EC. OI CASCOU ARRA EVAGOR MEDIO DEL SEGNALE

$$
\begin{aligned}
& m_{s}=\lim _{T \rightarrow \infty} \frac{\int_{-T}^{T} \operatorname{scttd}}{2 \pi}=\lim _{T \rightarrow \infty} \frac{1}{2}=\frac{1}{2} \\
& E s(t)=e^{-\alpha \mid H} \quad \alpha>0
\end{aligned} \quad s(t)= \begin{cases}e^{-\alpha t} & t>0 \\
e^{\alpha t} & t<0\end{cases}
$$

$$
\begin{aligned}
A_{S} & =\lim _{T \rightarrow \infty} 2 \int_{-T 0}^{T} e^{-\alpha t} d t=\lim _{T \rightarrow \infty} 2 \underbrace{e_{0}^{T}}_{\left.\frac{\left.e^{-\alpha t}-\right]_{0}^{T}}{-\alpha}\right]_{0}^{T} e^{-\alpha t} d t} \\
& =\lim _{T \rightarrow \infty} \frac{2}{-\alpha}\left(e^{-\alpha T}-e^{-\frac{1}{-\alpha} \cdot 0}\right) \\
& =\lim _{T \rightarrow \infty} \frac{2}{\alpha}(1-\underbrace{-\alpha T})=\frac{2}{\alpha} \\
m_{S} & =\lim _{T \rightarrow \infty} \frac{\int_{-T}^{T} s(t) d t}{2 T}=\lim _{T \rightarrow \infty} \frac{\frac{2}{\alpha}\left(1-e^{-\alpha T}\right)}{2 T}=0
\end{aligned}
$$

TS EVERGA EPOTEVRA DI $s(t)=1(t)$

$$
\begin{aligned}
& |s(t)|^{2}=|1(t)|^{2}=(1(t))^{2}=\left\{\begin{array}{ll}
1 & t>0 \\
1 / 4 & t=0 \\
0 & t<0
\end{array} \simeq 1(t)\right. \\
& |s(t)|^{2}=1(t) \quad E_{s}^{-}=A_{1}=+\infty \\
& P_{s}=m_{1}=1 / 2
\end{aligned}
$$

ES $S(A)=e^{-\alpha|t|}, \quad \alpha>0$

$$
\begin{aligned}
& s(t)=\frac{e^{-\alpha|t|}, \quad \alpha>0}{} \quad|s(t)|^{2}=\left\{\begin{array}{ll}
e^{-2 \alpha t} & t>0 \\
1 & t=0 \\
e^{2 \alpha t} & t<0
\end{array}=e^{-2 \alpha|t|}=e^{-\beta|t|}\right. \\
& E=2 \alpha>0
\end{aligned}
$$

