ML oral exam questions

• SVM algorithm (both parametric and not, even though afaik there is only	
the non parametric version in our slides). X3	
 cost of decision trees (max depth) 	X4
 underfitting and overfitting in k-NN (size of k) 	X5
• pros and cons of oversampling and undersampling	j. X2
describe entropy	X4
 Information gain: equation and meaning when 	
building a decision tree x2	
• SVM	X5
 meaning of C parameter 	
regularization term meaning	X3
 meaning of overfitting/underfitting 	X4
• oversampling and undersampling (pros and cons)	
when SMOTE fails. X2	
 What is scaling and how is it implemented? 	X3
• Why is scaling useful for nn and k-nn?	
What does the fit method do?	
• What are the definitions of parameter and hyperpa	rameter?
Perceptron	X4
Logistic Regression	X3
Linear Regression	
 Difference between OVO and OVR 	X3
decision tree	X5
 Difference between precision and recall 	X3
• k-NN	X2
 What is Bias and how can it be classified 	
 How does a neural network learn the best 	
representation of the data	
 Why SVM are slower than ANN x3 	

- (Comp Sci bachelors) Algorithmic runtime of several models: Decision tree = maxdepth, SVM, NN
- Why can gradient descent in NN get stuck on a local minimum, but not in linear regression (because the loss function of LR has a parabolic shape, so there's only one minimum; the loss f-n of a neural network can be a different shape and have many local minima)
- When do we stop when building a decision tree (when all training samples are classified)
- K-means X2
- Transform perceptron into its kernelized version

- A trick to transform the NN loss function into a convex function (it was very difficult question about the fact that I can exploit the cross entropy and calculate for pair wise layers to have a convex function each). x2
- KNN with K = 1, when I'm certain that I will always have overfitting when K = 1? With linearly separable data. He made an example of KNN with 700 positive labels and 300 negative labels.
- Closed form solution for linear regression
- How to train multiclass for knn and neural network
- Why svm is better than normal perceptron
- Regularization parameter, human word for the cost function equation. Why doing regularization parameter
- For tweet project, is there any method for vectorizing the tweet other than tokenizing the world (yes, word relation)
- Parametric vs non-parametric models

x2

- Kernel methods, pros
- How to make NN less "complex"/overfit (early stopping)
- Generalized crossentropy loss fuction
- If we can process graphs with ML algorithm (subtree kernel function)
- What could be an alternative to GridSearchCross validation which cost less in term of computation time ? (answer = Hold-out, see slide lect. 7)
- "Are kernel methods just a fancy way to say we translate the samples in a higher dimensional space ?" (I'll let u think about this philosophical question)
- Multilabel classification
- OVO and OVR (in particular what happens if there is a tie between 2 classes)