AERAULIC PLANT PRESSURE LOSSES AND SIZING

Michele De Carli Giuseppe Emmi Elisa Scalco

- NEED TO SET PHYSICAL DIMENSION OF THE PIPES AND THE MACHINE THAT WILL PROVIDE THE MOVEMENT (FAN)
- To size any pipe, the air flow (G) will be needed as input

[m³/s]
$$G=S \circ v$$
 [m/s] v

SMALL pipe size

PROS	CONS				
Small dimension means small overall cost	High fluid velocity, must take int account vibrations and noise				
Reduced necessary thechnical space and easier positioning	High fluid-duct wall frictions, higher costs to keep the flow moving				

Recommended air velocities in ducts

Air velocity [m/s]

	Main ducts	Secondary ducts	Air inlet	Air outlet	
Residential	4 - 5	3 - 4	2 - 3	1,5 - 2	
Public buildings, schools	5 - 8	4 - 6	3 - 5	2 - 3	
Offices	8 - 11	6 - 8	5 - 8	3 - 4	
Industrial buildings	8 - 15	6 - 10	5 - 10	4 - 10	
AHU —					

To set a fluid in motion a pressure difference between inlet and outlet sections will be needed.

$$\Delta P = \Delta P_k + \Delta P_p + \Delta P_f$$

 ΔP_k : kinetic energy variation

 ΔP_p : potential energy variation

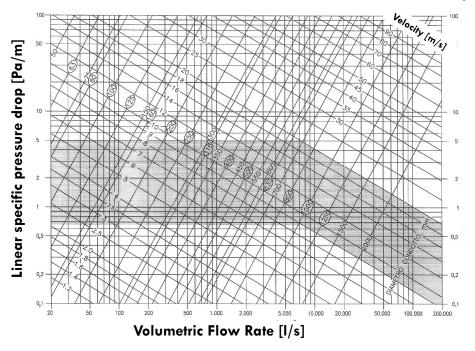
 ΔP_f : friction pressure loss

Friction pressure loss (or pressure loss) is due to two components:

Localised pressure drop: occurs whenever flow meets discontinuity in its path

Continuous pressure drop: occurs because of fluid-wall interactions

CONTINUOUS PRESSURE DROP


$$\frac{\Delta P_c}{L} = \frac{\rho \, v^2}{2} \frac{f}{D} \quad \left[\frac{Pa}{m}\right]$$

- ρ fluid density $\left[\frac{kg}{m^3}\right]$
- v mean fluid velocity $\left[\frac{m}{s}\right]$
- f friction factor [/]
- L pipe length [m]
- D pipe diameter [m]

The friction factor ${\bf f}$ is determined either analytically of via appropriate diagrams. It depends on:

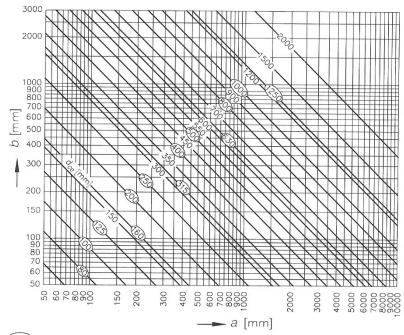

- · Fluid density, viscosity and velocity
- Duct diameter and roughness

Diagram for distributed losses for quick choice for ϵ = 0.09 mm and ρ = 1.2 kg/m³

Standard diameters of the circular ducts according to UNI 10381-2 Dimensions of rectangular ducts equivalent to circular ducts standardized diameters:

$$d_{ce} = 1,30 \frac{(a \times b)^{0,625}}{(a + b)^{0,250}}$$

Standard diameters of the circular ducts according to UNI 10381-2

LOCALISED PRESSURE DROP

$$\Delta P_l = rac{
ho \, v^2}{2} \xi \,$$
 [Pa]

- ρ fluid dencity $\left[\frac{kg}{m^3}\right]$
 - v mean fluid velocity $\left[\frac{m}{s}\right]$
 - ξ localised p.d. coefficient [/]

 ξ coefficient is established on the basis of the particular type of loss, usually tabulated for the most common circuit elements (curves, branches etc.)

		r	PERDITA DI PRESSIONE			
TIPO	FIGURA	CARATTERISTICHE	С	L/0	L/W	
CURVA A Nº	₽	RETTANGOLARE O ROTONDA; CON O SENZA ALETTE	N'90 X PERDITA DI UNA CURVA UGUALE A 90°			
CURVA A 90° SE ZIONE ROTONDA	中	GOMITO R/D = 0.5 0.75 1.0 1.5 2.0	1,30 0,90 0,45 0,33 0,24 0,19	65 23 17 12 10		
CURVA A 90° SEZIONE RETTANGOLARE		#/W R/W R/W 0.5 0.5 0.75 1.0 1.0 0.5 0.75 1.0 0.5 0.75 1.0 0.75 1.0 0.75 1.0 0.75 1.0 0.75 1.0 0.75 1.0 0.75 0.0 0.0	1.25 1.25 0.60 0.37 0.19 1.47 1.10 0.28 0.19 1.50 0.41 0.41 0.22 0.09 1.38 0.36 0.37 0.39		25 25 12 7 4 49 40 16 9 4 75 50 21 11 4,5 110 65 43 17	
CURVA A 90° SEZIONE RETTANGOLARE CON DEFLETTORI	H RIGHT	R/W R ₁ /W R ₂ /W GOMTO 0.5 0.5 0.4 0.7 0.6 1.0 1.0 1.5 GOMTO 0.3 0.5 0.5 0.2 0.4 0.75 0.4 0.7 1.0 0.7 1.0 1.5 1.0 1.0	0.70 0,13 0.12 0.45 0.12 0.10 0.10		28 19 12 72 22 22	
GOMITO CON- ALETTE	DA LAMIERA AEROGINAMICHE	C=0.10÷0.35 SECONDO LA COSTRUZIONE				
GOMITO A T CON ALETTE T CURVILINEO		CONSIDERARLO UGUALE AD UNA CURVA ANALOGA. PERUITA BASATA SULLA VELOCITA' IN ENTRATA				

TIPO	FIGURA	CARATTE = RISTICHE	COEFFICIENTE		TIPO	FIGURA	CARATTE = RISTICHE	COEFFI =
ESPANSIONE BRUSCA		A1/A2	C1	C2		A1	A2/A1	C2
	A1	0.1 0.81 0.2 0.64 0.3 0.49 0.4 0.36 0.5 0.25	0.64 0.49 0.36 0.25	54 16 49 5 36 2,25 25 1,00	CONTRAZIONE BRUSCA SPIGOLI VIVI	- A2	0.0 0.2 0.4 0.6 0.8	0.34 0,32 0,25 0.16 0.06
		0.6 0.7 0.8 0.9	0,16 0,45 0,09 0,18 0,04 0,06 0,01 0,01	CONTRAZIONE GRADUALE	A2	30° 45°	0.02	
	A2		C	r			60*	0,07
ESPANSIONE GRADUALE	A1 - 2	5° 7° 10° 20°	0,17 0,22 0,28 0,45		TRASFORMAZIONE AD AREA COSTANTE	A1 - A2	A1=A2 8 ≤ 14*	0,15
		30° 40°	0.5			1		С
BRUSCO	A1 1 A2			0.73	A FLANGIA	=	Αzœ	0.34
	(A2 = 00)		1,00		INGRESSO		A=∞	С
		A0/A1	C	2	A CANALE			0,85
	A1 0.0 0.2 0.4 0.6 0.6		0.0 2.50		-			С
ORIFIZIO DI EFFLUSSO A SPIGOLI VIVI		0.4	2,44 2,26 1,96 1,54		INGRESSO GRADUALE	\equiv	A=∞	0,03
		10	1.0	0	ORIFIZIO DI INGRESSO A SPIGOLI VIVI	1 A2 A2 A0	A0/A2	Co
SBARRA ATTRAVERSO IL CANALE	- ‡ 0 0	E/D 0.10 0.25 0.50	0,7 1,4 4,0				0.0 0.2 0.4 0.6	2.50 1.96 1.39 0.96
TUBO ATTRAVERSO IL CANALE STANDARD APPORT FILO AERODINA - MICO ATTRAVERS TO IL CANALE		E/D	С			1	1,0	0.61
		0,10	0.2		ORIFIZIO A SPIGOLI VIVI NEL CANALE	A1=A2	AO/A	c _o
		0,50	2,0				0.0	2,50
		E/D	С			- A ₀	0.2	1,86
		0.10 0.25 0.50	0.0 0.2 0.9	23			0.6 0.8 1.0	0.64 0.20 0.0

DISTRIBUTION LINE DESIGN

Step n 1

Set up network geometry and its location in the building. Fans and/or the AHU should be placed as cantered to the building as possible in order to restrict the network extension.

Check the weight of the equipment to check the static loads for the building structure.

Analyse the problem of noise and vibrations transmitted to the surroundings.

Step n 2

Decide the flow rate for each section of the plant according to the specifics needs of each room (both extraction and immission).

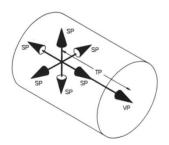
Step n 3

Choice of the pipes size of the whole plant.

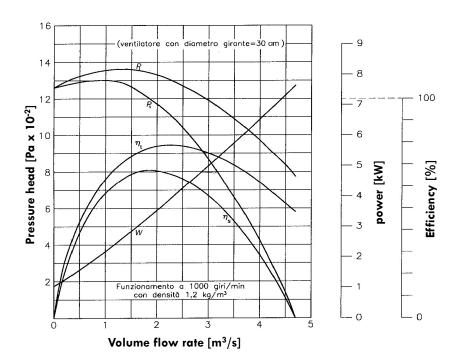
Pressure losses determination (as sum of localised and continuous pressure drops)

The result will most certainly differ for the various sections of the plant; need to equalize the distribution network by adding calibration valves in specific points (main branches, terminals etc).

Step n 4


Choosing the appropriate operating machine (fan) that will provide the requested flow and supply the necessary head pressure to overcome the network pressure losses.

Fan


When dealing with ventilation, the fan has the duty to produce the pressure that will keep the flow moving while facing all the circuit resistances (pressure drops).

The fan produces the TOTAL PRESSURE which is the sum of two components:

- Static pressure (any direction)
- Dynamic pressure (always aligned with the flow)

TP: Total Pressure
SP: Static Pressure
VP: Dynamic Pressure

Static pressure

It is the pressure the flow will apply all over around the duct it is contained in.

It depends on the fan aerodynamic characteristics and acts equally in all directions; it does not depend on the fluid speed.

Taking the ambient pressure as a reference the static pressure will be:

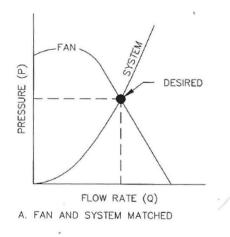
POSITIVE if higher

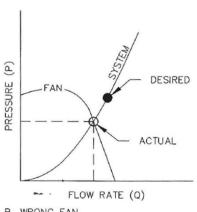
NEGATIVE if lower

Static pressure provides the necessary energy to speed up the air from its quiet and to keep it moving while winning resistances due to friction and turbulence.

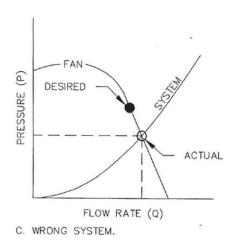
Dynamic Pressure

It is the fluid pressure due to its kinetic energy.


It is created at the cost of static pressure.


It acts in the same direction as the fluid motion and is always considered positive.

It is function of both speed and density of the fluid.


Suction system operating point

