M DCE solution of o-NO2BnNH2 (112 µL, 55.8 µmol) and a 

0.5 M DCE solution of Tf2NH (112 µL, 55.8 mmol) at 0 ºC. The reaction flask was wrapped with 

foil to exclude light. After being stirred at 50 ºC for 2 h, a saturated aqueous NaHCO3 solution (1 

mL) was added. The mixture was extracted with EtOAc (1 mL x3). The combined organic layers 

were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue 

was purified by silica gel, previously treated with N,N-dimethylaniline, flash column 

chromatography (hexane/EtOAc = 4/1 to 1/2) afforded guanidine 30 (14.5 mg, 13.0 µmol, 70%) 

along with inseparable minor diastereomer at C20 position as a pale yellow amorphous material. 1H 

NMR (500 MHz, CD3CN, 60 ºC): δ 7.97 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.65–7.30 (m, 

16H), 7.00 (brs, 1H), 6.89 (br s, 1H), 6.61 (dd, J = 4.0, 1.5 Hz, 1H), 6.57 (s, 1H), 6.17 (t, J = 3.0 Hz, 
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1H), 5.91 (d, J = 5.0 Hz, 1H), 5.38–5.20 (m, 2H), 5.35 (d, J = 12.5 Hz, 1H), 5.24 (d, J = 12.5 Hz, 

1H), 5.16–5.08 (m, 2H), 5.00–4.89 (m, 2H), 4.86 (dd, J = 16.0, 6.5 Hz, 1H), 4.56 (dd, J = 16.5, 5.5 

Hz, 1H), 3.93–3.88 (m, 2H), 3.83 (d, J = 3.0 Hz, 1H), 3.79 (d, J = 10.0, 6.0 Hz, 1H), 3.22–3.12 (m, 

2H), 2.70 (d, J = 13.0 Hz, 1H), 2.10–1.90 (m, 1H), 1.14–1.05 (m, 21H); IR (KBr): 3734, 3638, 3383, 

2961, 2865, 2360, 2342, 1730, 1635, 1523, 1396, 1339, 1289, 1261, 1101, 1017, 800 cm–1; HRMS 

(ESI, m/z): [M+H]+ calcd for C56H64O11N10ClSi, 1115.4208; found, 1115.4208. Since nitrobenzyl 

group of 30 was readily removed during the NMR experiment at 60 °C, the spectra of 

time-consuming 13C NMR was difficult to obtain. Thus, we added a chart of HRMS. 

 

 

 
Compound 32; 

Guanidine 30 (14.5 mg, 13.0 µmol) was added HF·pyr–THF (1:5, 260 µL) at room temperature. The 

reaction flask was rapped with foil to protect nitrobenzyl group. The mixture was stirred for 3 h and 

cooled to 0 ºC. After the addition of TMSOMe (1 mL), the mixture was concentrated under reduced 

pressure. The crude alcohol S10 was used for the next step without purification. To a solution of 

crude S10 in pyridine (260 µL) was slowly added chloromethylsulfonyl chloride (2.3 µL, 26.0 

µmol) at 0 ºC. After being stirred at 0 ºC for 10 min, a saturated aqueous NaHCO3 solution (1 mL) 

was added. The mixture was extracted with EtOAc (1 mL x3). The combined organic layers were 

dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude 

chloromethanesulfonylate 31 was used for the next step without purification. To a solution of crude 

31 in DMF (260 µL) were slowly added a 1.0 M DMSO solution of NaN3 (52.0 µL, 26.0 µmol) and 

15-crown-5 (5.1 µL, 26.0 µmol) at room temperature. The reaction flask was wrapped with foil to 
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exclude light. After being stirred for 15 h, a saturated aqueous NaHCO3 solution (1 mL) was added. 

The mixture was extracted with EtOAc (1 mL x3). The combined organic layers were dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by 

PTLC (hexane/EtOAc = 1/4) to afforded azide 32 (5.7 mg, 58.5 µmol, 45% for 3 steps) as a pale 

yellow amorphous material. 1H NMR (500 MHz, CD3CN, 60 ºC): δ 7.99 (d, J = 8.5 Hz, 1H), 7.95 (d, 

J = 7.5 Hz, 1H), 7.73–7.60 (m, 2H), 7.60–7.32 (m, 14H), 7.09 (br s, 1H), 6.92 (br s, 1H), 6.65 (d, J = 

2.0 Hz, 1H), 6.57 (s, 1H), 6.19 (s, 1H), 5.90 (d, J = 4.5 Hz, 1H), 5.45–5.25 (m, 2H), 5.37 (d, J = 12.5 

Hz, 1H), 5.27 (d, J = 12.5 Hz, 1H), 5.20–5.05 (m, 2H), 5.02 (br s, 1H), 4.98–4.85 (m, 2H), 4.60 (dd, 

J = 16.0, 4.0 Hz, 1H), 3.92 (dd, J = 10.0, 7.5 Hz, 1H), 3.71 (d, J = 6.5 Hz, 1H), 3.56 (dd, J = 12.5, 

6.0 Hz, 1H), 3.47 (dd, J = 12.0, 7.5 Hz, 1H), 3.18 (t, J = 10.5 Hz, 1H), 3.15–3.02 (m, 1H), 2.75 (d, J 

= 13.5 Hz, 1H), 2.28–2.18 (m, 1H); IR (KBr): 3380, 2920, 2360, 2102, 1727, 1633, 1523, 1323, 

1397, 1352, 1289, 1192, 1136 cm–1;HRMS (ESI, m/z): [M+H]+ calcd for C47H43O10N13Cl, 984.2939; 

found, 984.2948. Since nitrobenzyl group of 32 was readily removed during the NMR experiment at 

60 °C, the spectra of time-consuming 13C NMR was difficult to obtain. Thus, we added a chart of 

HRMS. 

 

 

 

Palau’amine 1; 

A solution of azide 32 (2.5 mg, 2.5 µmol) in MeOH (1.0 mL) was irradiated by Hg-lamp (400 W) at 

room temperature. After being stirred for 1.5 h, to the reaction mixture were added H2O (0.5 mL), 

TFA (0.5 mL) and Pd(OAc)2 (0.9 mg, 3.8 µmol). Then hydrogen gas was bubbled through the 

mixture for 10 min. After being stirred under hydrogen atmosphere (balloon) at room temperature 

for 1.5 h, the reaction mixture was filtered through a Cosmonice Filter S (pore size: 0.45 µm, filter 

diameter 13 mm). The filtrate was concentrated under reduced pressure. The residue was purified by 

semi-preparative HPLC (Atlantis dC18, 5 µm, 250 x 4.6 mm, 100% H2O (0.1% HCO2H), 1 mL/min, 

RT = 5.0 min) to give pure palau’amine (1) as a formate salt. Azeotropic treatment with TFA 

provided pure palau’amine (1)·3TFA (1.2 mg, 1.6 µmol, 64%) as a off-white solid. 1H NMR (500 
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MHz, D2O): δ 7.01 (dd, J = 2.5, 1.5 Hz, 1H), 6.87 (dd, J = 4.0, 1.5 Hz, 1H), 6.37 (dd, J = 4.0, 2.5 Hz, 

1H), 6.36 (s, 1H), 5.96 (s, 1H), 4.33 (d, J = 7.5 Hz, 1H), 3.95 (dd, J = 10.0, 7.0 Hz, 1H), 3.31 (dd, J 

= 13.2, 6.5 Hz, 1H), 3.29 (t, J = 10.2 Hz, 1H), 3.26 (dd, J = 13.2, 6.5 Hz, 1H), 3.09 (d, J = 14.0 Hz, 

1H), 2.49 (m, 1H), 2.47 (m, 1H); 13C NMR (125 MHz, D2O): δ 159.57, 157.94, 157.83, 125.21, 

122.50, 115.70, 113.89, 83.76, 80.77, 74.03, 72.06, 69.02, 56.35, 48.58, 46.03, 41.87, 41.87; HRMS 

(ESI–TOF, m/z): [M+H]+ calcd for C17H23O2N9Cl, 420.1663; found, 420.1663. 

 

ORTEPS drawing of 21 from X-ray crystallographic analysis 

 

 
Supplementary Dataset 1 

Compound 21 CCDC 1417980 

 

X-ray Structure Report for Compound 21 

Experimental  

Data Collection 

 A colorless block crystal of C44H70F3N5O9SSi2 having approximate dimensions of 0.600 x 0.400 x 

0.300 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID 

diffractometer using graphite monochromated Mo-Kα radiation. 

 

The crystal-to-detector distance was 127.40 mm. 
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 Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell 

with dimensions: 

           a  =   13.0627(8) Å 

           b  =   22.718(2) Å        b  =  107.908(2)o 

           c  =   18.8564(9) Å 

           V  =  5324.6(5) Å3 

For Z = 4 and F.W. = 958.29, the calculated density is 1.195 g/cm3. The reflection conditions of: 

           h0l:  h+l = 2n 

           0k0:  k = 2n 

uniquely determine the space group to be: 

P21/n (#14)  

 The data were collected at a temperature of -100 + 1oC to a maximum 2θ value of 54.9o. A total of 75 

oscillation images were collected. A sweep of data was done using w scans from 130.0 to 190.0o in 3.0o step, 

at χ=45.0o and φ = 70.0o. The exposure rate was 120.0 [sec./o]. A second sweep was performed using ω 

scans from 0.0 to 165.0o in 3.0o step, at χ=45.0o and φ = 250.0o. The exposure rate was 120.0 [sec./o]. The 

crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode. 

 

Data Reduction 

 Of the 44677 reflections that were collected, 11824 were unique (Rint = 0.1118); equivalent reflections 

were merged.  

 The linear absorption coefficient, µ, for Mo-Kα radiation is 1.686 cm-1. An empirical absorption 

correction was applied which resulted in transmission factors ranging from 0.457 to 0.951. The data were 

corrected for Lorentz and polarization effects.  

 

Structure Solution and Refinement 

 The structure was solved by direct methods
7
 and expanded using Fourier techniques. The non-hydrogen 

atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of 

full-matrix least-squares refinement
8
 on F2 was based on 11799 observed reflections and 647 variable 

parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted 

agreement factors of:  

R1 = Σ ||Fo| - |Fc|| / Σ |Fo| = 0.0943 (1) 

 

wR2 = [ Σ ( w (Fo2 - Fc2)2 )/ Σw(Fo2)2]1/2 = 0.2443 (2) 
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 The standard deviation of an observation of unit weight
9
 was 1.09. A Sheldrick weighting scheme was 

used. Plots of Σw (|Fo| - |Fc|)2 versus |Fo|, reflection order in data collection, sin è/ë and various classes of 

indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map 

corresponded to 1.18 and -0.68 e/Å3, respectively.  

 

 Neutral atom scattering factors were taken from Cromer and Waber
10

. Anomalous dispersion effects 

were included in Fcalc
11

; the values for Δf' and Δf" were those of Creagh and McAuley
12

. The values for the 

mass attenuation coefficients are those of Creagh and Hubbell
13

. All calculations were performed using the 

CrystalStructure
14-15

 crystallographic software package. 
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