FULL AIR SYSTEMS

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good possibility to control indoor conditions</td>
<td>Poor energy efficiency</td>
</tr>
<tr>
<td>Complete absence of pipng etc.</td>
<td>Size of air ducts</td>
</tr>
<tr>
<td>Localization in a unique Air Handling Unit (AHU) the main components of the plant</td>
<td>Need of accurate balancing of air ducts</td>
</tr>
<tr>
<td>Easy installation of heat recovery units</td>
<td></td>
</tr>
</tbody>
</table>
BALANCE OF A ROOM

THERMAL AND VAPOUR BALANCE OF A ROOM

\[q_p = G_I \ c_p \ (t_a - t_I) \]

\[G_{vp} = G_I \ (x_a - x_I) \]

\[q_p + r \ G_{vp} = G_I \ (h_a - h_I) \]

\[\frac{q_{tp}}{G_{vp}} = \frac{h_a - h_I}{x_a - x_I} \]

\[\frac{q_p}{q_{pt}} = \frac{c_p \ (t_a - t_I)}{h_a - h_I} \]
The greater the distance from I and A the lower the air flow rate

Lower flow rate → IAQ ?

\[
t_I - t_a = 15 \div 25 \degree C \quad \text{in HEATING}
\]

\[
t_a - t_I = 10 \div 12 \degree C \quad \text{in COOLING}
\]
IN THESE PLANTS:

- If $G_{a,fresh} < G_I$
 \[G_{recirculation} = G_I - G_{a,fresh} \]

- If $G_{a,fresh} > G_I$
 Just fresh air $G_I = G_{a,fresh}$

In a plant the design conditions occur rarely

Conditions change over the time

Different zones may require different loads

(living room/bedrooms, South-North, West-East, etc.)

SINGLE DUCT

- A single duct connects the AHU to the rooms/zones

- The air flow rate may be different from zone to zone, but the inlet conditions are the same (temperature and relative humidity)

- Same straight line for each room/zone

- The set of the rooms supplied by a single duct represent the same climatic zone
SCHEME OF AN AHU

1. Equalizing dampers
2. Pre-heating coil
3. Atomizing humidifier
4. Droplet separator
5. Cooling coil
6. Reheat coil
7. Fan

AHU:

HEATING OPERATION
The pre-heat coil determines the inlet humidity ratio in the room.

The reheat coil has the goal to control t_{IMM}

COOLING OPERATION
The cooling coil varies the inlet humidity ratio.
The reheat coil controls the inlet temperature
Winter no heat recovery, atominzing humidifier

Winter with heat recovery (70%), atominzing humidifier

Heat recoery 70%
Winter with heat recovery (70%), steam humidifier

Summer no heat recovery
Summer with heat recovery

Heat recovery 70%

- Adaptable and Precise in controlling temperature and humidity

- With different zones — each with a un SINGLE DUCT & AHU

- Sizing

 | heating |
 | cooling |

 Select the greater flow rate as design flow rate

 If there is a difference between the 2 flow rates:

 - maximum
 - reduced (by means of a fan with variable flow rate)

 In the second case (reduced flow rate) it is necessary to set again the inlet conditions (the inlet conditions change)
HOW TO SIZE THE COILS:

Preheating coil:
\[x_D = x_I \] (latent load = 0)

\[G_I c_p (t_D - t_M) = \text{heat supplied as preheating} \]

- **Reheat coil:**
 - For cooling: \[t_I = t_A \] (sensible load = 0)
 - \[G_I c_p (t_I - t_C) = \text{heat supplied in winter} \]
 - \[G_I c_p (t_A - t_B) = \text{heat supplied in summer} \]
 - Whichever is greater

MULTIZONE SYSTEMS WITH REHEAT COILS

- Zones with different loads
- There is just one AHU and the reheat coils are in stalled locally
- The control can be either on the temperature or on the relative humidity (just one of them)
1. Equalizing dampers
2. Pre-heating coil
3. Atomizing humidifier
4. Droplet separator
5. Cooling coil
6. Reheat coils
7. Fan

Case with room temperature control:

The control is based on a set-point temperature of the room t_a.

The humidity ratio can change depending on the actual vapour balance. The humidity ratio can vary and hence the conditions A' can move on the red straight segment t_a varying the relative humidity.
• **Case with relative humidity control:**

 The relative humidity is kept constant (on the RH = const. curve) but the temperature can change.

 ![Graph showing humidity and temperature control](image)

• **Sizing the ventilation rate:**

\[
G_a^\text{TOT} = \sum_j G_{aj}
\]

\[
\frac{G_a^\text{FRESH}}{G_a} = \text{Room by room}
\]

The maximum ratio \(M \) determines the sharing of fresh air

\[
G_a^\text{FRESH} = M G_a
\]
Example:

1850 W

26°C

16°C G_a

550 m³/h

$G_{a, EST}$ 300 m³/h

$\frac{G_{a, EST}}{G_a} = 0.54$

5050 W

26°C

16°C G_a

1500 m³/h

$G_{a, EST}$ 500 m³/h

820 m³/h

$\frac{G_{a, EST}}{G_a} = 0.33$

7550 W

26°C

16°C G_a

2250 m³/h

$G_{a, EST}$ 800 m³/h

1230 m³/h

$\frac{G_{a, EST}}{G_a} = 0.36$

$G_{a, EST, tot} = 1600$ m³/h

2350 m³/h

+47%