ESEMPIO 2.2
Azione di tre forze su un punto materiale in quiete

Un punto P è sottoposto a una forza $F_1 = 34$ N lungo il verso negativo dell'asse y e a una forza $F_2 = 25$ N che forma un angolo $\theta = 30^\circ$ con l'asse y, vedi Figura 2.7. Calcolare modulo, direzione e verso della forza F_3 che occorre applicare al punto P per mantenerlo in equilibrio statico.

Figura 2.7

Soluzione

All'equilibrio deve valere la relazione (2.4)

$$F_1 + F_2 + F_3 = 0,$$

che equivale alle due equazioni

$$F_{2,x} + F_{3,x} = 0, \quad F_{1,y} + F_{2,y} + F_{3,y} = 0.$$

Infatti $F_{1,x} = 0$ e non ci sono componenti lungo l'asse z; F_3 deve stare nel piano x,y individuato da F_1 e F_2 dato che sommati a esse deve dare risultante nulla.

Pertanto, detto ϕ l'angolo formato da F_3 con l'asse y, si ha:

$$\begin{cases}
-F_2 \sin \theta + F_3 \sin \phi = 0, \\
-F_1 + F_2 \cos \theta + F_3 \cos \phi = 0.
\end{cases}$$

Risolvendo si trova:

$$\tan \phi = \frac{F_2 \sin \theta}{F_1 - F_2 \cos \theta}, \quad \phi = 45.4^\circ,$$

$$F_3 = F_2 \frac{\sin \theta}{\sin \phi} = 17.6 \text{ N}.$$

La soluzione è mostrata in Figura 2.8: qualitativamente era evidente che F_3 doveva giacere nel primo quadrante.

Figura 2.8

Come verifica del risultato trovato per il modulo di F_3 si provi a calcolare il modulo della risultante di F_1 e F_2 applicando il teorema del coseno (appendice C).