Lesson 2 - Quantum Properties of Light
Unit 2.2 Gas of photons and Planck law

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova

Structure of Matter - MSc in Physics
Let us consider the electromagnetic field in thermal equilibrium with a bath at the temperature T. The relevant quantity to calculate all thermodynamic properties of the system is the grand-canonical partition function \mathcal{Z}, given by

$$\mathcal{Z} = \text{Tr}[e^{-\beta(\hat{H} - \mu \hat{N})}]$$

where $\beta = 1/(k_B T)$ with $k_B = 1.38 \cdot 10^{-23}$ J/K the Boltzmann constant, $\hat{H} = \sum_k \sum_s \hbar \omega_k \hat{N}_{ks}$, is the quantum Hamiltonian without the zero-point energy,

$$\hat{N} = \sum_k \sum_s \hat{N}_{ks}$$

is the total number operator, and μ is the chemical potential, fixed by the conservation of the particle number.
Partition functions of photons (II)

For photons $\mu = 0$ and consequently the number of photons is not fixed. This implies that

$$Z = \sum_{\{n_{ks}\}} \langle \ldots n_{ks} \ldots | e^{-\beta \hat{H}} | \ldots n_{ks} \ldots \rangle$$

$$= \sum_{\{n_{ks}\}} \langle \ldots n_{ks} \ldots | e^{-\beta \sum_{k} \hbar \omega_{k} \hat{N}_{ks}} | \ldots n_{ks} \ldots \rangle$$

$$= \sum_{\{n_{ks}\}} e^{-\beta \sum_{k} \hbar \omega_{k} n_{ks}} = \sum_{\{n_{ks}\}} \prod_{ks} e^{-\beta \hbar \omega_{k} n_{ks}}$$

$$= \prod_{ks} \sum_{n_{ks}} e^{-\beta \hbar \omega_{k} n_{ks}} = \prod_{ks} \sum_{n=0}^{\infty} e^{-\beta \hbar \omega_{k} n}$$

$$= \prod_{ks} \frac{1}{1 - e^{-\beta \hbar \omega_{k}}}.$$ \hspace{1cm} (4)
Quantum statistical mechanics dictates that the thermal average of any operator \hat{A} is obtained as

$$\langle \hat{A} \rangle_T = \frac{1}{Z} \text{Tr}[\hat{A} e^{-\beta(\hat{H} - \mu \hat{N})}] . \quad (5)$$

In our case the calculations are simplified because $\mu = 0$. Let us suppose that $\hat{A} = \hat{H}$, it is then quite easy to show that

$$\langle \hat{H} \rangle_T = \frac{1}{Z} \text{Tr}[\hat{H} e^{-\beta \hat{H}}] = -\frac{\partial}{\partial \beta} \ln \left(\text{Tr}[e^{-\beta \hat{H}}] \right) = -\frac{\partial}{\partial \beta} \ln(Z) . \quad (6)$$

By using Eq. (4) we immediately obtain

$$\ln(Z) = -\sum_{k} \sum_{s} \ln \left(1 - e^{-\beta \hbar \omega_k} \right) , \quad (7)$$

and finally from Eq. (6) we get

$$\langle \hat{H} \rangle_T = \sum_{k} \sum_{s} \frac{\hbar \omega_k}{e^{\beta \hbar \omega_k} - 1} = \sum_{k} \sum_{s} \hbar \omega_k \langle \hat{N}_{ks} \rangle_T . \quad (8)$$
Thermal energy of photons (II)

In the continuum limit, where

$$\sum_{\mathbf{k}} \rightarrow V \int \frac{d^3 \mathbf{k}}{(2\pi)^3},$$ \hspace{1cm} (9)

with V the volume, and taking into account that $\omega_k = ck$, one can write the energy density $\mathcal{E} = \langle \hat{H} \rangle_T / V$ as

$$\mathcal{E} = 2 \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{c \hbar k}{e^{\beta \hbar c k} - 1} = \frac{\hbar c}{\pi^2} \int_0^\infty dk \frac{k^3}{e^{\beta \hbar c k} - 1},$$ \hspace{1cm} (10)

where the factor 2 is due to the two possible polarizations ($s = 1, 2$). By using $\omega = ck$ instead of k as integration variable one gets

$$\mathcal{E} = \frac{\hbar}{\pi^2 c^3} \int_0^\infty d\omega \frac{\omega^3}{e^{\beta \hbar \omega} - 1} = \int_0^\infty d\omega \rho(\omega),$$ \hspace{1cm} (11)

where

$$\rho(\omega) = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\beta \hbar \omega} - 1}$$ \hspace{1cm} (12)

is the energy density per frequency, i.e. the familiar formula of the black-body radiation, obtained for the first time in 1900 by Max Planck.
The previous integral can be explicitly calculated and it gives

\[\mathcal{E} = \frac{\pi^2 k_B^4}{15 c^3 \hbar^3} T^4, \quad \text{(13)} \]

which is nothing but the Stefan-Boltzmann law. In an similar way one determines the average number density of photons:

\[n = \frac{\langle \hat{N} \rangle_T}{V} = \frac{1}{\pi^2 c^3} \int_0^\infty d\omega \frac{\omega^2}{e^{\beta \hbar \omega} - 1} = \frac{2\zeta(3) k_B^3}{\pi^2 c^3 \hbar^3} T^3. \quad \text{(14)} \]

where \(\zeta(3) \approx 1.202 \). Notice that both energy density \(\mathcal{E} \) and number density \(n \) of photons go to zero as the temperature \(T \) goes to zero. We stress that these results are obtained at thermal equilibrium and under the condition of a vanishing chemical potential, meaning that the number of photons is not conserved when the temperature is varied.