$\frac{2(h)}{2(h)} = \frac{1}{(u)} =$

 $\frac{2(t)}{2(t)} = \frac{1}{2(t)} =$

EVEROCUE X * y (f) =0 RKE CO? Si) $\mathcal{E}_{X} = [0, +\infty) \longrightarrow \mathcal{E}_{X} + y \in [0, +\infty)$ $\mathcal{E}_{Y} = [0, +\infty)$

 $2(n) = \sum_{k=-\infty}^{\infty} x(k) y(n-k)$ $x * y(n) = \sum_{k=-\infty}^{\infty} x(k) y(n-k)$ $x * y(n) = \sum_{k=-\infty}^{\infty} x(k) y(n-k)$

ES 1 STABILITA DI h(n)= n cos(Ty4n) 10(n)

2 cos(Ty4n)

NON BIBO STABILE
ECHE': VAIORI DILLE (MI) DIVERGORD

STABILITA' BIBO CON h(H) = et cos(24) 1(H)

JINCHI dt = Ln $< \infty$ Ln = $\int e^{-\epsilon} e^{-\epsilon} |\cos(2t)| dt$ $\leq \int e^{-\epsilon} dt = -e^{-\epsilon} \int e^{-\epsilon} dt$ $\leq \int e^{-\epsilon} dt = -e^{-\epsilon} \int e^{-\epsilon} dt$