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Abstract

Complex systems, from the human brain to the global economy, are made of multiple
elements that interact in such ways that the behaviour of the ‘whole’ often seems to be
more than what is readily explainable in terms of the ‘sum of the parts.’ Our ability to
understand and control these systems remains limited, one reason being that we still
don’t know how best to describe – and quantify – the higher-order dynamical
interactions that characterise their complexity. To address this limitation, we combine
principles from the theories of Information Decomposition and Integrated Information
into what we call Integrated Information Decomposition, or ΦID. ΦID provides a
comprehensive framework to reason about, evaluate, and understand the information
dynamics of complex multivariate systems. ΦID reveals the existence of previously
unreported modes of collective information flow, providing tools to express well-known
measures of information transfer and dynamical complexity as aggregates of these
modes. Via computational and empirical examples, we demonstrate that ΦID extends
our explanatory power beyond traditional causal discovery methods – with profound
implications for the study of complex systems across disciplines.

Introduction

How can we best characterise the plethora of dynamical phenomena that can emerge in
a system of interacting components? Progress on this question seems critical to support
advances in our ability to understand, engineer, and control complex systems such as
the central nervous system [1], the global climate [2], macroeconomics [3], and many
others. The predominant approach for analysing such systems is in terms of cause-effect
pairs, seeking to link each cause to its individual effect via a ‘causal arrow’ (see
e.g. [4, 5]). However, such approaches have an important limitation that is rarely
acknowledged: they neglect higher-order relationships that cannot be expressed in terms
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of such arrows, which – nonetheless – have been shown to be ubiquitous in complex
systems as varied as genetic networks [6], financial markets [7], baroque music [8], and
the human brain [9–11].

As an alternative approach, various one-dimensional metrics have been proposed to
assess the dynamical complexity of processes (e.g. [12, 13]). An interesting case of this is
found in the neuroscience literature, where it has been proposed that a key feature of
the neural dynamics underpinning advanced cognition, flexible behaviour, and even the
presence of consciousness, can be captured by a single number that accounts for the
brain’s ability to ‘integrate information.’ There have been several attempts to
operationalise this notion, including the various Φ measures in Integrated Information
Theory (IIT) [14–16] and Causal Density (CD) [17]; however, these measures have been
shown to behave inconsistently [8, 18,19], making empirical applications difficult to
interpret.

Here we argue that the two research programs described above are limited because
they are rooted in the intuition that information can only be transferred or stored
between parts of a system. However, it has recently become apparent that high-order
interactions that go beyond transfer and storage can be captured via the framework of
Partial Information Decomposition (PID) [20], which demonstrates how the information
that two or more sources provide about a given target can be decomposed into
redundant, unique, and synergistic components [21]. Specifically, redundancy refers to
information held simultaneously by both sources, unique information is that held by one
source but not the other, and synergy is the information conveyed by both sources
together but none of them in isolation. PID has been usefully applied to systems such
as cellular automata [22,23], artificial neural networks [24,25], socioeconomic data [26],
and gene interactions [27]. However, the information taxonomy introduced by PID is
only valid in scenarios with a single target variable, being unable to discriminate
between different ways in which two or more target variables can be affected collectively.
This important limitation prevents PID from providing an encompassing view of the
dynamics of complex systems, where the past of multiple variables affects the future of
multiple variables.

In this paper we introduce the Integrated Information Decomposition framework
(ΦID), which combines principles from the theories of Information Decomposition and
Integrated Information to overcome PID’s critical limitation and enables a complete
information decomposition on groups of time series. The ΦID framework introduces a
novel information taxonomy, revealing the existence of modes of information dynamics
that have not been previously reported. Furthermore, it allows us to show precisely how
measures of transfer entropy and integrated information are aggregates of several
qualitatively distinct modes. As proof of concept, we use two example datasets
(simultaneous recordings of heart rate and respiratory volume in healthy subjects; and a
neurobiologically realistic simulation of whole-brain activity) to show that the
high-order effects discussed here are not merely theoretical speculations, but can have
substantial effects on real-world analyses and their interpretation.

Results

Integrated information decomposition: ΦID

Decomposing multivariate information

Consider a system composed of two interdependent elements that co-evolve over time. If
the system’s future state depends only on the preceding state (i.e. if its dynamics are
Markovian), then the total amount of information carried from past to future is known
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as the time-delayed mutual information1 [19], and can be quantified as the mutual
information between past and future states of the system:

TDMI = I(Xt;Xt+1) = I(X1
t , X

2
t ; X1

t+1, X
2
t+1) . (1)

Above, the superscripts 1 and 2 refer to the two elements of the system, and
Xt = (X1

t , X
2
t ) is a shorthand notation for the system’s state at time t.

One can analyse the total information flow using the Partial Information
Decomposition (PID) framework, which decomposes the mutual information between
multiple sources and a target variable into unique (Un), redundant (Red), and
synergistic (Syn) contributions – also known as ‘information atoms’ [21]. However, just
as the great strength of PID is its capacity to account for multiple sources of
information, its main limitation is that it is restricted to considering only a single
(potentially multivariate) target. Therefore, a direct application of PID to the TDMI
would have to consider the past states of the system’s elements X1

t and X2
t as sources

and the joint future state of the system Xt+1 as target. Specifically, focusing on how
information flows from past to future, this account decomposes the information
provided by past states X1

t and X2
t about the joint future state Xt+1, as

TDMI = Red(X1
t , X

2
t ;Xt+1) + Un(X1

t ;Xt+1|X2
t ) + Un(X2

t ;Xt+1|X1
t ) + Syn(X1

t , X
2
t ;Xt+1).

Here, the first term corresponds to the redundant information provided by both X1
t and

X2
t about the joint future state of the system Xt+1; the second and third terms refer to

the unique information that only the past state X1
t provides about the joint future state

Xt+1 (and likewise for X2
t ); and finally, the last term accounts for the synergistic

information that the two elements’ past states provide about the system’s joint future,
only when they are considered together. Unfortunately, this approach neglects the fact
that the parts of the system are distinct not only in the past, but also in the future – in
other words, it can tell where the information is coming from, but not where it is going
to. One naive solution would be to consider the time-reverse of the equation above, with
both future states as sources and the joint past state as target (what we refer to as the
‘backwards’ PID). However, this leaves unsolved the underlying problem that PID
cannot provide a unified decomposition of information across multiple sources and
multiple targets simultaneously.

In order to obtain an encompassing description of the system’s dynamics, one must
extend the PID approach to enable multi-target information decomposition. To address
this issue, our strategy is to take a temporal perspective on PID itself, focusing on how
the information encoded by the PID atoms may evolve over time. For instance,
information that was uniquely encoded by one element of the system in the past may
become redundantly encoded by two in the future, or synergistic information may
subsequently become uniquely encoded by one of the elements – and so on. This
intuition suggests that when decomposing information flow between past and future in a
system of two elements there are not four, but rather 16 distinct information atoms:
each corresponding to a pair of the original four PID atoms evolving from past to future.
Thus, we denote each ΦID atom as a pair of PID atoms: e.g. the information that was
carried redundantly in the past and becomes synergistic in the future corresponds to
Red→Syn; and the synergistic information in the past that becomes unique to X1

t+1 in
the future corresponds to Syn→Un1; and so on.

Like the original PID atoms, the ΦID atoms are structured in a lattice, depicted in
Fig. 1 (for a formal derivation see Methods). As with PID, several extra ingredients
need to be specified to compute the numerical value of these atoms: in ΦID, it can be

1In non-Markovian systems the corresponding quantity is known as excess entropy [13]. Information
decomposition in non-Markovian systems will be covered in a subsequent publication.
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Un2→Un1

Un1→Un2

Un2→Un2 Syn→Red
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Forward PID Backward PID ΦID
a)

Fig 1. Lattice representation of information atoms from PID to ΦID. a)
System of two elements co-evolving and interacting over time, decomposed either
according to a forward PID (left) or a backward PID (middle). Integrated Information
Decomposition (ΦID; right) unifies and extends both PIDs, providing an encompassing
framework of information dynamics in complex systems. b) Redundant (Red), unique
(Un) and synergistic (Syn) atoms in the bivariate PID lattice. c) ΦID lattice for a
system of two time series, where each ΦID atom corresponds to a pair of two PID atoms
that indicate how information evolves from past to future.

shown that standard Shannon theory and PID together specify a system of 15 equations
for the 16 ΦID atoms, yielding an underdetermined system. To compute the atoms one
must provide one extra constraint, which can be done by introducing a
double-redundancy function – a multi-target extension of PID’s redundancy function.2

Note that the ΦID framework does not impose a particular functional form for the
double-redundancy function, and hence different functional forms can be explored. A
formal development of these ideas, and its extension to systems of more than two
elements, is provided in the Methods.

2For PID, it is often the redundancy function that provides the needed constraint to allow computation
of numerical values for the PID atoms.
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Integrated
Information

Decomposition

(ΦID)

Downward causationUpward causation

Storage

Erasure Copy

Transfer

Fig 2. Taxonomy of information dynamics in complex systems. Six
qualitatively different modes of information dynamics, represented in terms of their
constituent atoms in the ΦID lattice.

A new taxonomy for information dynamics in complex systems

Based on ΦID, we propose an extended taxonomy of information dynamics according to
six disjoint and qualitatively distinct phenomena (Fig. 2):

Storage : Information that remains in the same element or set of elements (even if it
includes collective effect). Comprises Red→Red, Un1→Un1, Un2→Un2, and
Syn→Syn.

Copy : Information that becomes duplicated. Comprises Un1→Red, and Un2→Red.

Transfer Information that moves between elements. Comprises Un1→Un2 and
Un2→Un1.

Erasure Duplicated information that is pruned. Comprises Red→Un1 and Red→Un2.

Downward causation Collective properties that define individual futures. Comprises
Syn→Un1, Syn→Un2, and Syn→Red.

Upward causation Collective properties that are defined by individuals. Comprises
Un1→Syn, Un2→Syn, and Red→Syn.
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While the downward causation mode has been discussed in the past [20], upward
causation and synergistic storage (Syn→Syn) have, to our knowledge, not been
reported in the literature. Importantly, traditional methods of causal discovery cannot
capture the type of modes that involves interactions between multiple target variables.
In effect, while methods such as PID or multivariate Granger causality can effectively
deal with multivariate target variables, they cannot untangle how each component of
the target may be differently affected, and — more importantly — how sources may
affect the target as a whole, without (or in addition to) affecting its parts. Overall, this
new taxonomy leads to less ambiguous and fully quantifiable descriptions of information
dynamics in complex systems, in addition to grounding abstract concepts such as
upward and downward causation,3 and notions such as integrated information – as we
discuss below.

A simple example of information decomposition with ΦID

As a first example of the kind of insight that Integrated Information Decomposition can
provide, let us focus on the decomposition of a variable’s so-called ‘active information
storage’ (AIS) [30], which is defined as the TDMI of an individual part of the system
(i.e. the mutual information between the present of one variable, X1

t , and its own future,
X1
t+1). To decompose AIS, consider that in PID the mutual information of a single

source variable with the target is decomposed as the sum of redundancy (which is
information that each source has about the target) and that source’s unique information.
Similarly, in ΦID AIS is decomposed in terms of redundancy and unique information,
but now taking into account both past and future:

AIS(X1) = I(X1
t ;X1

t+1) = Red→Red + Red→Un1 + Un1→Red + Un1→Un1 . (2)

Here, Red→Red corresponds to redundant information in the past of both parts that is
present in the future of both parts; Red→Un1 is the redundant information in the past
that is eliminated from the second element and hence is only conserved in X1

t+1; and
similarly for the remaining atoms.

Even with this simple example, ΦID already yields new insights into the system’s
information dynamics: note that, although X2

t , X
2
t+1 are not in this mutual information,

I(X1
t ;X1

t+1) shares the Red→Red term with I(X2
t ;X2

t+1) by virtue of them being
considered part of the same multivariate stochastic process. Therefore, if one uses
simple mutual information as a measure of storage one may include information that is
not stored exclusively in a given variable, resulting in a ‘double-counting’ of the
Red→Red atom which can lead to paradoxical conclusions – such as the sum of
individual information storages being greater than the total information flow (TDMI).

More generally, ΦID can be used decompose many other quantities of interest for
complex systems analysis (Fig. 3), and their decompositions can help us both to
understand existing measures and design new ones. In the following sections we apply
this line of reasoning and the ΦID framework to two prominent scenarios in complex
systems analysis: the assessment of causal interactions between system components, and
the quantification of system-wide integrated information.

Theoretical implications

Different types of integration

Measures of integrated information, usually denoted by Φ, aim to quantify the degree to
which a temporal evolution of a dynamical system depends on the interdependencies

3The relation between ΦID and causal emergence [28] can be found in a separate publication [29].
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Information storage Transfer entropy Causal density Integrated information

Fig 3. Common information-theoretic measures decomposed into
integrated information atoms. Constituent ΦID atoms of active information
storage, transfer entropy (from X1

t to X2
t+1), causal density (sum of transfer entropies),

and whole-minus-sum integrated information, highlighted in blue. Dark blue indicates
double-counting in causal density, and red indicates a negative contribution of
redundancy to integrated information (see text for details).

between its parts [15],4 see [19] for a review. Integrated information measures have been
applied widely, most notably in the neuroscience of consciousness, but also to studies of
diverse complex systems [31–33]. In this section we investigate the concept of integrated
information through the lens of ΦID.

The key insight that ΦID delivers is that there are multiple qualitatively different
ways in which a multivariate dynamical process can integrate information – through
different combinations of redundant, unique, and synergistic effects. To illustrate this,
let’s focus on the so-called ”whole-minus-sum” empirical integrated information
metric [34], which for a simple 2 component system is calculated as5

ΦWMS = I(Xt;Xt+1)−
∑

i

I(Xi
t ;X

i
t+1) . (3)

which reflects a balance between the information contained within the whole system
(I(Xt;Xt+1)) and the information contained within the parts (I(X1

t ;X1
t+1) and

I(X2
t ;X2

t+1)). We apply this metric to the following elementary examples of 2 binary
variables (Fig. 4):

• A copy transfer system, in which X1
t , X

2
t , X

1
t+1 are i.i.d. fair coin flips, and

X2
t+1 = X1

t (i.e. the information of X1
t is copied to X2

t+1).

• The downward XOR, in which X1
t , X

2
t , X

2
t+1 are i.i.d. fair coin flips, and

X1
t+1 ≡ X1

t +X2
t (mod 2).

• The parity-preserving random (PPR), in which X1
t , X

2
t are i.i.d. fair coin

flips, and X1
t+1 +X2

t+1 ≡ X1
t +X2

t (mod 2) (i.e. Xt+1 is a random string of the
same parity as Xt).

A direct calculation shows that these three systems are ‘equally integrated’:
ΦWMS = 1 for all of them, which implies that the degree to which the dynamics of the
whole cannot be perfectly predicted from the parts alone is equivalent [19, 34]. However,

4The parts being chosen so as to have the weakest overall informational link between them.
5There is only one possible partitioning of a 2 component system, so here we don’t need to search

for the minimum information partition.
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a more nuanced analysis using ΦID reveals that these systems integrate information in
qualitatively different ways. In effect, the integration in the copy system is entirely due
to transfer dynamics (Un1→Un2); the downward XOR integrates information by
transforming synergistic into unique information (Syn→Un1); and PPR due to
information synergistic in the past and future (Syn→Syn). All the other ΦID atoms in
each of these systems are zero (proofs in the Appendix).

COPY XOR XOR

ΦWMS = 1 ΦWMS = 1 ΦWMS = 1

Un1→Un2 = 1 Syn→Un1 = 1 Syn→Syn = 1

Fig 4. Example systems of logic gates. While these three systems have the same
integrated information (measured with ΦWMS), their information dynamics are radically
different. The idiosyncrasy of each type of dynamic is captured by the ΦID formalism,
which shows that in each system there is only one non-zero atom, different for each
system.

Measures of integrated information capture multiple ΦID atoms

Within the IIT literature, researchers have proposed multiple measures aimed at
quantifying to what extent a system is integrated as a whole, in terms of its parts
influencing each other’s evolution over time [35]. These measures, though superficially
similar, are known to behave inconsistently, for reasons that are not always clear [19].
Here we use ΦID to dissect and compare three existing measures of integrated
information (ΦWMS, ψ, ΦG) and causal density (CD), bringing to light their similarities
and differences.6

As a systematic exploration, one can determine which measures are sensitive to
which modes of information dynamics by calculating whether each measure is zero,
positive, or negative for a system consisting of only one particular ΦID atom (Table 1;
proofs in the Appendix). Strikingly, each proposed measure of integration captures a
distinct combination of ΦID atoms: although generally most of them capture synergistic
effects and avoid (or penalise) redundant effects, they differ substantially.

The conclusion of this analysis is that these measures are not simply different
approximations of a single concept of integration, but rather they are capturing
intrinsically different aspects of the system’s information dynamics. While aggregate
measures like these can be empirically useful, one should keep in mind that they are
measuring combinations of different effects within the system’s information dynamics.
Echoing the conclusions of Ref. [19]: these measures behave differently not only in
practice, but also in principle.

A ΦID account of information transfer

Most methods of statistical causal discovery use the conditional mutual information7 as
their main building block. Here we illustrate how one of such approaches, transfer
entropy (TE) [4], can be decomposed in terms of ΦID, showing that it conflates

6We provide definitions of each measure in the Supplementary Material – for details see Section 2.2
of Ref. [19] and the original references [15,36,37].

7Or linear variants of it, to which our conclusions also apply.
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Table 1. Sensitivity of integrated information measures to ΦID atoms. For
each measure, entries indicate whether the value is positive (+), negative (-) or 0 in a
system in which the given ΦID atom is the only non-zero atom. Atom colour code taken
from Fig. 1.

ΦID atoms Measures

ΦWMS ΦG ψ CD

Syn→ Syn + 0 + 0

Syn→ Uni + + + +

Syn→ Red + + + +

Uni → Syn + 0 0 0

Red→ Syn + 0 0 0

Uni → Uni 0 0 0 0

Uni → Unj + + 0 +

Uni → Red 0 + 0 +

Red→ Uni 0 0 0 0

Red→ Red − 0 0 0

qualitatively distinct effects in non-straightforward ways, and fails to capture high-order
modes of information flow. The TE from the system’s first to its second element,
defined as TE(1→ 2) := I(X1

t ;X2
t+1|X2

t ), can be decomposed via ΦID as

TE(1→ 2) = Syn→Red + Syn→Un2 + Un1→Red + Un1→Un2 . (4)

Note that, of these, Un1→Un2 is the only ‘genuine’ transfer term – all others correspond
to redundant or synergistic effects involving both variables in past or future, which do
not imply any kind of transfer phenomena. This complicates the interpretation of TE as
a fully general measure of information transfer.8 In contrast, ΦID can isolate the part of
the transfer entropy that corresponds to information transfer through the Un1→Un2

term.
Additionally, Eq. (4) implies that the atom Syn→Red is accounted for in both

TE(1→ 2) and TE(2→ 1). This has an important consequence: if one quantifies the
total causal influence within the system via adding up both TEs (a quantity known as
unnormalised causal density (uCD) [19]), this may overestimate the effective
interdependencies by double-counting this atom (Fig. 3). In fact, the double-counting of
Syn→Red implies that uCD can potentially be even larger than TDMI. While this
overestimation of uCD has been noted before [37], ΦID not only reveals the precise
reason for this overestimation, but also provides a practical solution: one can correct
uCD by substracting the double-counted ΦID atom. This problem – and its solution –
may have important consequences in fields such as computational neuroscience, where
the total TE of a brain region is a popular metric of its relevance for the brain’s
hierarchical organization [11,38].

The decomposition of uCD via ΦID reveals another important limitation of
traditional causal discovery methods: they do not account for modes of information flow

8Similar concerns about TE have been raised in Ref. [20].
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that involve synergy in the targets. Therefore, while these methods account for possible
interactions of source variables, they neglect interactions in the targets – which are
never considered jointly. As an example, take the parity-preserving system in Fig. 4:
this system has zero CD and zero AIS, yet it clearly has dynamical structure (as picked
up by ΦWMS). This is an example of information being carried purely in high-order
effects, in a way that common measures like AIS and TE are unable to capture. More
generally, we expect this to be particularly prevalent in systems with distinct micro- and
macro-scale behaviour [28,29].

Numerical examples

In this section we showcase three applications of ΦID to simulated and real data,
illustrating the capabilities of ΦID to yield new insights and solve practical problems.
As stated above, the numerical calculation of ΦID atoms depends on a choice of
double-redundancy function – which, as in the case of PID, gives room to a range of
options (see e.g. Refs [21,39–41]). In all examples below we use a multi-target extension
of the Common Change in Surprisal (CCS) measure by Ince [39]; furthermore, we show
that our all the results replicate with a multi-target extension of Barrett’s Minimum
Mutual Information (MMI) measure [40] (see Supplementary Material).

Why whole-minus-sum Φ can be negative

ΦID can be further leveraged to explain certain behaviours of integrated information
and dynamical complexity measures. In particular, ΦWMS can sometimes take negative
values, which could suggest a counter-intuitive notion of a ‘negatively integrated’
system. In fact, this behaviour has been used as an argument to discard ΦWMS as a
suitable measure of integrated information [36,37]. ΦID can provide an explanation of
this otherwise paradoxical behaviour, and furnishes a simple solution.

By applying ΦID to the definition of ΦWMS in Eq. (3), one finds that ΦWMS

accounts for all the synergies in the system, the unique information transferred between
parts of the system and, importantly, the negative of the Red→Red atom (Fig. 3; see
Supplementary Material for details). The presence of this negative double-redundancy
term shows that ΦWMS can be negative in highly redundant systems, in which
Red→Red is larger than all other atoms that constitute ΦWMS. This is akin to Williams
and Beer’s [21] explanation of the negativity of the interaction information [42], applied
to multivariate processes. Based on this insight, one can formulate a ‘revised’ measure
of integrated information, ΦR, by adding back the double-redundancy, which includes
only synergistic and unique transfer terms.

We computed ΦR numerically for a simple two-node autoregressive (AR) system,
mimicking the setting in Ref. [19]. The system consists of two continuous variables with
dynamics such that Xt+1 ∼ N (AXt; Σ), with A being a 2× 2 matrix with all entries
set to 0.4, and Σ a noise (or innovations) covariance matrix with 1’s along the diagonal
and a given noise correlation (c in the notation of Ref. [19]) in the off-diagonal entries.
We calculated ΦWMS and ΦR with respect to the system’s stationary distribution, which
can be shown to be a multivariate Gaussian. Plots of both quantities are shown in
Fig. 5, and details of the computation can be found in the Appendix.

As expected, ΦWMS drops below zero as synergy decreases and redundancy increases
with noise correlation. However, after adding back the double-redundancy term, the
revised version, ΦR, tends to 0 for high noise correlation, which is more consistent with
some of the other measures highlighted in Ref. [19], e.g. CD and Φ∗.
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Fig 5. Standard and revised ΦWMS in a two-component noisy autoregressive
system. As the noise injected to both components becomes more correlated, ΦWMS

drops below zero while ΦR remains positive.

Information decomposition in simulated whole-brain activity

We next analysed simulated whole-brain activity via the well-known Dynamic Mean
Field (DMF) model introduced by Deco et al. [43]. This model represents cortical
regions as macroscopic neural fields, whose local dynamics are described by a set of
coupled differential equations. The DMF model incorporates realistic aspects of
neurophysiology such as synaptic dynamics and membrane potential [44–46], and is
informed by a network of anatomical connections obtained e.g. from diffusion tensor
imaging (DTI) - while having the advantage of being free from physiological noise
confounds. An additional biophysical haemodynamic model [47] enables the firing rates
generated by the DMF model to be transformed into BOLD signals similar to
resting-state fMRI data from humans, and that have been subject of study in
applications of the DMF to model the neural effects of sleep [48], anaesthesia [49], and
psychedelic drugs [50].

We simulate the DMF equations using a DTI-based connectome obtained from the
public Human Connectome Project data [51] using the same model settings as Herzog et
al. [50], and compute ΦWMS and ΦR for all pairs of brain regions.9 These values were
calculated for varying values of a global coupling parameter (denoted by G) and the
resulting average values (over all pairs of brain regions) were then analysed. The details
of the model, the simulation procedure, and the computation of integrated information
measures can be found in the Appendix.

As shown in Fig. 6, for values of G close to 2 the mean firing rate of the model
increases sharply, reminiscent of a phase transition. At this point ΦWMS shows a marked
decrease, suggesting that the system is least integrated in the transition region. In fact,
the value of ΦWMS is often less than zero, which would correspond to the conceptually
problematic notion of a system that is ’negatively integrated.’ Crucially, however, when
the double-counting of redundancy is corrected and ΦR is used instead, a completely
different picture appears: integration (understood as synergy plus transfer) is always
positive, and it strongly increases and peaks in the transition region. This result aligns
well with prior literature [50,52] showing that the point G = 2 corresponds to the
model’s optimal fit to data from awake subjects, and that a high level of integration is
required for the normal operation of the brain in healthy, conscious individuals [14].

The strong discrepancy between ΦWMS and ΦR confirms that the concerns regarding
the conflation of multiple information effects highlighted throughout this article are not
a mere theoretical issue, but can trigger misleading interpretations in the analysis of

9The choice of analysing pairs of regions is only for convenience, as the theory is defined to systems
of any size.
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Fig 6. Measures of integrated information in a whole-brain computational
model. a) Schematic diagram of the Dynamic Mean-Field (DMF) model [43,49], which
combines a DTI-based connectome and a whole-brain parcellation to simulate realistic
BOLD signals. b) As the global coupling parameter G is increased, the mean firing rate
exhibits a sharp increase at approximately G = 2. Importantly, ΦWMS shows a
downward peak, suggesting a conceptually problematic negative value of integration –
while the revised measure ΦR shows a strong positive peak.

neuroscientific data. Hence, this example illustrates the capability of ΦID to
disambiguate between qualitatively different dynamical phenomena in time series data.

ΦID sheds new light on empirical results

To provide an empirical demonstration of the capabilities of ΦID, we used it to study
the dynamical relationship that exists between heart rate and respiration in healthy
human subjects. This choice was motivated by the well-known influence of respiration
on heart rate, which can be captured in terms of transfer entropy between respiratory
volume and heart rate time series [53–55]. Therefore, we sought to investigate how the
ΦID framework could be used to decompose this effect into its constituent informational
elements.

For this purpose, we analysed the Fantasia database [56], an openly available dataset
that contains data from 40 healthy subjects while watching the Disney movie ‘Fantasia.’
Following the preprocessing pipeline outlined in Ref. [53], we extracted synchronised
time series for inter-beat intervals from the ECG timeseries, and detrended the
respiratory volume. Using the resulting data, we calculated both the transfer entropy
from heart to breath and from breath to heart, and then proceeded to decompose these
quantities in terms of their ΦID constituents (Fig. 7).
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Fig 7. Decomposition of information transfer between heart rate and
respiratory volume. Transfer entropy decomposed into its four constituent ΦID
atoms, calculated in both directions (heart to breath [H2B] and breath to heart [B2H]).

As expected based on previous work, the transfer entropy from breath to heart was
significantly higher than from heart to breath. Crucially, our analysis revealed that this
effect is driven by two distinct ΦID atoms, out of the four that comprise transfer
entropy. The TE result is dominated by the Syn→Un atom, while the transfer atom
itself (Un→Un) shows no significant differences. Importantly, however, Un→Red shows a
significant effect in the opposite direction to the main TE result. The standard TE
analysis is unable to resolve these modes of information dynamics, and thus misses the
heart’s unique contribution to the heart-breath joint dynamics.

In summary, ΦID shows that the effect seen in the transfer entropy towards the
heart is not transfer but synergistic, and that there is a smaller unique effect originating
at the heart that is overshadowed by the former.10 These results illustrate the type of
advantages that ΦID can bring beyond standard transfer entropy and Granger causality
analyses.

Discussion

This paper introduces ΦID as a formal framework to study high-order interactions in
the dynamics of multivariate complex systems. By bringing together aspects of
integrated information theory (IIT) and partial information decomposition (PID), the
ΦID framework allows us to decompose multivariate information flow into interpretable,
distinct parts. This decomposition brings two important outcomes. First, it allows us to
better understand and refine existing metrics of information exchange and dynamical
complexity. Second, it enables systematic analyses of previously unexplored modes of
information dynamics, which are not captured by previous analysis methods.

Towards multi-dimensional accounts of dynamical complexity

ΦID provides principled tools to inspect existing measures of information dynamics and
overcome some of their shortcomings. In particular, we have shown that both the widely
used transfer entropy and what is referred to as ‘integrated information’ in the context
of IIT are in fact aggregates of several distinct information effects, typically including
transfer and synergy phenomena. In addition, our analysis shows that different
measures of integrated information actually capture different ΦID atoms in various

10The study of the physiological implications of these findings will be investigated in a separate
publication.
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proportions, which provides a formal explanation for the heterogeneity among existing
measures reported in Ref. [19].

Supporting our theoretical results, we showed in empirical physiological data that
significant differences in transfer entropy can be observed even in the absence of genuine
information transfer phenomena, highlighting the practical relevance of our framework.
Likewise, our analysis based on whole-brain modelling showed how the conflation of
fundamentally distinct information phenomena in existing measures of integrated
information can introduce substantial confusion in the results and interpretation of
neuroscientific analysis. ΦID provides tools to identify these problems, and also to fix
them, by tailoring measures that target the specific kinds of information dynamics one
wishes to analyse.

As well as providing a new taxonomy of information dynamics phenomena, ΦID
establishes that there are fundamental limitations to any purported all-encompassing
scalar measure of dynamical complexity, in line with Feldman and Crutchfield [57]. The
space of possible complex dynamics is, unsurprisingly, vast and complex, and while
scalar measures might still have great practical value in specific contexts,11 ΦID clarifies
that a general theory of complex systems (biological or otherwise) cannot be reduced to
a single, one-size-fits-all measure, but rather needs to embrace this richness.

Limitations and future extensions

ΦID is a general tool to decompose multivariate mutual information, and the nature of
the resulting decomposition critically depends on how the underlying joint distribution
has been constructed. In particular, note that the ΦID framework depends only on a
joint probability distribution p(Xt,Xt+1), and thus its results can be interpreted as
causality in the Pearl or Granger sense, depending on whether the distribution comes
from intervention or observation, respectively. If the distribution is built on
observational data then the decomposition generally should be understood in the
Granger-causal sense (i.e. as referring to predictive ability). Similarly, if the conditional
distribution p(Xt+1|Xt) is equivalent to a do() distribution in Pearl’s sense [5], and the
system satisfies the faithfulness and causal Markov conditions, then the results of ΦID
are to be interpreted in a counterfactual causal sense. In either case, the formalism
developed here applies directly.

Naturally, ΦID inherits some characteristics of PID. In particular, ΦID specifies the
relationships between information atoms, but does not prescribe a particular functional
form for them. To compute numerical values of ΦID atoms one needs a
double-redundancy function, a multi-target extension of PID’s redundancy function. In
PID, several distinct redundancy functions have been proposed, and while they have
been shown to agree in various scenarios [59], they may differ in other cases and there is
not yet a consensus on one that is universally preferable [60]. The formulation of
multiple double-redundancy functions, and a thorough comparison in simulated systems
is an important line for future work.

Finally, it is important to remark that the framework presented in this paper focuses
on decomposing the mutual information between two time points. While this captures
all the information carried from past to future in Markovian systems, it might miss
relevant phenomena in systems with non-Markovian dynamics – which typically arise in
experimental data of scenarios with many non-observable variables. As an important
extension, future work should investigate the effect of unobserved variables on the
proposed decomposition, which could be done e.g. leveraging Taken’s embedding
theorem [61,62] or other methods [63].

11For example, measures that accurately discriminate between neural configurations corresponding to
conscious and unconscious states in a particular experimental paradigm [58].

September 28, 2021 14/21



Methods

This section establishes the mathematical bases of our framework. The aim is to build a
decomposition of the TDMI, as defined in Eq. (1), that differentiates the role of each
source and each target (possibly multivariate) variable – hence accounting for both
cause (forward) and effect (backward) information simultaneously. To do this, our
proposed decomposition brings together the partitions enabled by a forward PID (where
variables at time t and t+ 1 are sources and targets, respectively) and a backward PID
(where the assignment of sources and targets is reversed), as illustrated in Figure 1a. By
doing this, we overcome PID’s limitation of having only one single target variable and
formulate a multi-target information decomposition.

Note that throughout this section we switch from the Red/Un/Syn notation above to
the more standard (and more general) ‘curly bracket’ notation introduced by Williams
and Beer [21].

Double-redundancy lattice

Let us start by reviewing the construction of the redundancy lattice that is employed in
PID to formalise our intuitive understanding of redundancy [21]. This lattice is built
over the set A, which for the case of two time series can be expressed as

A := {{1}, {2}, {1, 2}, {{1}, {2}}}, (5)

which correspond to all the sets of subsets of {1, 2} where no element is contained in
another.12 Then, the lattice is built using a natural (partial) order relationship that
exists between the elements of A [21]: for α,β ∈ A, one says that

α � β if for all b ∈ β there exists a ∈ α such that a ⊂ b. (6)

The lattice that encodes the relationship � is known as the redundancy lattice (Fig. 1b),
and guides the construction of the four terms in the PID.

Our first step in building the foundations of ΦID is to build a product lattice over
A×A, in order to extend the notion of redundancy from PID to the case of multiple
source and target variables (here X1

t , X2
t and X1

t+1, X2
t+1 respectively). Intuitively,

ΦID is the ‘product’ of two complementary single-target PIDs, one decomposing the
information carried by the past about the future, and the other decomposing the
information carried by the future about the past (Fig. 1a). To formalise this intuition,
we extend Williams and Beer’s [21] notation, and denote sets of sources and targets
using their indices only with an arrow going from past to future. Hence, the nodes of
the product lattice are denoted as α→ β for α,β ∈ A.

A natural partial ordering relationship can be establish over the product lattice as
follows:

α→ β � α′ → β′ iff α � α′ and β � β′. (7)

This relationship establishes a lattice structure13, which for the case of a bipartite
system consists of 16 nodes (Fig. 1c).

Redundancies and atoms

The other ingredient in the PID recipe – besides the redundancy lattice – is a
redundancy function, I∩, that quantifies the amount of ‘overlapping’ information about

12For a case of N variables, then A is the set of antichains on the lattice (P({1, ..., N}),⊆), discussed
in Ref. [21]. We focus on the bivariate case for clarity, although the ΦID formalism developed here can
be applied to any N .

13A proof of this is provided in the Appendix.
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the target that is common to a set of sources α ∈ A [21]. The redundancy function in a
PID, Iα∩ , encompasses the following terms in the case of two source variables:

• I
{1}{2}
∩ is the information about the target that is in either source,

• I
{i}
∩ is the information in source i, and

• I
{12}
∩ is the information that is in both sources when considered together.

This subsection extends the notion of overlapping information to the multi-target
setting.

For a given α→ β ∈ A×A, the overlapping information that is common to sources
α and can be seen in targets β is denoted as Iα→β

∩ and referred to as the
double-redundancy function. In the following, we assume that the double-redundancy
function satisfies two axioms:

• Axiom 1 (compatibility): if α = {α1, . . . , αJ} and β = {β1, . . . , βK} with
α,β ∈ A and αj , βk non-empty subsets of {1, . . . , N}, then the following cases
can be reduced to the redundancy of PID or the mutual information:14

Iα→β
∩ =





Red(Xα1
t , . . . ,XαJ

t ;Xβ1

t′ ) if K = 1,

Red(Xβ1

t′ , . . . ,X
βK

t′ ;Xα1
t ) if J = 1,

I(Xα1
t ;Xβ1

t′ ) if J = K = 1.

• Axiom 2 (partial ordering): if α→ β � α′ → β′ then Iα→β
∩ ≤ Iα

′→β′
∩ .

Intuitively, the first axiom guarantees that any double-redundancy function in ΦID
reduces to a PID-type redudancy function when evaluated in certain atoms, and the
second encapsulates the basic desideratum of the double-redudancy being in agreement
with the partial ordering given by the product lattice.

By exploiting these two axioms, one can define ‘atoms’ that belong to each of the
nodes via the Moebius inversion formula. Concretely, the ΦID atoms Iα→β

∂ are defined
as the quantities that guarantee the following condition for all α→ β ∈ A×A:

Iα→β
∩ =

∑

α′→β′�α→β

Iα
′→β′

∂ . (8)

In other words, Iα→β
∂ corresponds to the information contained in node α→ β and not

in any node below it in the lattice. These are analogues to the redundant, unique, and
synergistic atoms in standard PID, but using the product lattice as a scaffold. By
inverting this relationship, one can find a recursive expression for calculating I∂ as

Iα→β
∂ = Iα→β

∩ −
∑

α′→β′≺α→β

Iα
′→β′

∂ . (9)

With all the tools at hand, we can deliver the promised decomposition of the TDMI in
terms of atoms of integrated information, as established in the next definition.

Definition 1. The Integrated Information Decomposition (ΦID) of a system with
Markovian dynamics is the collection of atoms I∂ defined from the redundancies I∩ via
Eq. (9), which satisfy

TDMI = I(Xt;Xt′) =
∑

α,β∈A
Iα→β
∂ . (10)

14Here we use the shorthand notation Xα
t := (Xi1

t , . . . , X
iK
t ) for α = {i1, . . . , iK}.
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In this way, the ΦID of two time series gives 16 atoms that correspond to the lattice
shown in Figure 1c, which are computed via a linear transformation over the 16
redundancies. Importantly, Axioms 1 and 2 allow us to compute all the I∩ terms once a
single-target PID redundancy function Red(·) has been chosen with the sole exception of

I
{1}{2}→{1}{2}
∩ .15 All this is summarised in the following result.

Proposition 1 (15-for-free). Axioms 1 and 2 provide unique values for the 16 atoms of
the product lattice after one defines (i) a single-target redundancy function Red(·), and
(ii) an expression for I

{1}{2}→{1}{2}
∂ .

Therefore, in the same way as in PID the definition of Red(·) gives 3 other terms
(unique and synergy) as side-product, Proposition 1 shows that in ΦID the addition of

the double-redundancy function I
{1}{2}→{1}{2}
∂ gives the 15 other terms for free. In the

Supplementary Material we describe ΦID extensions of two common PID redundancy
functions (Ince’s CCS [39] and Barrett’s MMI [40] measures), which we use for all
numerical examples in this paper.

Supporting information

S1 Appendix. Proofs and technical details.
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I. THE PRODUCT OF TWO LATTICES IS A LATTICE

A lattice is a partially ordered set (A,�) for which every pair of elements a, b has a well-defined meet a ∧ b and join
a ∨ b, which correspond to their common greatest lower bound (infimum) and common least upper bound (supremum),
respectively [1]. Here we prove that, if (A,�) is a lattice, then the product lattice (A ×A,�∗) equipped with the
order relationship

α→ β �∗ α′ → β′ if and only if α � α′ and β � β′, (1)

is also a lattice, where α, β, α′, β′ ∈ A. As a corollary of this, given that the set and partial ordering relationship used
in PID are a lattice [2, 3], then the set and partial ordering relationship used in ΦID are also a lattice.

For compactness, let us use the notation γ = α → β and γ′ = α′ → β′ for γ, γ′ ∈ A × A. To prove the lattice
structure of (A×A,�∗) it suffices to show that

1. γ ∧∗ γ′ := α ∧ α′ → β ∧ β′ is a valid meet; and

2. γ ∨∗ γ′ := α ∨ α′ → β ∨ β′ is a valid join.

Note that the fact that (A,�) is a lattice implies that α ∧ β and α ∨ β are well-defined for all α, β ∈ A.
Let us begin with the meet, for which we use m = γ ∧∗ γ′ as a shorthand notation. First, one can directly check

that m �∗ γ and m �∗ γ′, given the definition of �∗ above and the fact that α ∧ α′ � α (and similarly for α′, β, and
β′). Next, we need to prove that for any γ′′ = α′′ → β′′ ∈ A×A such that γ′′ �∗ γ and γ′′ �∗ γ′, we have γ′′ �∗ m
(i.e. that m is the greatest lower bound of γ and γ′). To see this, note that the conditions γ′′ �∗ γ and γ′′ �∗ γ′ imply
the following four statements:

α′′ � α ,

α′′ � α′ ,

β′′ � β ,

β′′ � β′ .

Using these relationships and the ∧ operator from A, one can show that α′′ � α ∧ α′ and β′′ � β ∧ β′, which in turn
implies that γ′′ �∗ m. Finally, the proof for the join is analogous, replacing ∧ with ∨ and � with �.

∗ P.M. and F.R. contributed equally to this work.
E-mail: pam83@cam.ac.uk; f.rosas@imperial.ac.uk
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II. DECOMPOSING PID ATOMS

Equation (4) in the main text shows how to decompose redundancies in the product lattice in terms of ΦID atoms.
Here we provide a more general statement, that allows us to decompose not only redundancies, but also other PID
atoms. The goal of this appendix is to build stronger connections between PID and ΦID, and to extend Proposition 1
to allow greater flexibility for specifying a ΦID function.

Note that the ΦID framework applies to any pair of sets of source and target variables, which need not correspond to
the past and future states of a dynamical system. To highlight the generality of the ΦID framework, for the rest of this
supplementary material we use the notation X = {X1, X2, ...} to refer to the sources, and analogously Y = {Y1, Y2, ...}
for the targets. The expressions in the main text can be recovered by simply setting X := Xt,Y := Xt+1.

For the forward PID, and borrowing the notation from Williams and Beer [2], given a non-empty set of ‘future’
variables F ∈ P({Y1, ..., YN}) and an an element of the redundancy lattice α ∈ A, let us denote by ΠF (α;F ) the α
atom of the PID decomposition for I(X;F ), such that

I(X;F ) =
∑

α∈A
ΠF (α;F ) . (2)

We use an analogous notation for the backward PID, with a corresponding non-empty set of ‘past’ variables P ∈
P({X1, ..., XN}) and β ∈ A, such that

I(P ;Y ) =
∑

β∈A
ΠB(P ;β) . (3)

Then, these quantities can be further decomposed in ΦID atoms as

ΠF (α;F ) =
∑

γ�F
Iα→γ∂ , (4a)

ΠB(P ;β) =
∑

γ�P
Iγ→β
∂ . (4b)

Note that the sum runs only across one of the sets (instead of both as it does in Eq. (4) of the main text), and that
every element in P({1, ..., N}) is also in A, and hence the partial order relationship in the sums above is well-defined.
As a few examples, in a bivariate system the following forward PID atoms decompose as:

Red(X1, X2;Yi) = ΠF ({1}{2};Yi)
= I
{1}{2}→{1}{2}
∂ + I

{1}{2}→{i}
∂ ,

Syn(X1, X2;Yi) = ΠF ({12};Yi)
= I
{12}→{1}{2}
∂ + I

{12}→{i}
∂ ,

Un(X1;Y1Y2|X2) = ΠF ({1};Y1Y2)

= I
{1}→{1}{2}
∂ + I

{1}→{1}
∂

+ I
{1}→{2}
∂ + I

{1}→{12}
∂ .

These decompositions can be used to prove Proposition 1 of the main text. Adopting a view of ΦID as a linear
system of equations, one needs 16 independent equations to solve for the 16 unknowns that are the ΦID atoms. Of
those, 9 are given by standard Shannon mutual information (specifically, I(Xi;Yj), I(X1X2;Yi), I(Y1Y2;Xi), and
I(X1X2;Y1Y2), for i, j = {1, 2}) decomposed with Eq. (4) of the main text, and 6 are given by the single-target PIDs
(Red(X1, X2;Y1), Red(X1, X2;Y2), and Red(X1, X2;Y1Y2), as well as the 3 corresponding backward PIDs) decomposed
by the expression above. Finally, one only need to add one individual ΦID atom to make the 16 equations needed, and
the system can be solved for all other atoms.

Taking these results together, Proposition 1 in the main text can be generalised as follows: a valid ΦID can be
defined not only in terms of redundancy, but also in terms of unique information or synergy. This is equivalent to the
case of PID, for which decompositions based on unique information [4] or synergy [5, 6] have been proposed.
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III. COMPUTING THE ΦID ATOMS

Computation of ΦID proceeds following the same general steps as in PID: first the intersection information Iα→β
∩ is

computed for every node; and then the integrated information atoms Iα→β
∂ are obtained as the solution to a linear

system of equations representing the Moebius inversion.

To compute the double-redundancy atom, I
{1}{2}→{1}{2}
∂ , for numerical applications, we assume all systems are

distributed as a multivariate Gaussian distribution, and use a ΦID extension of Ince’s Common Change in Surprisal
(CCS) redundancy function [7]. As per the compatibility axiom, we formulate a multi-target CCS function that reduces
to the original when only a single target is specified.

In line with Ince [7], we define I
{1}{2}→{1}{2}
∂,CCS using pointwise (or local) information measures [8]. As a first step, we

use the inclusion-exclusion principle to formulate a local ‘multi-target co-information’ c(x;y), defined as

c(x;y) :=
∑

α→β∈A2

(−1)f(α,β)+1 iα→β
∩ (x;y) , (5)

where iα→β
∩ (x;y) is the pointwise redundancy function, A2 is the set of nodes in the product lattice excluding the

lowest node, and f(α,β) =
∑
a∈α |a|+

∑
b∈β |b| [9]. Note that iα→β

∩ (x;y) above corresponds to the standard pointwise
mutual information and a single-target PID redundancy function, which we take here to be the usual CCS function as
defined by Ince [7]. For the bivariate ΦID, a formal calculation shows that

c(x;y) = i
{1}{2}→{1}{2}
∂ (x;y)− i{12}→{12}∂ (x;y) .

Please note that, as for the co-information in the standard PID case, c(x;y) is a ‘whole-minus-sum’ measure[10] that
can be computed without any ΦID atoms explicitly. Then, as the second step in the definition, given a large set of
M samples {x(i),y(i)}Mi=1 we define the set S ⊆ {1, ...,M} as the subset of samples for which all marginal pointwise
mutual informations, as well as the pointwise full mutual information i(x;y), have the same sign. With this, we are
finally able to define the Gaussian CCS double-redundancy function.

Definition 1. Double-redundancy based on common change in surprisal. For a given set of variables (X,Y ),
the double-redundancy based on common change in surprisal is defined as

I
{1}{2}→{1}{2}
∂,CCS :=

∑

i∈S
c(x(i);y(i)) (6)

To show the presented results do not depend on the specific choice of the CCS function, we also formulate a ΦID
extension of the Minimum Mutual Information (MMI) PID [11]:

Definition 2. Double-redundancy based on minimum mutual information. For a given set of variables
(X,Y ), the double-redundancy based on minimum mutual information is defined as

I
{1}{2}→{1}{2}
∂,MMI := min

i,j
I(Xi;Yj). (7)

In both cases (CCS and MMI), it is direct to check the proposed definitions satisfy the compatibility axiom with
respect to their original PID definitions [7, 11]. At the same time, and although the extensions presented here seem the
most natural, they are not the only possible ones that are compatible with the originals, and in principle any function
that satisfies the double-redundancy axioms can be used to compute ΦID.

IV. RESULTS OF SECTION ‘DIFFERENT TYPES OF INTEGRATION’

Here we present calculations for the example systems in Fig. 4 of the main text. These proofs hold for all ΦID

that satisfy the partial ordering axiom of Iα→β
∩ (Axiom 2 in the main text), have a non-negative double-redundancy

function I{1}{2}→{1}{2} ≥ 0, and satisfy the following bound that follows from the basic properties of PID (c.f. [12]):

Red(X,Y ;Z) ≤ min{I(X;Z), I(Y ;Z)} . (8)

Let us examine the three systems in turn:
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• For the copy transfer system, Y2 = X1, while X2 and Y2 are independent i.i.d. fair coin flips. Since Y2 is
independent from the rest of the system, Red(X1, X2;Y2) = Red(X1, X2;Y2) = 0, and due to partial ordering

I
{1}{2}→{1}{2}
∩ = 0. Finally, using the Moebius inversion formula it follows that I

{1}→{2}
∂ = I(X1;Y2) = 1 and

all other atoms are zero.

• In the downward XOR system, X1 and X2 are i.i.d. fair coin flips, Y1 = X1 ⊕X2, and Y2 is independent of the
rest. Then, it is clear that I(X1, X2;Y1, Y2) = I(X1, X2;Y1) = 1, while I(X1;Y1) = I(X2;Y1) = 0. Additionally,

note that I
{12}→{1}{2}
∩ = 0, since Red(Y1, Y2;X1X2) ≤ I(Y2;X1X2) = 0. All this implies that all the redundancies

(and hence all the atoms) below {12} → {1} are zero, and hence I
{12}→{1}
∂ = 1 due to the Moebius inversion

formula.

• Finally, consider the PPR system where X1, X2, Y1 are i.i.d. fair coin flips and Y2 is such that X1⊕X2 = Y1⊕Y2.
Then I(X1, X2;Y1) = I(X1, X2;Y2) = I(X1;Y1, Y2) = I(X2;Y1, Y2) = 0. This implies that all redundancies (and

hence atoms) except I
{12}→{12}
∩ are zero, and hence using again the Moebius inversion formula I

{12}→{12}
∂ =

I(X1, X2;Y1, Y2) = 1.

V. RESULTS RELATED TO MEASURES OF INTEGRATED INFORMATION

In this appendix we prove the results in Table 1 of the main text, that shows whether each of four measures of
integrated information (ΦWMS, CD, ψ, ΦG) are positive, negative, or zero in a system containing only one ΦID atom.
A succinct definition of each measure is given below, and a comprehensive review and comparison of these and other
measures can be found in Ref. [13].

Throughout this section we focus on bivariate systems, and use i, j as variable indices, with i 6= j. To complete the
proof we will first show that it is possible to build systems with exactly one bit of information in one ΦID atom, and
we will then compute the four measures on those systems.

Let us begin with the design of systems with one specific ΦID atom. Intuitively, this can be accomplished with a
suitable combination of COPY and XOR gates for redundant and synergistic sets of variables, respectively. More

formally, the procedure to build a system with Iα→β
∂ = 1 and all other atoms equal to zero is as follows:

1. Sample w from a Bernoulli distribution with p = 0.5.

2. Sample x based on α:

• If α = {1}{2}, then x1 = x2 = w.

• If α = {i}, then xi = w and xj is sampled from a Bernoulli distribution with p = 0.5.

• If α = {12}, then x is a random string with parity w.

3. Sample y based on β analogously.

In all cases there will be one bit of information (w) shared between X and Y , hence I(X;Y ) = 1 for any choice
of α,β. This can be proven using the fact that for any α,β, one has H(W ) = 1, H(W |X) = H(W |Y ) = 0, and
p(x,y, w) = p(x|w)p(y|w)p(w). To do so, let us start from the mutual information chain rule:

I(X;YW ) = I(X;W ) + I(X;Y |W )

= I(X;Y ) + I(X;W |Y ) .

Rearranging the above terms, one can find that

I(X;Y ) = I(X;W ) + I(X;Y |W )− I(X;W |Y ) ,

where I(X;W ) = H(W )−H(W |X) = 1 and I(X;Y |W ) = 0. Finally, one finds that

I(X;W |Y ) = H(X|Y ) +H(W |Y )−H(XW |Y )

= H(X|Y ) +H(W |Y )−
[
H(X|Y ) +H(W |XY )

]

= 0 ,

which concludes the proof that I(X;Y ) = 1. Furthermore, following a procedure similar to those in the previous
section, it can be shown that any ΦID that satisfies the axioms described above (partial ordering, non-negative
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double-redundancy, and upper-bounded redundancy) correctly assigns 1 bit of information to Iα→β
∂ , and 0 to all other

atoms.
Now that we have built these 16 single-atom systems, let us move to the integration measures of interest. For CD, ψ,

and ΦWMS, we will proceed by decomposing them in terms of ΦID atoms and checking whether each atom is positive
(+), negative (–), or absent (0) from the decomposition to obtain the results in Table 1 of the article. Let us begin
with CD, defined as the sum of transfer entropies from one variable to the other:

CD =
1

2

2∑

i=1

I(Xi;Yj |Xj)

=
1

2

2∑

i=1

(
I
{i}→{1}{2}
∂ + I

{i}→{j}
∂ + I

{12}→{1}{2}
∂ + I

{12}→{j}
∂

)
.

(9)

Similarly, for ψ the atoms can be extracted from the decomposition of Syn(X1, X2;Y1Y2) in Eq. (4a):

ψ = Syn(X1, X2;Y1Y2)

= I
{12}→{1}{2}
∂ + I

{12}→{1}
∂ + I

{12}→{2}
∂ + I

{12}→{12}
∂ .

(10)

For ΦWMS, the atoms can be extracted from the decomposition of Eq. (9) in the main text:

ΦWMS =− I{1}{2}→{1}{2}∂ + I
{1}{2}→{12}
∂ + ψ +

2∑

i=1

(
I
{i}→{j}
∂ + I

{i}→{12}
∂

)
. (11)

The ΦG case is slightly more involved, since it is not easily decomposable into a sum of ΦID atoms. According to
the definition of ΦG [14], for a system given by the joint probability distribution p(X,Y ) one has

ΦG = min
q∈MG

DKL(p‖q) ,

where MG is the manifold of probability distributions that satisfy the constraints

q(Yi|X) = q(Yi|Xi) . (12)

Therefore, it suffices to check whether the probability distribution of the system satisfies the constraints in Eq. (12) —
if it does, then ΦG = 0, and otherwise ΦG > 0 —, which can be easily verified for each system separately to obtain the
ΦG column in Table 1, concluding the proof.

VI. RESULTS OF SECTION ‘WHY WHOLE-MINUS-SUM Φ CAN BE NEGATIVE’

In this appendix we describe the details of the noisy autoregressive system and how to compute its ΦID to yield the
results shown in Figure 5 of the main text.

Given the past state of the system x1t , x
2
t , the next state is given by

x1t+1 = a(x1t + x2t ) + ε1t+1

x2t+1 = a(x1t + x2t ) + ε2t+1 ,

where a = 0.4 is a fixed coupling parameter and ε1t , ε
2
t are zero-mean unit-variance white noise processes with correlation

c. All information-theoretic functionals are computed with respect to the system’s stationary distribution, which can
be shown to be a Gaussian and analytically calculated by means of a discrete Lyapunov equation [13, 15]. Once this
distribution is obtained, the values of the atoms can be obtained following the procedures in Sec. III above.

VII. SIMULATION AND ANALYSIS OF WHOLE-BRAIN COMPUTATIONAL MODEL

To explore information decomposition in realistic neurophysiological data we study the Dynamic Mean-Field (DMF)
model by Deco et al. [16, 17], which consists of a set of coupled differential equations modelling the average activity of
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TABLE I. Dynamic Mean Field (DMF) model parameters

Parameter Symbol Value

External current I0 0.382 nA

Excitatory scaling factor for I0 WE 1

Inhibitory scaling factor for I0 WI 0.7

Local excitatory recurrence w+ 1.4

Excitatory synaptic coupling JNMDA 0.15 nA

Threshold for F (I
(E)
n ) I

(E)
thr 0.403 nA

Threshold for F (I
(I)
n ) I

(I)
thr 0.288 nA

Gain factor of F (I
(E)
n ) gE 310 nC−1

Gain factor of F (I
(I)
n ) gI 615 nC−1

Shape of F (I
(E)
n ) around I

(E)
thr dE 0.16 s

Shape of F (I
(I)
n ) around I

(I)
thr dI 0.087 s

Excitatory kinetic parameter γ 0.641

Amplitude of uncorrelated Gaussian noise vn σ 0.01 nA

Time constant of NMDA τNMDA 100 ms

Time constant of GABA τGABA 10 ms

multiple interacting brain regions. These equations represent each brain region as two reciprocally coupled neuronal
populations, one excitatory and one inhibitory, with the corresponding synaptic currents I(E) and I(I) are mediated
by NMDA and GABAA receptors respectively. Different brain regions are coupled via their excitatory populations
only, and the structural connectivity is given by the matrix C. The structural connectivity matrix was obtained from
the HCP 900 subjects data release [18, 19], and was preprocessed in the same was as in Ref. [20], resulting in an
83×83 connectivity matrix corresponding to the Lausanne-83 brain parcellation [21]. For all other aspects of model
configuration and simulation we follow Herzog et al. [22], and reproduce all relevant details here for convenience.

The full model is given by

I
(E)
j = WEI0 + w+JNMDAS

(E)
j +GJNMDA

N∑

k=1

CjkS
(E)
p − JFIC

j S
(I)
j

I
(I)
j = WII0 + JNMDAS

(E)
j − S(I)

j

r
(E)
j = F

(
I
(E)
j

)
=

gE

(
I
(E)
j − I(E)

thr

)

1− exp
(
−dE gE

(
I
(E)
j − I(E)

thr

))

r
(I)
j = F

(
I
(I)
j

)
=

gI

(
I
(I)
j − I

(I)
thr

)

1− exp
(
−dI gI

(
I
(I)
j − I

(I)
thr

))

dS
(E)
j (t)

dt
= −

S
(E)
j

τNMDA
+
(

1− S(E)
j

)
γr

(E)
j + σvj(t)

dS
(I)
j (t)

dt
= −

S
(I)
j

τGABA
+ r

(I)
j + σvj(t)

Above, j, k are indices that run across all N brain regions; F is the F-I curve relating input current to output firing
rate of a neural population; JFIC is the feedback inhibitory control parameter, optimised to yield average firing rates of
approximately 3 Hz; and the sub- and superscripts E/I denote excitatory/inhibitory quantities, respectively. The model
was simulated using a standard Euler-Maruyama integration method [23], using the parameter values shown in Table I.
Note that all parameter values are fixed except the global coupling G, which we vary across simulations. Finally,
the distributions of the simulated BOLD signals are approximated via Gaussian distributions, and the procedures in
Sec. III above are applied to obtain the values of all ΦID atoms.
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VIII. NUMERICAL RESULTS REPLICATED WITH ALTERNATIVE ΦID MEASURES
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FIG. 1. Results in two-node AR system replicated with MMI double-redundancy.
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FIG. 2. Results in Fantasia dataset replicated with MMI double-redundancy.
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FIG. 3. Results in DMF whole-brain simulation replicated with MMI double-redundancy.
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the neural entropy increase elicited by psychedelic drugs, Scientific Reports 10 (2020).

[23] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Vol. 23 (Springer, 2013).
[24] J. Lizier, The Local Information Dynamics of Distributed Computation in Complex Systems, Ph.D. thesis, University of

Sydney (2010).


