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Abstract

Transfer entropy (TE) is a widely used measure of directed information flows in a number of

domains including neuroscience. Many real-world time series for which we are interested in

information flows come in the form of (near) instantaneous events occurring over time.

Examples include the spiking of biological neurons, trades on stock markets and posts to

social media, amongst myriad other systems involving events in continuous time throughout

the natural and social sciences. However, there exist severe limitations to the current

approach to TE estimation on such event-based data via discretising the time series into

time bins: it is not consistent, has high bias, converges slowly and cannot simultaneously

capture relationships that occur with very fine time precision as well as those that occur over

long time intervals. Building on recent work which derived a theoretical framework for TE in

continuous time, we present an estimation framework for TE on event-based data and

develop a k-nearest-neighbours estimator within this framework. This estimator is provably

consistent, has favourable bias properties and converges orders of magnitude more quickly

than the current state-of-the-art in discrete-time estimation on synthetic examples. We dem-

onstrate failures of the traditionally-used source-time-shift method for null surrogate genera-

tion. In order to overcome these failures, we develop a local permutation scheme for

generating surrogate time series conforming to the appropriate null hypothesis in order to

test for the statistical significance of the TE and, as such, test for the conditional indepen-

dence between the history of one point process and the updates of another. Our approach is

shown to be capable of correctly rejecting or accepting the null hypothesis of conditional

independence even in the presence of strong pairwise time-directed correlations. This

capacity to accurately test for conditional independence is further demonstrated on models

of a spiking neural circuit inspired by the pyloric circuit of the crustacean stomatogastric gan-

glion, succeeding where previous related estimators have failed.
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Author summary

Transfer Entropy (TE) is an information-theoretic measure commonly used in neurosci-

ence to measure the directed statistical dependence between a source and a target time

series, possibly also conditioned on other processes. Along with measuring information

flows, it is used for the inference of directed functional and effective networks from time

series data. The currently-used technique for estimating TE on neural spike trains first

time-discretises the data and then applies a straightforward plug-in information-theo-

retic estimation procedure. This approach has numerous drawbacks: it has high bias,

cannot capture relationships occurring on both fine and large timescales simultaneously,

converges very slowly as more data is obtained, and indeed does not even converge to

the correct value for any practical non-vanishing discretisation scale. We present a new

estimator for TE which operates in continuous time and demonstrate, via application to

synthetic examples, that it addresses these problems and can reliably differentiate statis-

tically significant flows from (conditionally) independent spike trains. Further, we also

apply it to more biologically-realistic spike trains obtained from a biophysical model

inspired by the pyloric circuit of the crustacean stomatogastric ganglion; our correct

inference of directed conditional dependence and independence between neurons here

provides an important validation for our approach where similar methods have previ-

ously failed.

This is a PLOS Computational Biology Methods paper.

Introduction

In analysing time series data from complex dynamical systems, such as in neuroscience, it is

often useful to have a notion of information flow. We intuitively describe the activities of

brains in terms of such information flows: for instance, information from the visual world

must flow to the visual cortex where it will be encoded [1]. Further, information coded in the

motor cortex must flow to muscles where it will be enacted [2].

Transfer entropy (TE) [3, 4] has become a widely accepted measure of such flows. It is

defined as the mutual information between the past of a source time-series process and the

present state of a target process, conditioned on the past of the target. More specifically (in dis-

crete time), the transfer entropy rate [5] is:

_TY!X ¼
1

Dt
I Xt ; Y<t jX<tð Þ ¼

1

t

XNT

t¼1

ln
pðxt j x<t; y<tÞ

pðxt j x<tÞ
: ð1Þ

Here the information flow is being measured from a source process Y to a target X, I(�;�|�) is

the conditional mutual information [6], p(�|�) is a conditional probability, xt is the current state

of the target, x<t is the history of the target, y<t is the history of the source, Δt is the interval

between time samples (in units of time), τ is the length of the time series and NT = τ/Δt is the

number of time samples. The histories x<t and y<t are usually captured via embedding vectors,

e.g. x<t = xt−m:t−1 = {xt−m, xt−m+1, . . ., xt−1}. The average here is taken over time, as opposed to

possible states and histories (both formulations are equivalent under the assumptions of statio-

narity and ergodicity). Recent work [5] has highlighted the importance of normalising the TE

by the width of the time bins, as above, such that it becomes a rate, in order to ensure conver-

gence in the limit of small time bin size.
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It is also possible to condition the TE on additional processes [4]. Given additional pro-

cessesZ ¼ fZ1;Z2; . . . ;ZnZ
g with historiesZ<t ¼ fZ1;<t;Z2;<t; . . . ;ZnZ ;<tg, we can write the

conditional TE rate as

_TY!XjZ ¼
1

Dt
I Xt ; Y<t jX<t;Z<tð Þ: ð2Þ

When combined with a suitable statistical significance test, the TE (and conditional TE)

can be used to show that the present state of X is conditionally independent of the past of Y–

when conditioned on the past of X (and on the conditional processesZ). Of course, we refer

to conditional independence in the statistical sense (i.e. pðxt j x<t;z<t; y<tÞ ¼ pðxt j x<t;z<tÞÞ

rather than the causal sense. Such a conditional independence test can be used as a component

in a network inference algorithm and, as such, TE is widely used for inferring directed func-

tional and effective network models [7, 8, 9, 10, 11, 12] (and see [4, Sec. 7.2] for a review).

TE has enjoyed widespread application in neuroscience in particular [13, 14]. Uses have

included the functional/effective network inference as mentioned above, as well as the mea-

surement of the direction and magnitude of information flows [15, 16] and the determination

of transmission delays [17]. Such applications have been performed using data from multiple

diverse sources such as MEG [18, 19], EEG [20], fMRI [21], electrode arrays [22], calcium

imaging [9] and simulations [23].

Previous applications of TE to spike trains [22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] and

other types of event-based data [35], including for the purpose of network inference [9, 36,

37], have relied on time discretisation. As shown in Fig 1, the time series is divided into small

bins of width Δt. The value of a sample for each bin could then be assigned a binary value—

denoting the presence or absence of events (spikes) in the bin—or a natural number denoting

the number of events (spikes) that fell within the bin (the experiments in this paper use the

former). A choice is made as to the number of time bins, l and m, to include in the source and

target history embeddings y<t and x<t. This results in a finite number of possible history

embeddings. For a given combination x<t and y<t, the probability of the target’s value in the

current bin conditioned on these histories, p(xt|x<t, y<t), can be directly estimated using the

plugin (histogram) [38] estimator. The probability of the target’s value in the current bin con-

ditioned on only the target history, p(xt|x<t), can be estimated in the same fashion. From these

estimates the TE can be calculated in a straightforward manner via Eq (1). See Results for a

description of the application of the discrete time TE estimator to synthetic examples including

spiking events from simulations of model neurons.

There are two large disadvantages to this approach [5]. If the process is genuinely occurring

in discrete time, then the estimation procedure just described is consistent. That is, it is

guaranteed to converge to the true value of the TE in the limit of infinite data. However, if we

are considering a fundamentally continuous-time process (with full measurement precision),

such as a neuron’s action potential, then the lossy transformation of time discretisation

(Δt> 0) will result in an inaccurate estimate of the TE. Thus, in these cases, any estimator

based on time discretisation is not consistent. Secondly, whilst the loss of resolution of the dis-

cretization will reduce with decreasing bin size Δt, this requires larger dimensionality in the

history embeddings to capture correlations over similar time intervals. This increase in dimen-

sion will result in an exponential increase in the state space size being sampled to estimate p(xt|
x<t, y<t), and therefore the data requirements. However, some recordings of the activities of

neurons are done with low time precision. For example, recordings from calcium imaging

experiments usually use a sampling rate of around 1 to 10 Hz [39]. In such cases, we could use

bin sizes on the order of the experimental precision and still capture a reasonable history
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length with history embeddings composed of only a small number of bins. This might keep the

size of the history state space small enough that we can collect an adequate number of samples

for each history permutation with the available data. In such cases, we might expect the dis-

crete-time approach to perform as well as can be expected given the limitations imposed by

the apparatus. On the other hand, data from microelectrode arrays can be sampled at rates

over 70 kHz [40]. When using data collected with this high temporal precision, if we use bin

sizes corresponding to the sampling rate, we will be forced to use incredibly short history

embeddings in order to avoid the size of the history state space growing to a point where it can

no longer be sampled.

In practice then, if the data has been collected with fine temporal precision, the application

of transfer entropy to event-based data such as spike trains has often required a trade-off

between fully resolving interactions that occur with fine time precision and capturing correla-

tions that occur across long time intervals. There is substantial evidence that spike correlations

at the millisecond and sub-millisecond scale play a role in encoding visual stimuli [41, 42],

motor control [43] and speech [44]. On the other hand, correlations in spike trains exist over

lengths of hundreds of milliseconds [45]. A discrete-time TE estimator cannot capture both of

these classes of effects simultaneously, and remains heavily dependent on the value of Δt [31].

Recent work by Spinney et al. [5] derived a continuous-time formalism for TE. It was dem-

onstrated that, for stationary point processes such as spike trains, the pairwise TE rate is given

by:

_TY!X ¼ lim
t!1

1

t

XNX

i¼1

ln
lxjx<t ;y<t

½x<xi
; y

<xi
�

lxjx<t
½x<xi
�

: ð3Þ

Here NX is the number of events in the target process and τ is the length in time of this process

Fig 1. Diagrams highlighting the differences in the embeddings used by the discrete and continuous-time estimators. The discrete-time estimator

(A) divides the time series into time bins. A binary value is assigned to each bin denoting the presence or absence of a (spiking) event–alternatively, this

could be a natural number to represent the occurrence of multiple events. The process is thus recast as a sequence of binary values and the history

embeddings (xt−4:t−1 and yt−4:t−1) for each point are binary vectors. The probability of an event occurring in a bin, conditioned on its associated history

embeddings, is estimated via the plugin (histogram) [38] estimator. Conversely, the continuous-time estimator (B) performs no time binning. History

embeddings x<xi
and y<xi

for events or x<ui
and y<ui

for arbitrary points in time (not shown in this figure, see Fig 10) are constructed from the raw

interspike intervals. This approach estimates the TE by comparing the probabilities of the history embeddings of the target processes’ history as well as

the joint history of the target and source processes at both the (spiking) events and arbitrary points in time.

https://doi.org/10.1371/journal.pcbi.1008054.g001
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whilst lxjx<t ;y<t
½x<xi

; y
<xi
� is the instantaneous firing rate of the target conditioned on the histo-

ries of the target x<xi
and source y

<xi
at the time points xi of the events in the target process.

lxjx<t
½x<xi
� is the instantaneous firing rate of the target conditioned on its history alone, ignor-

ing the history of the source. Note that lxjx<t ;y<t
and lxjx<t

are defined at all points in time and

not only at target events. It is worth emphasizing that, in this context, the processes X and Y
are series of the time points xi and yj of the events i and j in the target and source respectively.

This is contrasted with Eq (1), where X and Y are time series of values at the sampled time

points ti. To avoid confusion we use the notation that the yj 2 Y are the raw time points and

y
<xi

is some representation of the history of Y observed at the time point xi (see Methods).

Eq (3) can easily be adapted to the conditional case:

_TY!XjZ ¼ lim
t!1

1

t

XNX

i¼1

ln
lxjx<t ;y<t ;z<t

½x<xi
; y

<xi
;z<xi

�

lxjx<t ;z<t
½x<xi

;z<xi
�

: ð4Þ

Here lxjx<t ;y<t ;z<t
½x<xi

; y
<xi
;z<xi

� is the instantaneous firing rate of the target conditioned

on the histories of the target x<xi
, source y

<xi
and other possible conditioning processes

z<xi
¼ fz1;<xi

; z2;<xi
; . . . ; znz ;<xi

g. lxjx<t ;z<t
½x<xi

;z<xi
� is the instantaneous firing rate of the of the

target conditioned on the histories of the target and the additional conditioning processes,

ignoring the history of the source.

Crucially, it was demonstrated by Spinney et al., and later shown more rigorously by Coo-

per and Edgar [46], that if the discrete-time formalism of the TE (in Eq (1)) could be properly

estimated as limΔt! 0, then it would converge to the same value as the continuous-time for-

malism. This is due to the contributions to the TE from the times between target events vanish-

ing in expectation. Yet there are two important distinctions in the continuous-time formalism

which hold promise to address the consistency issues of the discrete-time formalism. Firstly,

the basis in continuous time allows us to efficiently represent the history embeddings by inter-

event intervals, suggesting the possibility of jointly capturing subtleties in both short and long

time-scale effects that has evaded discrete-time approaches. See Fig 1 for a diagrammatic

representation of these history embeddings, contrasted with the traditional way of construct-

ing histories for the discrete-time estimator. Secondly, note the important distinction that the

sums in Eqs (3) and (4) are taken over the NX (spiking) events in the target during the time-

series over interval τ; this contrasts to a sum over all time-steps in the discrete-time formalism.

An estimation strategy based on Eqs (3) and (4) would only be required to calculate quantities

at events, ignoring the inter-event interval time where the neuron is quiescent. This implies a

potential computational advantage, as well as eliminating one source of estimation variability.

These factors all point to the advantages of estimating TE for event-based data using the

continuous-time formalism in Eqs (3) and (4). This paper presents an empirical approach to

performing such estimation. The estimator (presented in Methods) operates by considering

the probability densities of the history embeddings observed at events and contrasts these with

the probability densities of those embeddings being observed at other (randomly sampled)

points. This approach is distinct in utilising a novel Bayesian inversion on Eq (4) in order to

operate on these probability densities of the history embeddings, rather than making a more

difficult direct estimation of spike rates. Furthermore, this allows us to utilise k-Nearest-Neigh-

bour (kNN) estimators for the entropy terms based on these probability densities. These esti-

mators have known advantages of consistency, data efficiency, low sensitivity to parameters

and known bias corrections. By combining these entropy estimators, and making use of estab-

lished bias reduction techniques for combinations of kNN estimators, we arrive at our pro-

posed estimator. The resulting estimator is consistent (see Methods) and is demonstrated on
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synthetic examples in Results to be substantially superior to estimators based on time discreti-

sation across a number of metrics.

To conclude that there exists non-zero TE (and thus establish conditional dependence)

between two processes a suitable hypothesis test is required. This is usually done by creating a

surrogate population of processes (or samples of histories) which conform to the null hypothe-

sis of zero TE, or in other words, directed conditional independence of the target spikes from

the source. The algorithm which we use should create surrogates which are identically distrib-

uted to the original processes (or history samples) if and only if the null hypothesis holds

[47]. The historically used method for generating these surrogates was to either shuffle the

original source samples or to shift the source process in time. However, this results in surro-

gates which conform to an incorrect null hypothesis–that the transitions in the target are

completely independent of the source histories. That is, they conform to the factorisation

pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<tÞ. In cases where there is a pairwise correlation

between the present state of the target and the history of the source, but they are nonetheless

conditionally independent, shuffling or time shifting will create surrogates that are not identi-

cally distributed to the original history samples. This is despite the fact that the null hypothesis

holds. This can result in the estimate of the TE on the original processes being statistically

different from those on the surrogate population, leading to the incorrect inference of non-

zero TE.

As shown in Results, this can lead to incredibly high false positive rates for conditional

dependence in certain settings such as the presence of strong common driver effects. There-

fore, in order to have a suitable significance test for use in conjunction with the proposed esti-

mator, we also present (in Methods) an adaptation of a recently proposed local permutation

method [48] to our specific case. This adapted scheme produces surrogates which conform to

the correct null hypothesis of conditional independence of the present of the target and the

source history, given the histories of the target and further conditioning processes. This is the

condition that pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

It is easy to intuit that the second factorisation is correct by rewriting the discrete-time TE

(Eq (2)) as:

_TY!X ¼
1

t

XNT

t¼1

ln
pðxt; y<t j x<t;z<tÞ

pðxt j x<t;z<tÞpðy<t j x<t;z<tÞ
: ð5Þ

That is, transfer entropy can be readily interpreted as a measure of the difference between

the distributions pðXt;Y<t jX<t;Z<tÞ and pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

We show in Results that the combination of the proposed estimator and surrogate genera-

tion method is capable of correctly distinguishing between zero and non-zero information

flow in difficult cases, such as where the history of the source has a strong pairwise correlation

with the occurrence of events in the target, but is nevertheless conditionally independent. The

combination of the current state-of-the-art in discrete-time estimation and a traditional

method of surrogate generation is shown to be incapable of making this distinction.

Similarly, we demonstrate that the proposed combination is capable of correctly distin-

guishing between conditional dependence and independence relationships in data taken from

a simple circuit of biophysical model neurons inspired by the crustacean stomatogastric gan-

glion [49]. Despite the presence of strong pairwise correlations, the success of our estimator

here contrasts not only with known failure of a related Granger causality estimator, but also

our demonstration that the discrete-time estimator is incapable of correctly performing this

task.
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Our results provide strong impetus for the application of our proposed techniques to inves-

tigate information flows in spike-train data recorded from biological neurons. Furthermore,

we underline the importance of our correct identification of conditional dependence and inde-

pendence in these experiments. Whilst functional/effective network inference algorithms

using TE estimators such as ours are not expected to align with structural networks in general,

they would be expected to do so under certain idealised assumptions (e.g. full observability,

large sample size, etc., as outlined in Methods 16) implemented in these experiments. As

recently discussed by Novelli and Lizier [50], and specifically for spiking neural networks by

Das and Fiete [51], inference aligning with underlying structure under such conditions is a

crucial validation that the effective network models they infer at scale are readily interpretable.

As such, the demonstration of the efficacy of our proposed approach to detecting conditional

dependence in small networks here implies that it holds promise for larger scale effective net-

work inference once paired with a suitable (conditional-independence-based) network infer-

ence algorithm (e.g. IDTxl as described in [7, 52]).

Results

The first two subsections here present the results of the continuous-time estimator applied to

two different synthetic examples for which the ground truth value of the TE is known. The

first example considers independent processes where _TY!X ¼ 0, whilst the second examines

coupled point processes with a known, non-zero _TY!X . The continuous-time estimator’s per-

formance is also contrasted with that of the discrete-time estimator. The emphasis of these

sections is on properties of the estimators in isolation, as opposed to when combined with

a statistical test. As such, we focus on the estimators’ bias, variance and consistency (see

Methods).

The third, fourth and fifth subsections present the results of the combination of the contin-

uous-time estimator and the local permutation surrogate generation scheme applied to two

examples: the first two synthetic and the last a biologically plausible model of neural activity.

The comparison of the estimates to a population of surrogates produces p-values for the null

hypothesis of zero TE. Rejection of this null hypothesis and the resulting conclusion of non-

zero TE implies a directed statistical dependence. The results are compared to the known con-

nectivity of the studied systems. Whilst we do not expect directed statistical dependence to

have a one-to-one correspondence with structural connectivity in general, these experiments

are designed under ideal conditions such that they would. This provides important test cases

for detection of conditional dependence and independence. These p-values could be translated

into other metrics such as ROC curves and false-positive rates, but we choose to instead visual-

ise the distributions of the p-values themselves. The combination of the discrete-time estimator

along with a traditional method for surrogate generation (time shifts) is also applied to these

examples for comparison.

No TE between independent homogeneous poisson processes

The simplest processes on which we can attempt to validate the estimator are independent

homogeneous Poisson processes, where the true value of the TE between such processes is

zero.

Pairs of independent homogeneous Poisson processes were generated, each with rate

�l ¼ 1, and contiguous sequences of NX 2 {1 × 102, 1 × 103, 1 × 104, 1 × 105} target events were

selected. For the continuous-time estimator, the parameter NU for the number of placed sam-

ple points was varied (see Methods) to check the sensitivity of estimates to this parameter. At
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each of these numbers of target events NX, the averages are taken across 1000, 100, 20 and 20

tested process pairs respectively.

Fig 2 shows the results of these runs for the continuous-time estimator, using various

parameter settings. In all cases, the Manhattan (ℓ1) norm is used as the distance metric and

the embedding lengths are set to lX = lY = 1 spike. See Methods for a description of these

parameters. See also [52] for a discussion on how to set these embedding lengths. For this

example, the set of conditioning processesZ is empty. S1 Fig shows results with longer his-

tory embeddings.

The plots show that the continuous-time estimator converges to the true value of the TE

(equal to 0). This is a numerical confirmation of its consistency for independent processes.

Moreover, it exhibits very low bias (as compared to the discrete-time estimator, Fig 3) for all

values of the k nearest neighbours and NU/NX parameters. The variance is relatively large for

k = 1, although it dramatically improves for k = 5—this reflects known results for variance of

this class of estimators as a function of k, where generally k above 1 is recommended [53].

Fig 3 shows the result of the discrete-time estimator applied to the same independent

homogeneous Poisson processes for two different combinations of the source and target his-

tory embedding lengths, l and m time bins, and four different bin sizes Δt (see S2 Fig for

Fig 2. Evaluation of the continuous-time estimator on independent homogeneous Poisson processes. The solid

line shows the average TE rate across multiple runs and the shaded area spans from one standard deviation below the

mean to one standard deviation above it. Plots are shown for two different values of k nearest neighbours, and four

different values of the ratio of the number of sample points to the number of events NU/NX (See Methods).

https://doi.org/10.1371/journal.pcbi.1008054.g002
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different choices of l and m). At each of the numbers of target events NX, the averages are

taken across 1000, 100, 100 and 100 tested process pairs respectively. The variance of this esti-

mator on this process is low and comparable to the continuous-time estimator, however the

bias is very large and positive for short processes. The bias of both estimators could be reduced

by subtracting the mean of the estimates over a population of surrogates (see the following sub-

section for an example of this being done with the continuous-time approach). We do observe

the discrete-time estimator converging to zero (the true value of the TE) as we increase the

available data. This would suggest that it might be consistent on this specific example. How-

ever, we will shortly encounter an example where this is not the case.

Consistent TE between unidirectionally coupled processes

The estimators were also tested on an example of unidirectionally coupled spiking processes

with a known value of TE (previously presented as example B in [5]). Here, the source process

Y is a homogoneous Poisson process. The target process X is produced as a conditional point

Fig 3. Result of the discrete-time estimator applied to independent homogeneous Poisson processes. The solid line

shows the average TE rate across multiple runs and the shaded area spans from one standard deviation below the mean

to one standard deviation above it. Plots are shown for four different values of the bin width Δt as well as different

source and target embedding lengths, l and m.

https://doi.org/10.1371/journal.pcbi.1008054.g003

PLOS COMPUTATIONAL BIOLOGY Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008054 April 19, 2021 9 / 45

https://doi.org/10.1371/journal.pcbi.1008054.g003
https://doi.org/10.1371/journal.pcbi.1008054


process where the instantaneous rate is a function of the time since the most recent source

event. More specifically:

lyjx<t ;y<t
½x<t; y<t� ¼

�ly

lxjx<t ;y<t
x<t; y<t

� �
¼ lx t1

y

h i
¼

l
base
x

l
base
x þm exp � 1

2s2 t1
y �

tcut
2

� �2
� �

� m exp � 1

2s2 �
tcut
2

� �2
h i

t1
y > tcut

t1
y � tcut:

8
>>>>>>><

>>>>>>>:

Here, t1
y is the time since the most recent source event. As a function of t1

y , the target spike rate

lxjx<t ;y<t
½x<t; y<t� rises from a baseline l

base
x at t1

y ¼ 0 to a peak at t1
y ¼ tcut=2, before falling back

to the baseline l
base
x from t1

y ¼ tcut onwards (see Fig 4A). We simulated this process using the

parameter values �ly ¼ 0:5, m = 5, tcut = 1, l
base
x ¼ 0:5 and σ2 = 0.01. This simulation was per-

formed using a thinning algorithm [54]. Specifically, we first generated the source process at rate

�ly. We then generate the target as a homogeneous Poisson process with rate λh such that lh >

lx½t1
y � for all values of t1

y . We then went back through all the events in this process and removed

each event with probability 1 � lx½t1
y �=lh. As with the previous example, once a pair of processes

had been generated, a contiguous sequence of NX target events was selected. Tests were con-

ducted for the values of NX 2 {1 × 102, 1 × 103, 1 × 104, 1 × 105, 1 × 106}. For the continuous-

time estimator, the number of placed sample points NU was set equal to NX (see Methods). At

each NX, the averages are taken over 1000, 100, 20, 20 and 20 tested process pairs respectively.

Spinney et al. [5] present a numerical method for calculating the TE for this process, based

on known conditional firing rates in the system under stationary conditions. For the parame-

ter values used here the true value of the TE is 0.5076 ± 0.001.

Given that we know that the dependence of the target on the source is fully determined

by the distance to the most recent event in the source, we used a source embedding length of

lY = 1. The estimators were run with three different values of the target embedding length lX 2
{1, 2, 3} (see Methods). For this example, the set of conditioning processesZ is empty.

Fig 4B shows the results of the continuous-time estimator applied to the simulated data. We

used the value of k = 4 and the Manhattan (ℓ1) norm. The results displayed are as expected in

that for a short target history embedding length of lX = 1 spike, the estimator converges to a

slight over-estimate of the TE. The overestimate at shorter target history embedding lengths lX
can be explained in that perfect estimates of the

PNX
i¼1

lnlxjx<t
½x<t� component require full

knowledge of the target past within the previous tcut = 1 time unit; shorter values of lX don’t

cover this period in many cases, leaving this rate underestimated and therefore the TE overesti-

mated. For longer values of lX 2 {2, 3} we see that they converge closely to the true value of the

TE. This is a further numerical confirmation of the consistency of the continuous-time estima-

tor. See S1 Fig for plots with a different value of lY.

Fig 4C shows the results of the discrete-time estimator applied to the same process, run for

three different values of the bin width Δt 2 {1, 0.5, 0.2, 0.1} time units. The number of bins

included in the history embeddings was chosen such that they extended one time unit back

(the known length of the history dependence). Smaller bin sizes could not be used as this leads

to undersampling of the possible history permutations, resulting in far inferior performance.

The plots are a clear demonstration that the discrete-time estimator is very biased and not con-

sistent. At a bin size of Δt = 0.2 it converges to a value around half the true TE. Moreover, its
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convergence is incredibly slow. At the bin size of Δt = 0.1 it would appear to not have con-

verged even after 1 million target events, and indeed it is not even converging to the true value

of the TE. The significance of the performance improvement by our estimator is explored fur-

ther in Discussion.

Identifying conditional independence despite strong pairwise correlations

The existence of a set of conditioning processes under which the present of the target compo-

nent is conditionally independent of the past of the source implies that, under certain assump-

tions, there is no causal connection from the source to the target [55, 56, 57] (see Methods for

details on the assumptions we use to conclude the ground truth of dependence/independence

in the examples we use here). More importantly, TE can be used to test for such conditional

independence (see Methods), thus motivating its use in directed functional (using pairwise

TE) and effective (using multivariate TE) network inference. A large challenge faced in testing

for conditional independence is correctly identifying “spurious” correlations, whereby condi-

tionally independent components might have a strong pairwise correlation. This problem is

particularly pronounced when investigating the spiking activity of biological neurons, as

Fig 4. The discrete-time and continuous-time estimators were run on coupled point processes for which the ground-truth value of the TE is

known. (A) shows the firing rate of the target process as a function of the history of the source. (B) and (C) show the estimates of the TE provided by the

two estimators. The solid blue line shows the average TE rate across multiple runs and the shaded area spans from one standard deviation below the

mean to one standard deviation above it. The black line shows the true value of the TE. For the continuous-time estimator the parameter values of NU/

NX = 1 and k = 4 were used along with the ℓ1 (Manhattan) norm. Plots are shown for three different values of the length of the target history component

lX. For the discrete-time estimator, plots are shown for four different values of the bin width Δt. The source and target history embedding lengths are

chosen such that they extend back one time unit (the known length of the history dependence).

https://doi.org/10.1371/journal.pcbi.1008054.g004
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populations of which often exhibit highly correlated behaviour through various forms of syn-

chrony [58, 59, 60] or common drivers [61, 62]. In this subsection, we demonstrate that the

combination of the presented estimator and surrogate generation scheme is particularly adept

at identifying conditional independence in the face of strong pairwise correlations on a syn-

thetic example. Moreover, the combination of the traditional discrete-time estimator and sur-

rogate generation techniques are demonstrated to be ineffective on this task.

The chosen synthetic example in this subsection models a common driver effect, where an

apparent directed coupling between a source and target is only due to a common parent. In

such cases, despite a strong induced correlation between the source history and the occurrence

of an event in the target, we expect to measure zero information flow when conditioning on

the common driver. Our system here consists of a quasi-periodic ‘mother’ process M (the com-

mon driver) and two ‘daughter’ processes, D1 and D2 (see Fig 5A for a diagram of the process).

The mother process contains events occurring at intervals of T + ξM, with the daughter pro-

cesses being noisy copies with each event shifted by an amount aDi
þ xDi

(ξM and xDi
are noise

terms). We also choose that aD1
< aD2

; so long as the difference between these aDi
values is

large compared to the size of the noise terms, this will ensure that the events in D1 precede

those in D2. When conditioning on the mother process, the TE from the first daughter to the

second, _TD1!D2 jM
, should be 0. However, accurately detecting this is difficult, as the history of

source daughter process D1 is strongly correlated with the occurrence of events in the second

Fig 5. Diagram of the noisy copy process. Events in the mother process M occur periodically with intervals T + ξM (ξM and xDi
are noise

terms). Events in the daughter processes D1 and D2 occur after each event in the mother process, at a distance of aDi
þ xDi

(with aD1
< aD2

). (A)

shows a graph of the dependencies with the labels on the edges representing delays. (B) shows a diagram of a representative spike raster.

https://doi.org/10.1371/journal.pcbi.1008054.g005
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daughter process D2—the events in D1 will precede those in D2 by the constant amount aD2
�

aD1
plus a small noise term xD2

� xD1
.

Due to the noise in the system, this level of correlation will gradually break down if we

translate the source daughter process relative to the others. This allows us to do two things.

Firstly, we can get an idea of the bias of the estimator on conditionally independent processes

for different levels of pairwise correlation between the history of the source and events in the

target. Secondly, we can evaluate different schemes of generating surrogate TE distributions as

a function of this correlation. We would expect that, for well-generated surrogates which

reflect the relationships to the conditional process, the TE estimates on these conditionally

independent processes will closely match the surrogate distribution.

We simulated this process using the parameter values of T = 1.0, aD1
¼ 0:25, aD2

¼ 0:5,

xD1
� N ð0; s2

DÞ and xD2
� N ð0; s2

DÞ where σD = 0.05. ξM was distributed as a left-truncated

normal distribution, with mean 0 and standard deviation σM = 0.05, with a left truncation

point of −T + ε, where ε = 1 × 10−6, ensuring that T + ξM> 0. Once the process had been simu-

lated, the source process D1 was translated by an amount ω. We used values of ω between -10T
and 10T, at intervals of 0.13T. For each such ω, the process was simulated 200 times. For each

simulation, the TE was estimated on the original process with the translation ω in the first

daughter as well as on a surrogate generated according to our proposed local permutation

scheme (see Methods for a detailed description). The parameter values of kperm = 10 and

NU,surrogate = NX were used. For comparison, we also generated surrogates according to the tra-

ditional source time-shift method, where this shift was distributed randomly uniform between

200 and 300 time units. A contiguous region of 50 000 target events was extracted and the esti-

mation was performed on this data. The continuous-time estimator used the parameter values

of lX ¼ lY ¼ lZ1
¼ 1, k = 10, NU = NX and the Manhattan (ℓ1) norm.

The results in Fig 6A demonstrate that the null distribution of TE values produced by the

the local permutation surrogate generation scheme closely matches the distribution of TE val-

ues produced by the continuous-time estimator applied to the original data. Whilst the raw TE

estimates retain a slight negative bias (explored further in Discussion), we can generate a bias-

corrected TE with the surrogate mean subtracted from the original estimate (giving an “effec-

tive transfer entropy” [63]). This bias-corrected TE as displayed in Fig 6B is consistent with

zero because of the close match between our estimated value and surrogates, which is the

desired result in this scenario. On the other hand, the TE values estimated on the surrogates

generated by the traditional time-shift method are substantially lower than those estimated on

the original process (Fig 6A); comparison to these would produce very high false positive rates

for significant directed statistical relationships (see the values of TE bias-corrected to these sur-

rogates, which are not consistent with 0, in Fig 6B). This is most pronounced for high levels of

pairwise source-target correlation (with translations ω near zero). The reason behind this dif-

ference in the two approaches is easy to intuit. The traditional time-shift method destroys all

relationship between the history of the source and the occurrence of events in the target. This

means that we are comparing estimates of the TE on the original processes (where there is a

strong pairwise correlation between the history of the source and the occurrence of target

events) with estimates of the TE on fully independent surrogate processes. Specifically, in dis-

crete time, the joint distribution of the present state of the target and the source history, condi-

tioned on the other histories decomposes as pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<tÞ

when using a naive shift method.

By contrast, the proposed local permutation scheme produces surrogates where, although

the history of the source and the occurrence of events in the target are conditionally inde-

pendent, the relationship between the history of the source and the mediating variable,
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which in this case is the history of the mother process, is maintained. That is, the scheme

produces surrogates where (working in the discrete-time formalism for now) the joint dis-

tribution of the present of the target and the source history, conditioned on the other histo-

ries decomposes appropriately as pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

See Methods for the analogous decomposition within the continuous-time event-based TE

framework.

We then confirm that the proposed scheme is able to correctly distinguish between cases

where an information flow does or does not exist. To do so, we applied it to measure _TM!D2 jD1

Fig 6. Results of the continuous-time estimator run on a noisy copy process _TD1!D2 jM
, where conditioning on a

strong common driver M should lead to zero information flow being inferred. The translation ω of the source,

relative to the target and common driver, controls the strength of the correlation between the source and target

(maximal at zero translation). For each translation, the estimator is run on both the original process as well as

embeddings generated via two surrogate generation methods: our proposed local permutation method and a

traditional source time-shift method. The solid lines show the average TE rate across multiple runs and the shaded

areas span from one standard deviation below the mean to one standard deviation above it. The bias of the estimator

changes with the translation ω, and we expect the estimates to be consistent with appropriately generated surrogates

reflecting the same strong common driver effect. This is the case for our local permutation surrogates, as shown in (A).

This leads to the correct bias-corrected TE value of 0, as shown in (B).

https://doi.org/10.1371/journal.pcbi.1008054.g006

PLOS COMPUTATIONAL BIOLOGY Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008054 April 19, 2021 14 / 45

https://doi.org/10.1371/journal.pcbi.1008054.g006
https://doi.org/10.1371/journal.pcbi.1008054


in the above system, where we would expect to see non-zero information flow from the com-

mon driver or mother to one daughter process, conditioned on the other. The setup used was

identical to above however focussing on a translation of ω = 0, and for completeness, two dif-

ferent levels of noise in the daughter processes were used: σD = 0.05 and σD = 0.075. The trans-

lation of ω = 0 was chosen as, in the cases of zero information flows ( _TD1!D2jM
), the pairwise

source-target correlations will be at their highest, increasing the difficulty of correctly identify-

ing these zero flows.

We recorded the p values produced by the combination of the proposed continuous-time

estimator and the local permutation surrogate generation scheme when testing for conditional

information flow where it is expected to be non-zero through _TM!D2 jD1
, in addition to where

there is expected to be zero flow through _TD1!D2 jM
. These flows were measured in 10 runs each

and the distributions of the resulting p values are shown in Fig 7. We observe that our pro-

posed combination assigns a p value of zero in every instance of _TM!D2 jD1
as expected; whilst

for _TD1!D2 jM
it assigns p values in a broad distribution above zero, meaning the estimates are

consistent with the null distribution as expected.

We also applied the combination of the discrete-time estimator and the traditional time-

shift method of surrogate generation to this same task of distinguishing between zero and

non-zero conditional information flows. We used time bins of width Δt = 0.05 and history

lengths of 7 bins for the target, source and conditional histories. In order to increase the length

of history being considered, while keeping the length of the history embeddings constant,

application of the discrete-time estimator often makes use of the fact that the present state of

the target might be conditionally independent of the most recent source history due to, for

instance, transmission delays. In order to exploit this property of the processes, a lag parameter

is determined. This lag parameter is a number of time bins to skip between the target present

bin and the start of the source history embedding. We followed the current best practice in

determining this lag parameter [17]. That is, before calculating the conditional TE from the

source to the target, we determined the optimal lag between the conditional history and the

target by calculating the pairwise TE between the conditioning process and the target for all

lags between 0 and 10. The lag which produced the maximum such TE was used. We then

Fig 7. The p-values obtained when using continuous and discrete-time estimators to infer non-zero information

flow in the noisy copy process. The estimators are applied to both _TD1!D2 jM
(expected to have zero flow) and _TM!D2 jD1

(expected to have non-zero flow and therefore be indicated as statistically significant). Only the results from the

continuous-time estimator match these expectations. Ticks represent the particular combination of estimator and

surrogate generation scheme making the correct inference in the majority of cases when a cutoff value of p = 0.05 is

used. The dotted line shows p = 0.05.

https://doi.org/10.1371/journal.pcbi.1008054.g007
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calculated the conditional TE between the source and the target, using this determined lag for

the conditioning process, for all lags to the source process between 0 and 10. The TE was then

determined to be the maximum TE estimated over all these different lags applied to the source

process. This procedure was applied when estimating the TE on the original process as well as

on each separate surrogate. The results of this procedure are also displayed in Fig 7. Here we

see that the combination of the discrete-time estimator and the traditional time-shift method

of surrogate generation assigns a p value indistinguishable from zero to all individual runs of

both _TM!D2 jD1
and _TD1!D2 jM

. This result–contradicting the expectation that _TD1!D2 jM
is consis-

tent with zero–suggests that this benchmark approach has an incredibly high false positive rate

here.

Finally, we investigated whether the poor performance of the traditional combination of

the discrete-time estimator and source time-shift surrogate generation scheme was entirely

due to the surrogate generation scheme, or at least partially due to time discretisation. To do

so, we reran the experiments for the discrete-time estimator shown in Fig 7B, but replaced the

time-shift surrogate generation scheme for an approach which is equivalent to our local per-

mutation scheme, but operates on categorical variables (such as binary numbers). This is a

pre-existing conditional-permutation-based surrogate generation technique [64]. The results

were identical to those shown in Fig 7B for which the time-shift method of surrogate genera-

tion (the usual approach for TE analysis) was used. This suggests that time discretisation plays

a substantial role in the failure of the traditional approach on this example. That is, good per-

formance here also requires estimation in continuous time.

Scaling of conditional independence testing in higher dimensions

The previous subsection demonstrated the ability of the proposed continuous-time TE esti-

mator and local permutation surrogate generation scheme to perform conditional indepen-

dence tests despite strong pairwise correlations. The results and analysis there demonstrated

how the distribution of the TE values over the surrogates was able to match those over the

original time series in cases of zero TE, resulting in a broad distribution of p values between

0 and 1. It was further demonstrated that the distribution of p values obtained from cases

with a non-zero TE was clustered around 0, thus providing us with an effective test between

zero and non-zero TE. As argued in Introduction and Methods, this is equivalent to a test for

conditional independence.

One of the main applications of conditional independence tests is as a component in net-

work inference algorithms [7, 50, 65]. In such cases, the number of processes included in the

conditioning set can be as large as one less than the degree of the node. The previous subsec-

tion performed a detailed analysis of the distribution of TE values of the original time series,

TE values of the surrogate time series as well as the resulting p values in a case where there is

a single process in the conditioning set. It was also demonstrated that the inference of non-

zero TE could be performed successfully in this case. In this subsection, we study the scaling

of the inference of non-zero TE with the size of the conditioning set. As such, we provide a

demonstration of the suitability of the combination of the proposed estimator and surrogate

generation scheme as a component in a conditional-independence based network inference

algorithm.

We generate synthetic data on which to test this scaling. The simulated example consists of

a single Leaky-Integrate-and-Fire (LIF) [66] neuron and a set of stimuli to it. See Methods for

a full description of this model. The LIF neuron has parameters V0 = −65 mv, Vreset = −75 mv,

Vthreshold = −45 mv, a time constant of τ = 10 ms and a hard refractory period of 5 ms.
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Each stimulus is a separately generated inhomogeneous Poisson process, with an added

refractory period of 5 ms. All the stimuli have a common rate. This rate is constant across win-

dows of 0.5s and is generated uniformly randomly between 0 Hz and 40 Hz. As in the above

example of unidirectionally coupled process pairs, the stimuli are generated using a thinning

algorithm. The process is first generated as a homogeneous Poisson process with rate R> 40

Hz. Spikes are excluded with probability 1 − ri/R, where ri is the common rate of the window

of the spike. All spikes within the refractory period of the previous spike are also excluded. The

stimuli are divided into a set of background processes B, with |B| 2 {6, 12, 18}, and a source Y.

One third of the stimuli in the background set are inhibitory and remainder are excitatory.

The strength of the connection Vconnect associated with each stimulus was adjusted by hand

such that the average firing rate of the target LIF neuron was around 20 Hz when only the sti-

muli in the background set were connected to the target (that is, the extra source stimulus was

unconnected). The resulting connection strengths used are 18 mV, 13 mV and 10 mV for each

of the three sizes of the background set, respectively. All connections have a fixed delay of 2

ms. The source stimulus Y is set to be either inhibitory, excitatory or is otherwise unconnected

to the target LIF neuron.

In the case where the source neuron is unconnected, when conditioning on all the processes

in the background set, the TE between the source and the target LIF neuron is zero. In the

cases where it is connected in either an inhibitory or excitatory manner, the TE will be non-

zero. This follows from the assumptions made explicit in Methods relating conditional inde-

pendence and dependence to network structure. We tested the ability of both estimator and

surrogate generation scheme combinations to correctly infer zero or non-zero TE.

For the continuous-time estimator and local permutation surrogate generation scheme we

used the parameter values of lX ¼ lY ¼ lZi ¼ 1, k = 5, kperm = 10, NU/NX = 1 and NU,surrogate/NX

= 10. The discrete-time estimator used the same history embedding length for the source, tar-

get and conditioning processes. This was set at 3, 2 or 1 bins for each of the conditioning set

sizes (6, 12 or 18), respectively. These embedding lengths were chosen so as to keep the total

number of bins used across the target, source and conditioning processes below 25. Using

more than 25 bins resulted in the space of possible history permutations growing too large,

leading to undersampling and far inferior performance. The bin width Δt was set at 8 ms, 11

ms and 22 ms for each of these three embedding lengths. These bin widths were chosen so that

the history would extend back a distance of at least twice the time constant of the LIF target

neuron, plus the transmission delay from the stimuli.

For both combinations, 100 surrogates and a threshold of p = 0.05 for the inference of non-

zero TE were used. Tests were conducted for the number of target spikes NX 2 {100, 500, 1000,

2000, 5000, 10000}. For each data set size, both approaches were tested on 30 independent sim-

ulations for each setting of Y as either inhibitory, excitatory or unconnected.

Fig 8 shows the results of running the two approaches on the simulated data for different

data set sizes. The combination of the discrete-time estimator and the traditional time-shift

surrogate generation scheme is found to be inadequate. For data set sizes of NX� 1000, we see

that this approach assigns non-zero TE to all 30 runs of every connection class (excitatory,

inhibitory or absent) at each size, despite the fact that the 30 runs on absent connections corre-

spond to cases of zero TE. Moreover, in the case of absent connections, the direction of con-

vergence is in the wrong direction—this approach performs worse as we provide more data.

This is likely due to this scheme’s poor ability to identify conditional independence in the

presence of pairwise correlations, as we have already seen in the previous subsection. In the

instances where the source is not connected to the target, its spiking activity will still be corre-

lated with that of the target, due to it sharing a common rate with the background processes.
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S4 Fig displays the same results as Fig 8, but in the simpler case where all stimuli have a con-

stant rate of 20 Hz. In this case, with the pairwise correlations removed, we see that the dis-

crete-time estimator is capable of more consistently correctly identifying cases of zero TE,

although it still displays a substantially inflated false positive rate compared to the expected

value of 0.05. Moreover, it is worth emphasising that this is an unrealistic scenario as it is

assuming completely independent sources, whereas the activity of biological neurons are

known to exhibit a wide variety of correlations in their activities [58, 59, 60].

Returning to Fig 8A, in the cases where the conditioning set contains 6 or 12 processes, the

combination of the continuous-time estimator and local permutation surrogate generation

scheme is able to correctly identify zero versus non-zero TE provided that it has access to

around 10000 target spikes. In the case where the conditioning set contains 18 processes, it is

capable of correctly identifying non-zero TE for excitatory connections as well as correctly

identifying zero TE in the case of an unconnected source. In all combinations of numbers of

spikes and number of conditionals, our method is able to control the false positive rate at the

prescribed level. This is crucial: in the context of network inference applied to neuroscientific

data, false positives are considered more detrimental than false negatives [67]. This is due to

such false positives often existing between communities and thus resulting in substantial errors

in the inferred topology. With that said, the true positive rate is below 50% for inhibitory

sources, though it is observed to rise with an increase in the number of target spikes being con-

sidered. Importantly, were a greedy approach to effective network inference to be used, as in

Fig 8. The scaling of the combination of the continuous-time estimator and the local permutation surrogate generation scheme on

correctly identifying conditional independence relationships with increasing dimension and data size (A). This is compared with

the performance of the combination of the discrete-time estimator with the traditional time-shift surrogate generation procedure (B).

The y axis represents the number of background processes being conditioned on. Above a certain moderate threshold of data size, the

discrete-time approach infers a non-zero TE in all of the runs, including those where the source was in fact not connected to the target.

This renders it impractical for this task.

https://doi.org/10.1371/journal.pcbi.1008054.g008
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[7, 50], whereby edges are iteratively added to the conditioning set based on their TE value,

then the majority of conditional independence tests will be performed at a dimension well

below the degree of the node. In order to measure the performance of our proposed approach

at the start of this process (where no sources have yet been selected and conditioned on), S5

Fig displays the same results as Fig 8 but where the background processes are not included in

the conditioning set. Here we see higher true positive rates at lower numbers of spikes, with

the inhibitory connections being easily identified. This implies that, when used as a compo-

nent in such a greedy algorithm, our approach will be able to identify the principal sources

whilst controlling the false-positive rate, although it may miss some true sources in higher

dimensions.

Finally, we investigated whether the poor performance of the traditional combination of

the discrete-time estimator and source time-shift surrogate generation scheme was entirely

due to the surrogate generation scheme. That is, could it be rescued by using a better surrogate

generation technique? We therefore repeated the discrete-time experiments shown in Fig 8, S4

and S5 Figs, but replaced the time-shift surrogate generation scheme for an approach which is

equivalent to our local permutation scheme, but operates on categorical variables (such as

binary numbers). This is an established conditional-permutation based surrogate generation

scheme [64]. The results of these runs are displayed in S6 Fig. We observe qualitatively similar

results for the use of these two surrogate generation techniques. The only substantial difference

is that the conditional-permutation based scheme has lower true positive rates for inhibitory

connections when less data is available under all setups. This implies that the poor perfor-

mance of the traditional approach is largely due to time-discretisation. Once again, we see that

good performance here requires estimation in continuous time.

Testing for conditional independence on the simulated pyloric circuit of

the crustacean stomatogastric ganglion

The pyloric circuit of the crustacean stomatogastric ganglion has received significant attention

in terms of statistical modelling and has been proposed as a benchmark circuit on which to

test spike-based connectivity inference techniques [68, 69]. Such modelling attempts have

faced substantial difficulties. For instance, it has been shown that Granger causality is unable

to infer the connectivity of this network [68] (Granger causality and TE are equivalent for lin-

ear dynamics with Gaussian noise [70]). We demonstrate here that our proposed approach is

able to correctly infer the conditional dependence and independence relationships in this cir-

cuit (which, as per the previous examples, are expected to match connectivity under the condi-

tions of this experiment, see Methods).

The crustacean stomatogastric ganglion [49, 71, 72] has received substantial research atten-

tion as a simple model circuit. The fact that its full connectivity is known is of great use for

modelling and statistical analysis. The pyloric circuit is a partially independent component of

the greater circuit and consists of an Anterior Burster (AB) neuron, two Pyloric Driver (PD)

neurons, a Lateral Pyloric (LP) neuron and multiple Pyloric (PY) neurons. As the AB neuron

is electrically coupled to the PD neurons and the PY neurons are identical, for the purposes of

modelling, the circuit is usually represented by a single AB/PD complex, and single LP and PY

neurons [68, 69, 73, 74].

The AB/PD complex undergoes self-sustained rhythmic bursting. It inhibits the LP and PY

neurons through slow cholinergic and fast glutamatergic synapses. These neurons then burst

on rebound from this inhibition. The PY and LP neurons also inhibit one another through fast

glutamatergic synapses and the LP neuron similarly inhibits the AB/PD complex.
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Fig 9 shows sample membrane potential traces from simulations of this circuit as well as a

connectivity diagram. Despite its small size, inference of the relationships between neurons is

challenging [68, 69] due to the fact that it is highly periodic. Although there is no structural

connection from the PY to the ABPD neuron (implying conditional independence due to full

observability and the causal Markov assumption), there is a strong, time-directed, correlation

between their activity—the PY neuron always bursts shortly before the ABPD. Recognising

Fig 9. Results of both estimator and surrogate generation combinations being applied to data from simulations of

a biophysical model of a neural circuit inspired by the pyloric circuit of the crustacean stomatogastric ganglion.

The circuit, shown in (A), is fully connected apart from the missing connection between the PY neuron and the AB/

PD complex, and generates membrane potential traces which are bursty and highly-periodic with cross-correlated

activity. The distribution of p values from the combination of the continuous-time estimator and local permutation

surrogate generation scheme are shown in (C). They demonstrate that this combination is capable of correctly

identifying the conditional dependence and independence relationships in this circuit in all runs, apart from two false

negatives. By contrast, the distribution of p values produced by the combination of the discrete-time estimator and the

traditional source time-shift surrogate generation method shown in (D) mis-specified the relationship from the PY to

the ABPD in every run. Ticks represent the particular combination of estimator and surrogate generation scheme

making the correct inference of dependence or independence in the majority of cases when a cutoff value of p = 0.05 is

used.

https://doi.org/10.1371/journal.pcbi.1008054.g009
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that this is a spurious correlation, and that the AB/PD complex is thus conditionally indepen-

dent of the history of the PY neuron, requires fully resolving the influence of the AB/PD’s his-

tory on itself as well as that of the LP on the AB/PD. To further complicate matters, the

dependence implied by the connection between the LP and ABPD neurons (along with the

contraposition of our assumption of faithfulness) is very challenging to detect. The AB/PD

complex will continue bursting regardless of any input from the LP. Correctly inferring this

dependence requires detecting the subtle changes in the timing of AB/PD bursts that result

from the activity of the LP.

Previous work on statistical modelling of the pyloric circuit has used both in vitro and in sil-
ico data [68, 69]. We ran simulations of biophysical models inspired by this network, similar to

those used in [68] (see S1 Text). Attempts were then made to identify the conditional depen-

dence/independence relationships in the network by detecting non-zero conditional informa-

tion flow from the spiking event times produced by the simulations. This was done by

estimating the TE from the source to the target, conditioned on the activity of the third

remaining neuron for every source-target pair. Both the combination of the proposed continu-

ous-time estimator and local permutation surrogate generation scheme and the combination

of the discrete-time estimator and source time-shift surrogate generation scheme were applied

to this task. As the dynamics of the network are fully captured in the three neurons of the net-

work (we have full observability), and due to the causal Markov assumption, in the case where

there is no causal directed connection from a source to a target, the target’s present will be con-

ditionally independent of the source’s past. By the contraposition of the faithfulness assump-

tion, in the presence of a connection the target’s current state will be dependent on the

source’s past (see Methods).

Both combinations were applied to nine independent simulations (ten simulations were

instantiated but one was discarded due to early termination from a numerical instability) of

the network and the number of target events NX = 2 × 104 was used. For the continuous-

time estimator the parameter values of lX ¼ lY ¼ lZ1
¼ 3, k = 10, NU = NX, NU,surrogate = 5NX

and kperm = 10 were used along with the Manhattan (ℓ1) norm (see Methods). The discrete-

time estimator made use of a bin size of Δt = 0.05s and history embedding lengths of seven

bins for each of the source, target and conditioning processes. Searches were performed to

determine the optimum embedding lag for both the source and conditioning histories (as

above) with a maximum search value of 20 bins being used. We designed the search proce-

dure to include times up to the inter-burst interval (around 1 time unit), which placed an

effective lower bound on the width of the time bins (as bin sizes below Δt = 0.05s resulted in

impractically large search spaces). For both estimators, p values were inferred from 100

independently generated surrogates (see Methods). The source time-shift surrogate genera-

tion scheme used time shifts distributed uniformly randomly between 200 and 400 time

units.

Fig 9C and 9D show the distributions of p values resulting from the application of both esti-

mator and surrogate generation scheme combinations. The continuous-time estimator and

local permutation surrogate generation scheme were able to correctly infer the dependence/

independence relationships in the network in the majority of cases (indicated by p-values

approaching 0 for the true positives, and spread throughout [0, 1] for the true negatives). On

the other hand, the discrete-time estimator and source time-shift surrogate generation scheme

produced an erroneous inference on every run: a dependence between the PY neuron and the

AB/PD complex. S7 and S8 Figs contain plots showing runs of the continuous-time estimator

using different values of the parameters lX, lY, lZ1
and NX. The results are qualitatively very
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similar to those presented in Fig 9C, showing that, on this example, our methodology is robust

to these parameter choices.

As in the previous subsections, we investigated whether the poor performance of the tradi-

tional combination of the discrete-time estimator and source time-shift surrogate generation

scheme was entirely due to the surrogate generation scheme, or at least partially due to time

discretisation. To do so, we reran the experiments for the discrete-time estimator shown in Fig

9D, but replaced the time-shift surrogate generation scheme for an approach which is equiva-

lent to our local permutation scheme, but operates on categorical variables (such as binary

numbers). As previously, this is a pre-existing conditional-permutation-based surrogate gener-

ation method [64]. The results were identical to those shown in Fig 9D for which the time-

shift method of surrogate generation (the usual approach for TE analysis) was used. This sug-

gests that time discretisation plays a substantial role in the failure of the traditional approach

on this example. Mirroring our previous findings, we observe that good performance here

requires estimation in continuous time.

On this particular example, the inference of all connections using the continuous-time

approach took 13 minutes and 6 seconds when using 20 cores of an Intel Xeon E5-2670. The

discrete-time approach took around 37 minutes and 4 seconds when running on the same

hardware. We would, however, point out that the computational requirements for both meth-

ods are highly sensitive to their parameters. The discrete-time approach will be particularly

sensitive to Δt and the number of lag settings searched over. The continuous-time approach is

particularly sensitive to the embedding lengths.

Discussion

Despite transfer entropy being a popular tool within neuroscience and other domains of

enquiry [7, 8, 9, 13, 14, 15, 16, 17, 18, 19], it has received more limited application to event-

based data such as spike trains. This is at least partially due to current estimation techniques

requiring the process to be recast as a discrete-time phenomenon. The resulting discrete-time

estimation task has been beset by difficulties including a lack of consistency, high bias, slow

convergence and an inability to capture effects which occur over fine and large time scales

simultaneously.

This paper has built on recent work presenting a continuous-time formalism for TE [5] in

order to derive an estimation framework for TE on event-based data in continuous time. This

framework has the unique advantage of only estimating quantities at events in the target pro-

cess alongside efficient representation of the data as inter-spike intervals, providing a signifi-

cant computational advantage. Instead of comparing spike rates conditioned on specific

histories at each target spiking event, we use a Bayesian inversion to instead make the empiri-

cally easier comparison of probabilities of histories at target events versus anywhere else along

the target process. This comparison, using KL divergences, is made using k-NN techniques,

which brings desirable properties such as efficiency for the estimator. This estimator is prov-

ably consistent. Moreover, as it operates on inter-event intervals, it is capable of capturing rela-

tionships which occur with fine time precision along with those that occur over longer time

distances.

The estimator was first evaluated on two simple examples for which the ground truth is

known: pairs of independent Poisson processes (first subsection of Results) as well as pairs

of processes unidirectionally coupled through a simple functional relationship (second sub-

section of Results). The current state-of-the-art in discrete-time estimation was also applied

to these processes. It was found that the continuous-time estimator had substantially lower

bias than the discrete-time estimator, converged orders of magnitude faster (in terms of the
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number of sample spikes required), and was relatively insensitive to parameter selections.

Moreover, these examples provided numerical confirmation of the consistency of the contin-

uous-time estimator, and further demonstration that the discrete-time estimator is not con-

sistent. The latter simple example highlighted the magnitude of the shortcomings of the

discrete-time estimator. In the authors’ experience, spike-train datasets which contain 1 mil-

lion spiking events for a single neuron are vanishingly rare. However, even in the unlikely cir-

cumstance that the discrete-time estimator is presented with a dataset of this size, as in the

second subsection of Results, it could not accurately estimate the TE for a simple one-way

relationship between only two neurons. Moreover, this example neatly demonstrates a

known [31], notable problem with the use of the discrete-time estimator, which is that it pro-

vides wildly different estimates for different values of Δt. Whilst the underlying theory [5]

suggests that in principle taking the discrete time TE rate as Δt! 0 converges with the con-

tinuous time formalism, the use of smaller Δt values leads to issues in undersampling and

inability to represent patterns on long time scales. In real-world applications, where the

ground truth is unknown, there is no principled method for choosing which resulting TE

value from the various bin sizes to use.

One of the principal use-cases of TE is the inference of non-zero information flow. As the

TE is estimated from finite data, we require a manner of determining the statistical significance

of the estimated values. Traditional methods of surrogate generation for TE either shift the

source in time, or shuffle the source embeddings. However, whilst this retains the relationship

of the target to its past and other conditionals, it completely destroys the relationship between

the source and any conditioning processes, which can lead to very high false positive rates as

detailed in the third subsection of Results and Methods. We developed a local permutation

scheme, based on [48], for use in conjunction with this estimator which is able to maintain the

relationship of the source history embeddings with the history embeddings of the target and

conditioning processes. The combination of the proposed estimator and this surrogate genera-

tion scheme were applied to an example where the history of the source and the occurrence of

events in the target are highly correlated, but conditionally independent given their common

driver (third subsection of Results). The established time-shift method for surrogate genera-

tion produced a null distribution of TE values substantially below that estimated on the origi-

nal data, incorrectly implying non-zero information flow. Conversely, the proposed local

permutation method produced a null distribution which closely tracked the estimates on the

original data. The proposed combination was also shown to be able to correctly distinguish

between cases of zero and non-zero information flow. When applied to the same example, the

combination of the discrete-time estimator and the traditional method of time-shifted surro-

gates inferred the existence of information flow in all cases, even when no such flow was pres-

ent. The scaling of these results with the size of the conditioning set was investigated in the

fourth subsection of Results. Here, in a highly simplified model of the input-output relation-

ships of a neuron, it was demonstrated that the proposed method could correctly identify con-

ditional dependence vs. independence in cases of up to 12 conditioning processes with access

to 104 target spikes. Moreover, it maintained robustness to pairwise correlations despite condi-

tional independence. Again, the traditional combination of discrete-time estimator and time

shifted surrogates was found to be lacking.

Finally, our proposed approach was applied to inferring the dependence/independence

relationships in a more biologically faithful example in the fifth subsection of Results. For this

purpose, we made use of models inspired by the pyloric circuit of the crustacean stomatogas-

tric ganglion. The full observability and large noise provided by this model allowed us to

conclude that the conditional dependence/independence relationships would match the

underlying connectivity of the model, thus providing us with a ground truth against which to
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test our approach. Statistical modelling of this network is challenging due to its highly periodic

dynamics. For instance, attempts to use Granger causality, using a more established estimator,

to infer its connectivity have been unsuccessful [68]; furthermore, we showed that the discrete-

time binary-valued TE estimator (with time-shifted surrogates) also could not successfully

infer the independence and dependence relationships in the network. It is worth highlighting

in this context that Granger causality and TE are equivalent for linear dynamics with Gaussian

noise [70]. Given that discrete-time TE (capable of capturing nonlinear relationships) failed on

this network, we suspect that the reason for the earlier failures of Granger causality applied to

this network were due, at least in part, to time binning and not entirely due to its inability to

find nonlinear relationships. Despite these challenges, our combination of continuous-time

estimator and surrogate generation scheme was able to correctly infer the relationships implied

by the pyloric network. This provides an important validation of the efficacy of our presented

approach on a challenging example of representative biological spiking data.

This work represents a substantial step forward in the estimation of information flows from

event-based data. To the best of the authors’ knowledge it is the first consistent estimator of TE

for event-based data. That is, it is the first estimator which is known to converge to the true

value of the TE in the limit of infinite data, let alone to provide efficient estimates with finite

data. As demonstrated in the first and second subsections of Results it has substantially favour-

able bias and convergence properties as compared to the discrete-time estimator. The fact that

this estimator uses raw inter-event intervals as its history representation allows it to efficiently

capture relevant information from the past of the source, target and conditional processes.

This allows it to simultaneously measure relationships that occur both with very fine time

scales as well as those that occur over long intervals. This was highlighted in the fifth subsec-

tion of Results, where it was shown that our proposed approach is able to correctly infer the

conditional dependence/independence relationships implied by a model inspired by the pylo-

ric circuit of the crustacean stomatogastric ganglion. The inference of these relationships

requires capturing subtle changes in spike timing. However, its bursty nature means that there

are long intervals of no spiking activity. This is contrasted with the poor performance of the

discrete-time estimator on this same task, as above. The use of the discrete-time estimator

requires a hard trade-off in the choice of bin size: small bins will be able to capture relation-

ships that occur over finer timescales but will result in an estimator that is blind to history

effects existing over large intervals. Conversely, whilst larger bins might be capable of captur-

ing these relationships occurring over larger intervals, the estimator will be blind to effects

occurring with fine temporal precision.

Further, real-world data is of course sampled at some limited resolution; this means that any

estimator cannot detect TE in the underlying process associated with smaller time scales than

available in the data, though the consistency property of our continuous-time estimator means

that it will converge to the TE value of the process at the available resolution. Of course, as per

our Introduction, where temporal resolution in recordings is very poor (such as in calcium

imaging experiments) the aforementioned trade-offs for the discrete-time estimator are likely

to be less problematic and the advantages of the continuous-time estimator less pronounced.

To the best of our knowledge, this work showcases the first use of a surrogate generation

scheme for statistical significance estimates which correctly handles strong source-conditional

relationships for event-based data. This has crucial practical benefit in that it greatly reduces

the occurrence of false positives in cases where the history of a source is strongly correlated

with the present of the target, but conditionally independent.

We make note of the fact that inspection of some plots, notably Fig 6 shows that, in some

cases, the estimator can exhibit small though not insignificant bias. Indeed, similar biases can

readily be demonstrated with the standard KSG estimator for transfer entropy on continuous
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variables in discrete time, in similar circumstances where a strong source-target relationship is

fully explained by a conditional process. The reason for the small remaining bias is that while

the underlying assumption of the nearest neighbour estimators is of a uniform probability

density within the range of the k nearest neighbours, strong conditional relationships tend to

result in correlations remaining between the variables within this range. For the common use-

case of inferring non-zero information flows this small remaining bias will not be an issue as

the proposed method for surrogate generation is capable of producing null distributions with

very similar bias properties. Furthermore, such bias can be removed from an estimate by sub-

tracting the mean of the surrogate distribution (as shown via the effective transfer entropy [63]

in the third subsection of Results). However, it is foreseeable that certain scenarios might bene-

fit from an estimator with lower bias, without having to resort to generating surrogates. In

such cases it will likely prove beneficial to explore the combination of various existing bias

reduction techniques for k-NN estimators with the approach proposed here. These include

performing a whitening transformation on the data [75], transforming each marginal distribu-

tion to uniform or exploring alternative approaches to sharing radii across entropy terms (see

Methods). The authors believe that the most probable cause of the observed bias in the case of

strong pairwise correlations is that these correlations cause the assumption of local uniformity

(see Methods) to be violated. Gao, Ver Steeg and Galstyan [76] have proposed a method for

reducing the bias of k-NN information theoretic estimators which specifically addresses cases

where local uniformity does not apply. The application of this technique to our estimator

holds promise for addressing this remaining bias.

We foresee that one of the more useful applications of the conditional independence test

that the combination of estimator and surrogate generation scheme provides will be network

inference. Strictly speaking, statistical methods such as these produce effective network

models which are not generally expected to provide precise matches to underlying structural

connectivity. Under certain idealised circumstances though, as implemented in our experi-

ments (see Methods), the two can be expected to match, and this provided for the important

validation that our methods detect directed conditional independence where it exists in

these small networks. The extent to which our method can be validated in this manner on

larger more latent-confounded networks, and more importantly the extent to which the net-

work models it infers correlate with underlying structure outside of such idealised condi-

tions including faithfulness (see Methods), remain open questions. This is an intended focus

of future work. Indeed, the inference of the connectivity of spiking neural networks from

their activity is an active area of research [77, 78] which includes recently proposed continu-

ous-time approaches [79, 80]. However, any conditional independence test will suffer from

the curse of dimensionality. This means that performing effective network inference

requires pairing the conditional independence test with a suitable (conditional-indepen-

dence-based) network inference algorithm which reduces the dimensionality of the tests.

Fortunately, a variety of such algorithms exist [65] (see Runge [81] for a methodology for

reducing the dimensionality outside of network inference). In particular, the greedy algo-

rithm [7, 50], which has already been validated for use in combination with TE (for different

types of dynamics on larger networks), holds particular promise. Further, it was recently

shown by Das and Fiete [51] that popular existing approaches to the inference of spiking

neural networks, such as generalised linear models and maximum entropy-based reverse

Ising inference, had very high false-positive rates in instances where the activity of uncon-

nected neurons was highly correlated. Given our focus on demonstrating that our condi-

tional independence test is highly robust to strong pairwise correlations despite conditional

independence, we believe that the work presented in this paper holds great promise towards

making progress on this important issue.
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Finally, it is worth pointing out that, as well as presenting a specific estimator and surro-

gate generation algorithm, this paper is also presenting an approach to testing for time-

directed statistical dependence in spike trains much more generally. Any estimator of KL

divergence can be plugged into our framework by being applied to estimate the two KL diver-

gence terms appearing in Eq (10). Moreover, a different surrogate generation scheme could

be used, so long as it factorises the distribution of histories as specified in Eq (20) (see Meth-

ods). There has been substantial recent progress towards the efficient estimation of diver-

gences [82, 83] in high dimension, pointing to the future promise of this work being applied

in the context of network inference.

Methods

There are a variety of approaches available for estimating information theoretic quantities

from continuous-valued data [84]; here we focus on methods for generating estimates _̂TY!XjZ

of a true underlying (conditional) transfer entropy _TY!XjZ.

The nature of estimation means that our estimates _̂TY!XjZ may have a bias with respect

to the true value _TY!XjZ, and a variance, as a function of some metric n of the size of the

data being provided to the estimator (we use the number of spikes, or events, in the target

process). The bias is a measure of the degree to which the estimator systematically deviates

from the true value of the quantity being estimated, for finite data size. It is expressed as

biasð _̂TY!XjZÞ ¼ E½ _̂TY!XjZ� �
_TY!XjZ. The variance of an estimator is a measure of the

degree to which it provides different estimates for distinct, finite, samples from the same

process. It is expressed as varianceð _̂TY!XjZÞ ¼ E½ _̂T 2
Y!XjZ� � E½ _̂TY!XjZ�

2
. Another important

property is consistency, which refers to whether, in the limit of infinite data points, the

estimator converges to the true value. That is, an estimator is consistent if and only if

limn!1
_̂TY!XjZ ¼

_TY!XjZ.

The first half of this methods section is concerned with the derivation of a consistent esti-

mator of TE which operates in continuous time. In order to be able to test for non-zero infor-

mation flow given finite data, we require a surrogate generation scheme to use in conjunction

with the estimator. Such a surrogate generation scheme should produce surrogate history sam-

ples that conform to the null hypothesis of zero information flow. The second half of this sec-

tion will focus on a scheme for generating these surrogates.

The presented estimator and surrogate generation scheme have been implemented in a

software package which is freely available online (see the Implementation subsection).

Continuous-time estimator for transfer entropy between spike trains

In the following subsections, we describe the algorithm for our estimator _̂TY!XjZ for the trans-

fer entropy between spike trains. We first outline our choice of a kNN type estimator, due to

the desirable consistency and bias properties of this class of estimator. In order to use such an

estimator type, we then describe a Bayesian inversion we apply to the definition of transfer

entropy for spiking processes, which allows us to operate on probability densities of histories

of the processes, rather than directly on spike rates. This results in a sum of differential entro-

pies to which kNN estimator techniques can be applied. The evaluation of these entropy terms

using kNN estimators requires a method for sampling history embeddings, which is presented

before attention is turned to a technique for combining the separate kNN estimators in a man-

ner that will reduce the bias of the final estimate.
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Consideration of estimator type. Although there has been much recent progress on

parametric information-theoretic estimators [85], such estimators will always inject modelling

assumptions into the estimation process. Even in the case that large, general, parametric mod-

els are used—as in [82]—there are no known methods of determining whether such a model is

capturing all dependencies present within the data.

In comparison, nonparametric estimators make less explicit model assumptions regarding

the probability distributions. Early approaches included the use of kernels for the estimation of

the probability densities [86], however this has the disadvantage of operating at a fixed kernel

‘resolution’. An improvement was achieved by the successful, widely applied, class of nonpara-

metric estimators making use of k-nearest-neighbour statistics [53, 87, 88, 89], which dynami-

cally adjust their resolution given the local density of points. Crucially, there are consistency

proofs [88, 90] for kNN estimators, meaning that these methods are known to converge to the

true values in the limit of infinite data size. These estimators operate by decomposing the

information quantity of interest into a sum of differential entropy terms H�. Each entropy

term is subsequently estimated by estimating the probability densities p(xi) at all the points in

the sample by finding the distances to the kth nearest neighbours of the points xi. The average

of the logarithms of these densities is found and is adjusted by bias correction terms. In some

instances, most notably the Kraskov-Stögbauer-Grassberger (KSG) estimator for mutual infor-

mation [53], many of the terms in each entropy estimate cancel and so each entropy is only

implicitly estimated.

Such bias and consistency properties are highly desirable–given the efficacy of kNN estima-

tors, it would be advantageous to be able to make use of such techniques in order to estimate

the transfer entropy of point processes in continuous time. However the continuous time for-

mulations in Eqs (3) and (4) contain no entropy terms, being written in terms of rates as

opposed to probability densities. Moreover, the estimators for each differential entropy term

H� in a standard kNN approach operate on sets of points inRd
, and it is unclear how to sample

points so as to get an unbiased estimate of the rate.

The following subsection is concerned with deriving an expression for continuous-time

transfer entropy on spike trains as a sum of H� terms, in order to define a kNN type

estimator.

Formulating continuous-time TE as a sum of differential entropies. Consider two

point processes X and Y represented by sets of real numbers, where each element represents

the time of an event. That is, X 2 RNX and Y 2 RNY . Further, consider the set of extra condi-

tioning point processesZ ¼ fZ1;Z2; . . . ;ZnZ
g, Zi 2 R

NZi . We can define a counting process
NX(t) on X. NX(t) is a natural number representing the ‘state’ of the process. This state is incre-

mented by one at the occurrence of an event. The instantaneous firing rate of the target is

then λX(t) = limΔt!0 p(NX(T + Δt) − NX(t) = 1)/Δt. Using this expression, Eq (4) can then be

rewritten as

_TY!XjZ ¼
�lX lim

Dt!0
EPX

ln
pUðNXðxþ DtÞ � NXðxÞ ¼ 1 j x<x; y<x;z<xÞ

pUðNXðxþ DtÞ � NXðxÞ ¼ 1 j x<x;z<xÞ

� �

: ð6Þ

Here, �lX is the average, unconditional, firing rate of the target process, that is

�lX ¼ limNX ;t!1
NX=t. In practice this is estimated through a trivial bias free estimate

e.g. �̂lX ¼ ðNX � 1Þ=t with t ¼ xNX
� x1. x<x 2 X<X, y<x 2 Y<X andz<x ¼

fz1;<x; z2;<x; . . . ; znz;<xg 2Z<X are the histories of the target, source and conditioning pro-

cesses, respectively, at time x. The probability density pU is taken to represent the probability

density at any arbitrary point in the target process, unconditional of events in any of the
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processes. Conversely, pX is taken to represent the probability density of observing a

quantity at target events. The expectation EPX
is taken over this distribution. That is

EPX
½f ðYÞ� ¼

R

Yf ðyÞpXðyÞdy.

By applying Bayes’ rule we can make a Bayesian inversion to arrive at:

_TY!XjZ ¼
�lX lim

Dt!0
EPX

ln
pUðx<x; y<x;z<x j NXðxþ DtÞ � NXðxÞ ¼ 1Þ

pUðx<x;z<x j NXðxþ DtÞ � NXðxÞ ¼ 1Þ

�

�
pUðx<x;z<xÞ

pUðx<x; y<x;z<xÞ

�

:

ð7Þ

Eq (7) can be written as

_TY!XjZ ¼
�lXEPX

ln
pXðx<x; y<x;z<xÞ

pXðx<x;z<xÞ
þ ln

pUðx<x;z<xÞ

pUðx<x; y<x;z<xÞ

� �

: ð8Þ

Eq (8) can be written as a sum of differential entropy and cross entropy terms

_TY!XjZ ¼
�lX ½� HðX<X;Y<X;Z<XÞ þHðX<X;Z<XÞ

þHPU
ðX<X;Y<X;Z<XÞ � HPU

ðX<X;Z<XÞ�:
ð9Þ

Here, H refers to an entropy term and HPU
refers to a cross entropy term. More specifically,

HðX<X;Z<XÞ ¼ �
R
pXðx<x;z<xÞ ln pXðx<x;z<xÞdx<xdz<x

and

HPU
ðX<X;Z<XÞ ¼ �

R
pXðx<x;z<xÞ ln pUðx<x;z<xÞdx<xdz<x:

It is worth noting in passing that Eq (8) can also be written as a difference of Kullback-Lei-

bler divergences:

_TY!XjZ ¼
�lX½DKLðPXðX<X;Y<X;Z<XÞjjPUðX<X;Y<X;Z<XÞÞ

� DKLðPXðX<X;Z<XÞjjPUðX<X;Z<XÞÞ�:
ð10Þ

The expressions in Eqs (9) and (10) represent a general framework for estimating the

TE between point processes in continuous time. Any estimator of differential entropy Ĥ
which can be adapted to the estimation of cross entropies can be plugged into Eq (9) in

order to estimate the TE. Similarly, any estimator of the KL divergence can be plugged into

Eq (10).

Constructing kNN estimators for differential entropies and cross entropies. Following

similar steps to the derivations in [53, 75, 90], assume that we have an (unknown) probability

distribution μ(x) for x 2 Rd. Note that here X is a general random variable (not necessarily a

point process). We also have a set X of NX points drawn from μ. In order to estimate the differ-

ential entropy H we need to construct estimates of the form

ĤðXÞ ¼ �
1

NX

XNX

i¼1

dlnmðxiÞ ð11Þ

where dlnmðxiÞ is an estimate of the logarithm of the true density. Denote by �(k, xi, X) the dis-

tance to the kth nearest neighbour of xi in the set X under some norm L. Further, let pmi be the

probability mass of the �-ball surrounding xi. If we make the assumption that μ(xi) is constant

within the �-ball, we have pmi ¼ k
NX � 1
¼ cd;L�ðk; xi;XÞ

d
mðxiÞ where cd,L is the volume of the
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d-dimensional unit ball under the norm L. Using this relationship, we can construct a simple

estimator of the differential entropy:

ĤðXÞ ¼ �
1

NX

XNX

i¼1

ln
k

ðNX � 1Þcd;L�ðk; xi;XÞ
d : ð12Þ

We then add the bias-correction term ln k − ψ(k). ψ(x) = Γ−1(x)dΓ(x)/dx is the digamma

function and Γ(x) the gamma function. This yields ĤKL, the Kozachenko-Leonenko [87] esti-

mator of differential entropy:

ĤKLðXÞ ¼ � cðkÞ þ ln ðNX � 1Þ þ ln cd;L þ
d
NX

XNX

i¼1

ln � k; xi;Xð Þ: ð13Þ

This estimator has been shown to be consistent [87, 91].

Assume that we now have two (unknown) probability distributions μ(x) and β(x). We have

a set X of NX points drawn from μ and a set Y of NY points drawn from β. Using similar argu-

ments to above, we denote by �(k, xi, Y) the distance from the ith element of X to its kth nearest

neighbour in Y. We then make the assumption that β(xi) is constant within the �-ball, and

we have pbi ¼ k
NY
¼ cd;L�ðk; xi;YÞ

d
bðxiÞ. We can then construct a naive estimator of the cross

entropy

ĤbðXÞ ¼ �
1

NX

XNX

i¼1

ln
k

NYcd;L�ðk; xi;YÞ
d : ð14Þ

Again, we add the bias-correction term ln k − ψ(k) to arrive at an estimator of the cross

entropy.

Ĥb;KLðXÞ ¼ � cðkÞ þ lnNY þ ln cd;L þ
d
NX

XNX

i¼1

ln � k; xi;Yð Þ: ð15Þ

This estimator has been shown to be consistent [91].

Attention should be brought to the fundamental difference between estimating entropies

and cross entropies using kNN estimators. An entropy estimator takes a set X and, for each

xi 2 X, performs a nearest neighbour search in the same set X. An estimator of cross entropy

takes two sets, X and Y and, for each xi 2 X, performs a nearest neighbour search in the other
set Y.

We will be interested in applying these estimators to the entropy and cross entropy terms in

Eq (9). For instance, we could use Ĥb;KLðXÞ to estimate HPU
ðX<X;Z<XÞ, where we have that

m ¼ pXðx<x;z<xÞ and b ¼ pUðx<x;z<xÞ. This will be covered in more detail in a later subsec-

tion, after we first consider how to represent the history embeddings x<x; y<x;z<x as well as

sample them from their distributions.

Selection and representation of sample histories for entropy estimation. Inspection of

Eqs (8) and (9) informs us that we will need to be able to estimate four distinct differential

entropy terms and, implicitly, the associated probability densities:

1. The probability density of the target, source and conditioning histories at target events

pXðx<x; y<x;z<xÞ.

2. The probability density of the target, and conditioning histories at target events

pXðx<x;z<xÞ.
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3. The probability density of the target, source and conditioning histories independent of tar-

get activity pUðx<x; y<x;z<xÞ.

4. The probability density of the target and conditioning histories independent of target activ-

ity pUðx<x;z<xÞ.

Estimation of these probability densities will require an associated set of samples for a kNN

estimator to operate on. These samples for x<x; y<x;z<x will logically be representated as his-

tory embeddings from the raw event times of the target X 2 RNX , source Y 2 RNY and condi-

tioningZ ¼ fZ1;Z2; . . . ;ZnZ
g, Zi 2 R

NZi processes. It is assumed that these sets are indexed

in ascending order (from the first event to the last). The length of the history embeddings (in

terms of how many previous spikes are referred to) must be restricted in order to avoid the dif-

ficulties associated with the estimation of probability densities in high dimensions. The lengths

of the history embeddings along each process are specified by the parameters lX, lY, lZ1
, . . .,lZnZ .

We label the sets of samples as J<X ¼ fj<xi
g
NX

i¼1
, C<X ¼ fc<xi

g
NX

i¼1
, J<U ¼ fj<ui

g
NU

i¼1
, and

C<U ¼ fc<ui
g
NU

i¼1
, for each probability density pXðx<x; y<x;z<xÞ, pXðx<x;z<xÞ, pUðx<x; y<x;z<xÞ,

and pUðx<x;z<xÞ respectively (J for ‘joint’ and C for ‘conditioning’, i.e. without the source).

For the two sets of joint embeddings J<� (where � 2 {X, U}) each j
<�i
2 J<� is made up

of target, source and conditioning components. That is, j
<�i
¼ fx<�i ; y<�i ;z<�i

g where

z<�i
¼ fz1;<�i

; z2;<�i
; . . . ; znz;<�ig. Similarly, for the two sets of conditioning embeddings C<�

(where � 2 {X, U}) each c<�i 2 C<� is made up of target, and conditioning components. That is,

c<�i ¼ fx<�i ;z<�i
g.

Each set of embeddings J<� is constructed from a set of observation points T 2 RNT . Each

individual embedding j
<�i

is constructed at one such observation ti. We denote by pred(ti, P),

the index of the most recent event in the process P to occur before the observation point ti.
The values of x<�i ¼ fx

1
<�i
; x2

<�i
; . . . ; xlX

<�i
g 2 X<� are set as follows:

xk
<�i

≔

( ti � xpredðti ;XÞ k ¼ 1

xpredðti ;XÞ� kþ2 � xpredðti ;XÞ� kþ1 k 6¼ 1:
ð16Þ

Here, the ti 2 T are the raw observation points and the xj 2 X are the raw event times in the

process X. The first element of x<�i is then the interval between the observation time and the

most recent target event time xpred(ti, X). The second element of x<�i is the inter-event interval

between this most recent event time and the next most recent event time and so forth. The val-

ues of y
<�i
¼ fy1

<�i
; y2

<�i
; . . . ; ylX

<�i
g 2 Y<� and z<�i ¼ fz

1
<�i
; z2

<�i
; . . . ; zlX

<�i
g 2Z<� are set in the

same manner.

The set of samples J<X ¼ fj<xi
g
NX

i¼1
� RlXþlYþ

P
lZj for pXðx<x; y<x;z<xÞ is constructed using

this scheme, with the set of observation points T being simply set as the NX event times xj of

the target process X. As such, J<X ¼ X<X � Y<X �Z<X .

In contrast, while the set of samples J<U ¼ fj<ui
g
NU

i¼1
� RlXþlYþ

P
lZj for pUðx<x; y<x;z<xÞ is

also constructed using this scheme, the set of observation points T is set as U � RNU . U is com-

posed of sample time points placed independently of the occurrence of events in the target

process. These NU sample points between the first and last events of the target process X can

either be placed randomly or at fixed intervals. In the experiments presented in this paper they

were placed at fixed intervals. Importantly, note that NU is not necessarily equal to NX, with

their ratio NU/NX a parameter for the estimator which is investigated in our Results. We also
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have that J<U ¼ X<U � Y<U �Z<U . Fig 10 shows diagramatic examples of an embedded

sample from J<X as well as one from J<U. Notice the distinction that for J<X, the x1
<xi

in the

embeddings x<xi
are specifically an interspike interval from the current spike at ti = xi back to

the previous spike, which is not the case for J<U.

Fig 10. Examples of history embeddings. (A) shows an example of a joint embedding constructed at a target event (j<xi
2 J<X). (B) shows an example

of a joint embedding constructed at a sample event (j<ui
2 J<U).

https://doi.org/10.1371/journal.pcbi.1008054.g010
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The set of samples C<X � R
lXþ
P

lZj for pXðx<x;z<xÞ and C<U � R
lXþ
P

lZj for pUðx<x;z<xÞ

are constructed in a similar manner to their associated sets J<X and J<U, however, the

source embeddings y
<�i

are discarded. We will also have that C<X ¼ X<X �Z<X and

C<U ¼ X<U �Z<U .

Note that, as J<X ¼ X<X � Y<X �Z<X and C<X ¼ X<X �Z<X , these two sets are closely

related. Specifically, the i-th element of C<X will be identical to the i-th element of J<X, apart

from missing the source component y
<xi

. Further, as the same set U is used for both C<U and

J<U, we will have that the i-th element of C<U will be identical to the i-th element of J<U, apart

from missing the source component y
<ui

.

Combining Ĥ � estimators for _̂TY!XjZ. With sets of samples and their embedded repre-

sentation determined as per the previous subsection, we are now ready to estimate each of the

four Ĥ � terms in Eq (9). Here we consider how to combine the entropy and cross entropy esti-

mators of these terms (Eqs (13) and (15)) into a single estimator.

We could simply estimate each H� term in Eq (9) using ĤKL as specified in Eq 13 and ĤpU ;KL

as specified in Eq (15), with the same number k of nearest neighbours in each of the four esti-

mators and at each sample in the set for each estimator. Following the convention introduced

in [90] we shall refer to this as a 4KL estimator of transfer entropy (the ‘4’ refers to the 4 kNN

searches and the ‘KL’ to Kozachenko-Leonenko):

_̂TY!XjZ;4KL ¼
�lX

NX

XNX

i¼1

n
lJ½� ln �ðk; j

<xi
; J<XÞ þ ln �ðk; j

<xi
; J<UÞ�

þlC½ ln �ðk; c<xi
;C<XÞ � ln �ðk; c<xi

;C<UÞ�
o
:

ð17Þ

Here, lJ ¼ ðlX þ lY þ
PnZ

j¼1
lZjÞ is the dimension of the joint samples and lC ¼ ðlX þ

PnZ
j¼1

lZjÞ is

the dimension of the conditional-only samples. Note that the ln(NX − 1) − ψ(k) terms cancel

between the J<X and C<X terms (also for ln(NU) − ψ(k) between the J<U and C<U terms), whilst

the lncd,L terms cancel between J<X and J<U as well as between C<X and C<U. It is crucial also

to notice that all terms are averaged over NX samples taken at target events (the cross-entropies

which evaluate probability densities using J<U and C<U still evaluate those densities on the

samples j
<xi
2 J<X and c<xi

2 C<X , following the definition in Eq (15)), regardless of whether

NU = NX.

It is, however, not only possible to use a different k at every sample, but desirable when the

k are chosen judiciously (as detailed below). We shall refer to this as the generalised kNN esti-

mator:

_̂TY!XjZ;generalised ¼
�lX

NX

XNX

i¼1

n
c kJ<X ;i

� �
� c kJ<U ;i

� �
� c kC<X ;i

� �
þ c kC<U ;i

� �

þlJ½� ln �ðkJ<X ;i
; j
<xi
; J<XÞ þ ln �ðkJ<U ;i

; j
<xi
; J<UÞ�

þlC½ ln �ðkC<X ;i
; c<xi

;C<XÞ � ln �ðkC<U ;i
; c<xi

;C<UÞ�
o
:

ð18Þ

Here kA,i is the number of neighbours used for the ith sample in set A for the corresponding

entropy estimator for that set of samples. By theorems 3 and 4 of [75] this estimator (and, by

implication, the 4KL estimator) is consistent. Application of the generalised estimator requires

a scheme for choosing the kA,i at each sample. Work on constructing H� kNN estimators for

mutual information [53] and KL divergence [75] has found advantages in having certain H�

terms share the same or similar radii, e.g. resulting in lower overall bias due to components of
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biases of individual H� terms cancelling. Given that we have four H� terms, there are a number

of approaches we could take to sharing radii.

Our algorithm, which we refer to as the CT estimator of TE— _̂TY!XjZ;CT—is specified in

detail in Box 1. Our algorithm applies the approach proposed in [75] (referred to as the ‘bias

improved’ estimator in that work) to each of the Kullback-Leibler divergence terms separately.

In broad strokes, whereas Eq (17) uses the same k for each nearest-neighbour search, this esti-

mator uses the same radius for each of the two nearest-neighbour searches relating to a given

KL divergence term. In practice, this requires first performing searches with a fixed k in order

to determine the radius to use. As such, we start with a fixed parameter kglobal, which will be

Box 1: Algorithm for the CT TE estimator
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the minimum number of nearest neighbours in any search space. For each joint sample at a

target event, that is, each j
<xi

in J<X, we perform a kglobalNN search in this same set J<X and

record the distance to the kglobal-th nearest neighbour (line 3 of Box 1). We perform a similar

kglobalNN search for j
<xi

in the set of joint samples independent of target activity J<U, again

recording the distance to the kglobal-th nearest neighbour (line 4). We define a search radius as

the maximum of these two distances (line 5). We then find the number of points in J<X that

fall within this radius of j
<xi

and set kJ<X, i as this number (line 6). We also find twice the dis-

tance to the kJ<X, i-th nearest neighbour, which is the term �ðkJ<X ;i
; j
<xi
; J<XÞ in Eq (18) (line 7).

Similarly, we find the number of points in J<U that fall within the search radius of j
<xi

and set

kJ<U, i as this number (line 8). We find twice the distance to the kJ<U, i-th nearest neighbour,

which is the term �ðkJ<U ;i
; j
<xi
; J<UÞ (line 9).

In the majority of cases, only one of these two � terms will be exactly twice the search radius,

and its associated kA,i will equal kglobal. In such cases, the other � will be less than twice the

search radius and its associated kA,i will be greater than or equal to kglobal.

The same set of steps is followed for each conditioning history embedding that was con-

structed at an event in the target process, that is, each c<xi
in C<X, over the sets C<X and C<U

(lines 10 through 16 of Box 1).

The values that we have found for kJ<X,i, kJ<U,i, kC<X,i, kC<U,i, �ðkJ<X ;i
; j
<xi
; J<xi
Þ,

�ðkJ<U ;i
; j
<xi
; J<UÞ, �ðkC<X ;i

; c<xi
;C<xi

Þ and �ðkC<U ;i
; c<xi

;C<UÞ can be plugged into Eq (18) (lines

17 and 19 of Box 1).

Handling dynamic correlations. The derivation of the kNN estimators for entropy and

cross entropy given above assumes that the points are independent [53]. However, nearby

interspike intervals might be autocorrelated (e.g. during bursts), and indeed our method for

constructing history embeddings (see Selection and Representation of Sample Histories for

Entropy Estimation) will incorporate the same interspike intervals at different positions in

consecutive samples. This contradicts the assumption of independence. In order to satisfy the

assumption of independence when counting neighbours, conventional neighbour counting

estimators can be made to ignore matches within a dynamic or serial correlation exclusion

window (a.k.a. Theiler windows [92, 93]).

For our estimator, we maintain a record of the start and end times of each history embedding,

providing us with an exclusion window. The start time is recorded as the time of the first event

that formed part of an interval which was included in the sample. This event could come from

the embedding of any of the processes from which the sample was constructed. The end of the

window is the observation point from which the sample is constructed. When performing near-

est neighbour and radius searches (lines lines 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15 and 16 of Box 1 and

line 6 of Box 2), any sample whose exclusion window overlaps with the exclusion window of the

original data point around which the search is taking place is ignored. Subtleties concerning

dynamic correlation exclusion for surrogate calculations are considered in the next subsection.

Local permutation method for surrogate generation

A common use of this estimator would be to ascertain whether there is a non-zero conditional

information flow between two components of a system. When using TE for directed functional

network inference, this is the criteria we use to determine the presence or absence of a connec-

tion. Given that we are estimating the TE from finite samples, we require a statistical test in

order to determine the significance of the measured TE value. Unfortunately, analytic results

do not exist for the sampling distribution of kNN estimators of information theoretic

PLOS COMPUTATIONAL BIOLOGY Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008054 April 19, 2021 34 / 45

https://doi.org/10.1371/journal.pcbi.1008054


quantities [48]. This necessitates a scheme for generating surrogate samples from which the

null distribution can be empirically constructed.

It is instructive to first consider the more general case of testing for non-zero mutual infor-

mation. As the mutual information between X and Y is zero if and only X and Y are indepen-

dent, testing for non-zero mutual information is a test for statistical dependence. As such, we

are testing against the null hypothesis that X and Y are independent (X⫫ Y) or, equivalently,

that the joint probability distribution of X and Y factorises as p(X, Y) = p(X)p(Y). It is straight-

forward to construct surrogate pairs ð�x;�yÞ that conform to this null hypothesis. We start with

the original pairs (x, y) and resample the y values across pairs, commonly by shuffling (in con-

junction with handling dynamic correlations, as per Implementation). This shuffling process

will maintain the marginal distributions p(X) and p(Y), and the same number of samples, but

will destroy any relationship between X and Y, yielding the required factorisation for the null

Box 2: Algorithm for the local permutation method for surrogate
generation.

Input : /* The joint history embeddings at the target events */

J<X = fj<xigNXi=1 = fx<xi ;y<xi ;z<xigNXi=1
/* The joint history embeddings at the sampled points */

J<U;surr = fj<uig
NU;surr
i=1 = fx<ui ;y<ui ;z<uig

NU;surr
i=1

kperm

Output : J<X;surr

/* Set to keep a record of the used indices in the independently sampled embeddings. */

1 UÃ ; /* Initialise this set to be empty */
2 J<X;surrogate Ã ; /* Initialise the surrogate embeddings as empty */
3 I Ã figNXi=1 /* Initialise the indices to iterate over */
/* Shuffle the indices to ensure that different samples are assigned duplicate source componenents

each time surrogate sample sets are generated. */

4 I Ã shuffle(I)

5 for i 2 I do
/* Search for the nearest neighbours in the set of embeddings at sampled points;ignoring the

source components. The function findIndicesOfNearestNeighbours(k;a;B) finds the indices of

the k nearest neighbours of the point a in the set B. */

6 N Ã findIndicesOfNearestNeighbours
³
kperm; fx<xi ;z<xig; fx<uj ;z<uj g

NU;surr
j=1

´

/* Create a set of candidate indices by removing those already used. */

7 E Ã N n (N \U)

8 if kEk > 0 then
9 hÃ chooseRandomElement (E)

10 end

11 else

12 hÃ chooseRandomElement (N)

13 end

/* Append the set of surrogate samples with an embedding composed of the original target and

conditioning components (at index i);but with the source component swapped for that at index h

of the independently sampled embeddings. */

14 J<X;surrogate Ã J<X;surrogate [ fx<xi ;y<uh ;z<xig
/* Add the index that we chose to the set keeping track of used indices */

15 UÃ U [ h
16 end
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hypothesis. One shuffling process produces one set of surrogate samples; estimates of mutual

information on populations of such surrogate sample sets yields a null distribution for the

mutual information.

As transfer entropy is a conditional mutual information (IðXt ; Y<t jX<t;Z<tÞ), we are test-

ing against the null hypothesis that the current state of the target Xt is conditionally independent

of the history of the source Y<t (Xt⫫Y<t jX<t;Z<t). That is, the null hypothesis states that the

joint distribution factorises as: pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

Historically, the generation of surrogates for TE has been done by either shuffling source

history embeddings or by shifting the source time series (see discussions in e.g. [4, 94]). These

approaches lead to various problems. These problems stem from the fact that they destroy any

relationship between the source history (Y<t) and both the target (X<t) and conditioning

(Z<t) histories. As such, they are testing against the null hypothesis that the joint distribution

factorises as: pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<tÞ [48]. The problems associated

with this factorisation become particularly pronounced when we are considering a system

whereby the conditioning processesZ<t drive both the current state of the target Xt as well as

the history of the source Y<t. This can lead to Y<t being highly correlated with Xt, but condi-

tionally independent. This is the classic case of a “spurious correlation” between Y<t and Xt

being mediated through the “confounding variable”Z<t. If, in such a case, we use time shifted

or shuffled source surrogates to test for the significance of the TE, we will be comparing the TE

measured when Xt and Y<t are highly correlated (albeit potentially conditionally independent)

with surrogates where they are independent. This subtle difference in the formulation of the

null may result in a high false positive rate in a test for conditional independence. An analysis

of such a system is presented in the third subsection of Results. Alternately, if we can generate

surrogates where the joint probability distribution factorises correctly and the relationship

between Y<t and the histories X<t andZ<t is maintained, then Y<t will maintain much of its

correlation with Xt through the mediating variablesZ<t and X<t. We would anticipate condi-

tional independence tests using surrogates generated under this properly formed null to have a

false positive rate closer to what we expect.

Generating surrogates for testing for conditional dependence is relatively straightforward

in the case of discrete-valued conditioning variables. If we are testing for dependence between

X and Y given Z, then, for each unique value of Z, we can shuffle the associated values of Y.

This maintains the distributions p(X|Z) and p(Y|Z) whilst, for any given value of Z, the rela-

tionship between the associated X and Y values is destroyed.

The problem is more challenging when Z can take on continuous values. However, recent

work by Runge [48], demonstrated the efficacy of a local permutation technique. In this

approach, to generate one surrogate sample set, we separately generate a surrogate sample

ðx;�y; zÞ for each sample (x, y, z) in the original set. We find the kperm nearest neighbours of z
in Z: one of these neighbours, z0, is chosen at random, and y is swapped with the associated y0

to produce the surrogate sample (x, y0, z). In order to reduce the occurrence of duplicate y val-

ues, a setU of used indices is maintained. After finding the kperm nearest neighbours, those

that have already been used are removed from the candidate set. If this results in an empty can-

didate set, one of the original kperm candidates are chosen at random. Otherwise, this choice is

made from the reduced set. As before, a surrogate conditional mutual information is estimated

for every surrogate sample set, and a population of such surrogate estimates provides the null

distribution.

This approach needs to be adapted slightly in order to be applied to our particular case,

because we have implictly removed the target variable (whether or not the target is spiking)
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from our samples via the novel Bayesian inversion. We can rewrite Eq (8) as:

_TY!XjZ ¼
�lXEX ln

pXðx<x; y<x;z<xÞ

pXðx<x;z<xÞpUðy<x j x<x;z<xÞ

� �

: ð19Þ

This makes it clear that we are testing whether the following factorisation holds:

pXðx<x; y<x;z<xÞ ¼ pXðx<x;z<xÞpUðy<x j x<x;z<xÞ ð20Þ

(recall the difference between probability densities at target events pX and those not condi-

tioned at target events pU). In order to create surrogates J<X,surr that conform to this null

distribution, we resample a new set from our original data in a way that maintains the relation-

ship between the source histories and the histories of the target and conditioning processes,

but decouples (only) the source histories from target events. (As above, simply shuffling the

source histories across J<X or shifting the source events does not properly maintain the rela-

tionship of the source to the target and conditioning histories). The procedure to achieve

this is detailed in Box 2. We start with the samples at target events J<X ¼ fx<xi
; y

<xi
;z<xi

g
NX

i¼1

and resample the source components y
<xi

as follows. We first construct a new set J<U;surr ¼

fx<ui
; y

<ui
;z<ui

g
NU;surr

i¼1
from the set Usurr of NU,surr points sampled independently of events in

the target. This set is constructed in the same manner as J<U, although we might choose to

change the number of sample points (NU,surr 6¼ NU) at which the embeddings are constructed,

or whether the points are placed randomly or at fixed intervals. For each original sample j
<xi

from J<X, we then find the nearest neighbours fx<ui
;z<ui

g
kperm
i¼1

of fx<xi
;z<xi

g in J<U,surr (line 9

of Box 12), select y
<uj

randomly from amongst the kperm nearest neighbours (line 6 or Box 2),

and add a sample fx<xi
; y

<uj
;z<xi

g to J<X, surr (line 14). The construction of such a sample is

also displayed in Fig 11. Similar to Runge [48], we also keep a record of used indices in order

Fig 11. Diagrammatic representation of the local permutation surrogate generation scheme. For our chosen sample j
<xi

we find a j
<uh
2 J<U;surr

where we have that the x<xi
component of j

<xi
is similar to the x<uh

component of j
<uh

andz<xi
component of j

<xi
is similar to thez<uh

component of

j
<uh

. We then form a single surrogate sample by combining the x<xi
andz<xi

components of j
<xi

with the y
<uh

component of j
<uh

. Corresponding

colours of the dotted interval lines indicates corresponding length. The grey boxes indicate a small delta.

https://doi.org/10.1371/journal.pcbi.1008054.g011
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to reduce the incidence of duplicate y
<uj

(line 15). For each redrawn surrogate sample set

J<X, surr a surrogate conditional mutual information is estimated (utilising the same J<U

selected independently of the target events as was used for the original TE estimate) following

the algorithm outlined earlier; the population of such surrogate estimates provides the null dis-

tribution as before.

The p values are calculated by constructing Nsurrogates surrogates by the algorithm just

described. The TE is estimated on these surrogates and compared to the TE estimated on

the original embeddings. The p value is then the number of estimates on surrogate embed-

dings which were larger than the estimate on the original data divided by the total number

of surrogates.

Finally, we note an additional subtlety for dynamic correlation exclusion for the surrogate

calculations. Samples in the surrogate calculations will have had their history components

originating from two different time windows. One will be from the construction of the original

sample and the other from the sample with which the source component was swapped. A

record is kept of both these exclusion windows and, during neighbour searches, points are

excluded if their exclusion windows intersect either of the exclusion windows of the surrogate

history embedding.

Implementation

The algorithms shown in Boxes 2 and 1 as well as all experiments were implemented in the

Julia language. The implementation of the algorithms is freely available at the following reposi-

tory: github.com/dpshorten/CoTETE.jl. Scripts to run the experiments in the paper can be

found here: github.com/dpshorten/CoTETE_experiments. Implementations of kNN informa-

tion-theoretic estimators have commonly made use of KD-trees to speed up the nearest neigh-

bour searches [94]. A popular Julia nearest neighbours library (NearestNeighbors.jl, available

from github.com/KristofferC/NearestNeighbors.jl) was modified such that checks for dynamic

exclusion windows (see Handling Dynamic Correlations) were performed during the KD-tree

searches when considering adding neighbours to the candidate set.

Assumptions used to conclude conditional independence or dependence

We summarise here the conditions and assumptions that allow us to draw conclusions about

conditional independence relationships from the structure in a model. Although these rela-

tionships are obvious in some of our examples (see Results), they are less so in others. If we

consider, for now, the discrete-time case, then for a sufficiently small Δt there will be no

instantaneous effects. This implies that the causal relationships in these models can be repre-

sented by a Directed Acyclic Graph (DAG); specifically a Dynamic Bayesian Network with

multiple time slices and connections only going forward in time (see [95]). In order to con-

clude that connected nodes will be statistically dependent we need to use the contraposition

of the faithfulness assumption [55, 56, 57]. This assumption states that, if two nodes are con-

ditionally independent, given some conditioning set S, then they are d-separated [55] given

the same set. This in turn implies that if there exists some set of conditioning processes by

which a node is conditionally independent of another, then there is no direct causal link

between these nodes. It is worth asking how reasonable the faithfulness assumption is. After

all, particularly for the case of deterministic dynamics, it is easy to construct examples

whereby the present state of each of a pair of processes is determined by the history of the

other process, but where the present state of each process is conditionally independent of the

history of the other [96, 97] (e.g. one can have zero TE when a real causal connection exists,

for instance, the system xt = yt−1, yt = xt−1, x1 = 0 and y1 = 1). Such examples violate
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faithfulness. However, determinism is not a realistic assumption for biological systems or

their models. Moreover, it can be shown that almost all discrete probability distributions

(such as those of spike trains) satisfy faithfulness. Indeed, the set of discrete probability dis-

tributions that violate this assumption has measure zero [98]. In order to determine that the

present state of a process is independent of an unconnected source, when conditioning on its

direct causal parents, we need to assume sufficiency and the causal Markov condition [55,

56, 57]. Sufficiency assumes that we have observed all relevant variables (which is easy to

meet if we are defining the model). The causal Markov condition states that d-separation

implies conditional independence. Conditioning on all the direct causal parents of a variable

provides us d-separation. In summary then, under these conditions the directed structural

connections designed in our models are expected to have a one-to-one correspondence with

directed conditional dependence (or independence, in their absence), when appropriately

conditioned on other nodes. Correctly differentiating conditional dependence and indepen-

dence then, in alignment with the underlying structural connections in these models, pro-

vides an important validation of the correctness of the estimators.

Specification of leaky-integrate-and-fire model

What follows is a specification of the Leaky-Integrate-and-Fire (LIF) model which we used in

the Results subsection Scaling of Conditional Independence Testing in Higher Dimensions.

The membrane potential evolves according to:

t
dV
dt
¼ V0 � V: ð21Þ

When V crosses the threshold Vthreshold, the timestamp of crossing is recorded as a spike. V
is then set to Vreset and the evolution of the membrane potential is subsequently paused for the

duration of the hard refractory period. In the case of excitatory connections, when a presynap-

tic spike occurs, V is instantaneously increased by the connection strength of the synapse

(specified in millivolts) at the delay specified by the connections delay parameter. Inhibitory

connects behave in the same manner, but lead to a decrease in V. We use the initial condition

V(t = 0) = V0.

Supporting information

S1 Fig. Longer embeddings on homogeneous. The results of an identical experimental setup

to those displayed in Fig 2, but with history embedding lengths of lX = lY = 3.

(TIFF)

S2 Fig. Different embeddings on discrete homogeneous. The results of an identical experi-

mental setup to those displayed in Fig 3, but where the history embedding lengths (l and m)

were set to cover the distance of an average interspike interval. Specifically, these lengths were

1, 2, 5 and 10, corresponding to the Δt values of 1.0, 0.5, 0.2 and 0.1.

(TIFF)

S3 Fig. Different embeddings on continuous coupled. The results of an identical experimen-

tal setup to those displayed in Fig 4B, but where the history embedding length of the source is

set to lY = 3.

(TIFF)

S4 Fig. Conditional independence scaling at constant rate. The results of an identical experi-

mental setup to those displayed in Fig 8, but with a constant rate of 20 Hz in all the stimuli.

This removes the correlation between the unconnected source and the firing of the target. The
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top row shows results of the continuous-time approach, the bottom shows results of the dis-

crete-time approach.

(TIFF)

S5 Fig. Independence test with no conditioning. The results of an identical experimental

setup to those displayed in Fig 8, but where the background processes are not included in the

conditioning set (the conditioning set is left empty). This represents the nature of the inference

task at the early stage of a greedy network inference algorithm being applied to a node. We see

that the continuous-time estimator performs well on inhibitory connections in this case. Due

to the change in dimension, different source and target embedding lengths (l and m) as well

as bin widths Δt were used for the discrete-time estimator. These were set at l = m = 12 and

Δt = 2ms. The top row shows results of the continuous-time approach, the bottom shows

results of the discrete-time approach.

(TIFF)

S6 Fig. Conditional independence testing with the discrete-time estimator and permuta-

tion-based surrogates. The results of identical experimental setups to those displayed in the

bottom rows of Fig 8, S4 and S5 Figs. As the bottom rows of all of these figures show the results

of the discrete-time estimator, the plots in this figure similarly all display the results of runs of

the discrete-time estimator. However, where the other plots make use of the source time-shift

method for surrogate generation (as is traditionally used in conjunction with TE estimators),

these plots make use of a standard conditional-permutation-based surrogate generation

scheme for categorical variables [64]. The top row of this figure corresponds to the bottom

row of Fig 8, the middle row corresponds to the middle row of S4 Fig and the bottom row cor-

responds to the bottom row of S5 Fig.

(TIFF)

S7 Fig. Pyloric STG continuous different embedding lengths. The results of an identical

experimental setup to those displayed in Fig 9C, but where different embeddings lengths

(lX, lY and lZ1
) are used. The left plot shows lX ¼ lY ¼ lZ1

¼ 2 and the right plot shows

lX ¼ lY ¼ lZ1
¼ 4.

(TIFF)

S8 Fig. Pyloric STG continuous different dataset sizes. The results of an identical experi-

mental setup to those displayed in Fig 9C, but where different numbers of target spikes NX are

used. The left plot shows NX = 1 × 4 and the right plot shows NX = 3.5 × 4.

(TIFF)

S1 Text. Description of the biophysical neural network model insipred by the Pyloric

STG.

(PDF)
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