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We study several Bayesian inference problems for irreversible stochastic epidemic models on networks
from a statistical physics viewpoint. We derive equations which allow us to accurately compute the
posterior distribution of the time evolution of the state of each node given some observations. At difference
with most existing methods, we allow very general observation models, including unobserved nodes, state
observations made at different or unknown times, and observations of infection times, possibly mixed
together. Our method, which is based on the belief propagation algorithm, is efficient, naturally distributed,
and exact on trees. As a particular case, we consider the problem of finding the “zero patient” of a
susceptible-infected-recovered or susceptible-infected epidemic given a snapshot of the state of the
network at a later unknown time. Numerical simulations show that our method outperforms previous ones
on both synthetic and real networks, often by a very large margin.
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Tracing epidemic outbreaks in order to pin down their
origin is a paramount problem in epidemiology. Compared
to the pioneering work of John Snow on 1854 London’s
cholera hit [1], modern computational epidemiology can
rely on accurate clinical data and on powerful computers
to run large-scale simulations of stochastic compartment
models. However, like most inverse epidemic problems,
identifying the origin (or seed) of an epidemic outbreak
remains a challenging problem even for simple stochastic
epidemic models, such as the susceptible-infected (SI)
model and the susceptible-infected-recovered (SIR) model.
Several studies have recently proposed maximum like-

lihood estimators based on various kinds of information:
topological centrality [2–4], measures of the distance
between observed data and the typical outcome of prop-
agations from given initial conditions [5], or the estimation
of the single most probable path [6]. Other estimators are
derived under strong simplifying assumptions on the graph
structure or on the spreading process [7,8]. Notably, for a
continuous time diffusion model with Gaussian transmis-
sion delays, the estimator in [8] is optimal for trees. An
interesting systematic approach is dynamic message pass-
ing (DMP) [9], which consists of a direct approximation
and maximization of the likelihood function. DMP makes
use of an approximate description of the stochastic process,
inspired by statistical physics and relying on some decor-
relation assumption, which is very accurate in providing
local probability marginals [10]. However, as noted by the
authors, it has two drawbacks. First, the space of initial
conditions considered must be explored exhaustively.
Second, DMP relies on a further assumption of single-site
factorization of the likelihood function, which is not

necessarily consistent with the more accurate underlying
approximation in [10].
In this Letter we derive the belief propagation (BP)

equations for the probability distribution of the time
evolution of the state of the system conditioned on some
observations. BP only relies on a decorrelation assumption
similar to the one of [10], and is therefore exact on trees.
Extensive numerical simulations show that it is typically a
very good approximation on general graphs. BP can be
used to identify the origin of an epidemic outbreak in the
SIR, SI, and similar models, even with multiple infection
seeds and incomplete or heterogeneous information.
The SIR model on graphs.—We consider the susceptible-

infected-recovered model of spreading, a stochastic
dynamical model in discrete time defined over a graph
G ¼ ðV; EÞ. At time t a node i can be in one of three states
represented by a variable xti ∈ fS; I; Rg. At each time step
t, each infected node i infects each one of its susceptible
neighbors fj ∈ ∂i∶xtj ¼ Sg with independent probabilities
λij ∈ ½0; 1�; then, node i recovers with probability
μi ∈ ½0; 1�. The dynamics is irreversible, as a given node
can only undergo the transitions S → I → R. Two impor-
tant special cases of SIR are the independent cascades
model (obtained when μi ≡ 1) [11] and the susceptible-
infected model (obtained when μi ≡ 0).
SIR dynamics as a graphical model and Bayesian

inference.—Assume that a certain set of nodes initiates
the infection at time t ¼ 0, i.e., with x0i ¼ I. A realization
of the SIR process can be univocally expressed in terms
of a set of independent recovery times gi, distributed as
GiðgiÞ ¼ μið1 − μiÞgi , and conditionally independent trans-
mission delays sij, following a geometric distribution
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ωijðsijjgiÞ ¼ λijð1 − λijÞsij for sij ≤ gi and ωijð∞jgiÞ ¼P
s>giλijð1 − λijÞs. The infection times ti can be determin-

istically computed by imposing the condition 1 ¼ ϕi ¼
δðti; 1½x0i ¼ S�ðminj∈∂iftj þ sjig þ 1ÞÞ for every i.
The distribution of infection and recovery times t, g

given the initial state x0 can thus be written as

Pðt;gjx0Þ ¼
X

s

Pðtjx0;g; sÞPðsjgÞPðgÞ

¼
X

s

Y

i;j

ωij

Y

i

ϕiGi: (1)

In the inference problem we initially assume that (i) at time
t ¼ T the state of every node xTi ∈ fS; I; Rg is known,
and (ii) at t ¼ 0 the state of every node was extracted
independently from the prior distribution γiðx0i Þ ¼
γ1½x0i ¼ I� þ ð1 − γÞ1½x0i ¼ S�. Using Bayes’ theorem
and (1), the posterior can be expressed as

Pðx0jxTÞ ∝
X

t;g

PðxT jt;gÞPðt;gjx0ÞPðx0Þ

¼
X

t;g;s

Y

i;j

ωij

Y

i

ϕiGiγiζi; (2)

where we exploited the fact that the state xT at time T
given a set (t, g) of infection and recovery times follows
a deterministic law PðxT jt;gÞ ¼ Q

iζiðti; gi; xTi Þ, where
ζi ¼ 1½xTi ¼ S; T < ti� þ 1½xTi ¼ I; ti ≤ T < ti þ gi�þ
1½xTi ¼ R; ti þ gi ≤ T�.

Belief propagation equations for the posterior.—Finding
the marginals of (2) is computationally hard, and we
propose to approximate them using BP. We will borrow
from graphical models the factor graph representation of
the dependence of the factors on their variables in a
generalized Boltzmann distribution. It is convenient to
introduce the new variables tj0 ¼ tj þ sji and eliminate
the sij and sji parameters from the graphical model. By
defining the factors ϕij ¼ ωijðt0i − tijgiÞωjiðt0j − tjjgjÞ and
ϕi ¼ δðti; 1½x0i ¼ S�ðminj∈∂ift0jg þ 1ÞÞ, the posterior
becomes Pðx0jxTÞ ∝ P

t;t0;g
Q

i<j ϕij
Q

iϕiGiγiζi.
Note that even in the simple deterministic case

μi ≡ λij ≡ 1, where t0i ¼ ti, the graphical model corre-
sponding to the factors ϕi has the loopy representation
displayed in Fig. 1(b). The representation can be

(a) (b) (c)

(d) (e)

FIG. 1. Factor graph representations for irreversible dynamics:
full squares represent the factors of a generalized Boltzman
distribution and ellipses the variables on which they depend.
(a) Original graph. (b) Loopy, naive factor graph for a deter-
ministic dynamics. (c) Disentangled dual tree factor graph.
(d) Factor graph for the SIR model given in (3), with known
epidemic age. (e) Factor graph representation with unknown
epidemic age.
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FIG. 2 (color online). Comparison between BP and DMP,
DMPr, and Jordan methods. Each point is an average over
1000 epidemics in random graphs with N ¼ 1000. Panels (a)–
(b) are for SFG with average degree hki ¼ 4, recovery probability
μ ¼ 0.5 and observation time T ¼ 5. Panels (c)–(f) are for RRG
with k ¼ 4, μ ¼ 0.5, and T ¼ 10. (a) and (c) Probability of
finding the true origin i0 of the epidemics as a function of the
average epidemics size NIR. (b) and (d) Normalized rank of the
true origin ðranki0Þ=NIR as a function of the transmission
probability λ. The normalized epidemics size NIR=N is also
plotted (purple, right axis) vs λ. For very large epidemics BP may
fail to converge in (a) and (b) within the specified number of
iterations [the convergence probability is plotted in green in (a)],
but relevant information is still present in the (unconverged)
marginals. (e) Probability of finding the true origin of the
epidemic as a function of the fraction of unobserved sites ξ
for transmission probability λ ¼ 0.5 and recovery probability
μ ¼ 1. (f) Absolute rank given by each algorithm to the true
origin as a function of ξ.
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disentangled (see also [12]) by grouping pairs of activation
times (ti, tj) in the same variable node [see Fig. 1(c)], which
is crucial to make the BP approximation more accurate,
and exact on trees. Similarly, for the general case (2), we
introduce the triplets (gðjÞi , tðjÞi , t0j) and group the constraints
ϕi with compatibility checks into the factor node ψ i ¼
ϕiðti; t0∂iÞ

Q
j∈∂iδðtðjÞi ; tiÞδðgðjÞi ; giÞ [see Fig. 1(d)] to obtain

an effective model

Q ¼ 1

Z

Y

i<j

ϕij

Y

i

ψ iGiγiζi; (3)

so that Pðx0jxTÞ ∝ P
t;t0;gQðg; t; t0;x0Þ. As the topology

of the factor graph now mirrors the one of the original
network, this approach allows the exact computation of
posterior marginals for the SIR model on acyclic graphs.
We derived the BP equations for (3) [13]. A single

BP iteration can be computed in time OðTG2jEjÞ, where G
is the maximum allowed recovery time, which can be
assumed constant for a geometric distribution G. Once the
BP equations converge, the marginal of the infection time ti
of each node are obtained, and nodes can be ranked by
the posterior probability of being a seed of the epidemics
Pðx0i ¼ IjxTÞ in decreasing order.
Identification of a single seed.We compared the infer-

ence performance of BP, of DMP, of a DMP variant we
call DMPr [13] and of the Jordan centrality method [2–4]
on random graphs. We considered random regular graphs
(RRG) with degree k ¼ 4 and preferential attachment
scale-free graphs (SFG) with average degree hki ¼ 4, both
with N ¼ 1000 nodes and homogeneous propagation
probability λij ≡ λ and recovery probability μi ≡ μ.

Simulations summarized in Figs. 2(a)–2(d) show that
BP generally outperforms the other methods by a large
margin [13].
Incomplete information.—In a more realistic setup, much

of the information we assumed to know can be missing.
First, a fraction ξ of the nodes might be unobserved.
Figures 2(e) and 2(f) show the performance of the four
methods in this case. BP finds the true origin in more than
70% of the instances with up to ξ ¼ 60%, and it outper-
forms the other three methods for almost all ξ.
Second, the initial time T0 and thus the age ΔT ¼

T − T0 of the epidemics could be unknown. For a given
upper bound on ΔT, it suffices to consider the dynamical
process to start from the all-susceptible state but to allow
nodes to be spontaneously infected at an arbitrary time.
This is equivalent to the addition of a fictitious neighbor to
every node with no constraint ψ i in its activation time but
with a prior probability of spontaneous infection given by a
new factor ϵiðg00i ;t00i ;tiÞ¼ δðt00i ;∞Þð1−γÞþ½1−δðt00i ;∞Þ�γ
[see Fig. 1(e)]. An example of inference for an epidemic
with transmission and recovery probabilities λ ¼ 0.7 and
μ ¼ 0.6 is shown in Fig. 3. The plot shows the large
correlation between true and inferred infection times, and
also that the true origin (which was not observed) corre-
sponds to the individual with largest inferred probability.
Finally, the proposed approach can be also used to

estimate the epidemic parameters. Indeed, the partition
function Z in (3) is proportional to the likelihood of the
unknown parameters. The log-likelihood logZ is well
approximated by the opposite of the Bethe free energy,
which can be computed easily as a function of the BP
messages at the fixed point. We show results for two
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FIG. 3 (color online). Examples of inference with incomplete information on a RRG with N ¼ 1000, k ¼ 4. Left: inference
with λ ¼ 0.7, μ ¼ 0.6, γ ¼ 10−6, from observations fraction 1 − ξ ¼ 0.6 at time T ¼ 0 for an epidemic with T0 ¼ −8 (unknown to BP).
Each colored block (R: recovered, I: infected and X: unknown) corresponds to a vertex, ordered in the horizontal axis by its real
infection time given in the vertical axis. The mean and standard deviation of their BP posterior marginal distribution of infection time
is plotted (black dots and error bars) along with the marginal posterior probability of spontaneous infection (orange, circles, right axis).
Right: Inference of epidemic parameters. Heat-plot of the likelihood density of the parameters for two virtual epidemics. The first
one with λ ¼ 0.7, μ ¼ 0.6, ΔT ¼ 8 (size NIR ¼ 653) shows a maximum of the estimated likelihood at λ̂ ¼ 0.695 and μ̂ ¼ 0.605, and
the second with λ ¼ 0.5, μ ¼ 0.5, ΔT ¼ 10 (size NIR ¼ 462) shows a maximum at λ̂ ¼ 0.5 and μ̂ ¼ 0.52.
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different realizations of epidemics in Fig. 3. BP equations
are iterated for equally spaced parameters μ and λ in ½0; 1�,
and the Bethe free energy is computed after convergence.
In both cases the epidemic age and the origin are correctly
inferred and the parameters are recovered with good
accuracy. In a real setting the search for the point of
maximum likelihood can be performed with an expect-
ation-maximization scheme rather than with an exhaustive
search.
Multiple seeds.—If the epidemics initiate at multiple

seeds, methods based on the exhaustive exploration of
initial states like DMP suffer a combinatorial explosion.
This problem does not affect BP, as the trace over initial
conditions is performed directly within the framework.
Figure 4 displays experiments with multiple seeds on RRG,
showing that effective inference can also be achieved in this
regime [13].
Evolving networks.—We studied the case of time-

dependent transmission probabilities λij. This scenario
can be analyzed by considering a distribution of trans-
mission delays ωijðsijjgi; tiÞ depending explicitly on infec-
tion times ti [13]. We considered two real-world data sets of
time-stamped contacts between pairs of individuals, which
we aggregated into ΔT effective time steps. (i) A data set
describing 20 s face-to-face contacts in an exhibition [14].
We employed the following parameters: probability of
contagion in a 20 s interval λ20 s

ij ¼ 0.2, recovery proba-
bility μ20 s ¼ 0.0014. (ii) A data set of sexual encounters
self-reported on a website [15]. We set the probability of
transmission in a single contact as λcontactij ¼ 0.2 (within the
range considered in [15]) and choose μyear ¼ 0.5. Results
on the inference of simulated epidemics on both data sets
are summarized in Table I showing a striking difference in
favor of BP (see full results in [13]). We tried to determine
if the performance of the inference process was favored or
hindered by temporal and spatial correlations present in the

data set that are known to affect significantly the size of
the outbreak [16] in some cases. However, after destroying
the correlations in one of such cases, we found that the
performance of BP was essentially unchanged [13].
Conclusions.—We introduced a systematic, consistent,

and computationally efficient approach to the calculation of
posterior distributions and likelihood of model parameters
for a broad class of epidemic models. Besides providing
the exact solution for acyclic graphs, we have shown the
approach to be extremely effective also for synthetic and
real networks with cycles, both in a static and a dynamic
context. More general epidemic models such as the
Reed-Frost model [17] that include latency and incubation
times, and other observation models [6,8] can be analyzed
with a straightforward generalization by simply defining
appropriate recovery μi and transmission probabilities λij
that depend on the time after infection and by employing
modified observation laws ζi.
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