
Information theory and
inference

Simple paths to survive the course

by Giulia Campesan, Filippo Conforto, Tommaso Faorlin,

Alessandro Marcomini, Lorenzo Rosset, Andrea Zanola.

iii

We are six students enrolled in the Physics of Data master degree at the University of Padova, Italy. From

this year on, our master provides lectures on Information Theory and Inference, held by two international

expert scientists that have been working on these topics for several years. Since the arguments tackled

seemed very interesting, we decided to put the efforts together and work on some high quality notes for the

whole course, to allow the other students to study and have a different point of view on the various arguments

treated. We hope you will enjoy our vegetable soup with melt cheese.

Giulia Campesan

Filippo Conforto

Tommaso Faorlin

Alessandro Marcomini

Lorenzo Rosset

Andrea Zanola

Padova, July 10, 2021

July 10, 2021

Version 1.0

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

I Carlo Albert 1

1 Basics Principles . 3

1.1 Bayesian Statistics 3

1.1.1 The setup . 3

1.1.2 Step 1: Prior . 4

1.1.3 Step 2: Calibration . 4

1.1.4 Step 3: Probabilistic predictions . 5

1.2 Monte Carlo methods 5

1.2.1 General building blocks of samplers . 6

2 Metropolis algorithms . 9

2.1 Markov Chain Monte Carlo 9

2.1.1 From global to local sampling . 9

2.1.2 The problem of correlations . 12

2.2 Metropolis algorithm 14

2.3 Metropolis algorithm tuning 17

2.3.1 Haario algorithm . 17

2.3.2 Vihola algorithm . 19

2.3.3 EMCEE sampler . 20

2.4 Gibbs Sampling 22

3 Hamiltonian Monte Carlo . 25

3.1 Basic Concepts 25

3.2 Advanced Hamiltonian Monte Carlo 27

3.2.1 Example: Stochastic differential equation (SDE) model . 27

3.2.2 Riemann Manifold Hamiltonian Monte Carlo . 31

4 Approximate Bayesian Computation . 37

4.1 Basic concepts 37

4.1.1 Summary statistics: basic idea . 38

4.2 Tolerance: the SABC algorithm 38

4.2.1 Adaptive schedule . 41

4.2.2 SABC tunable parameters . 45

4.3 Summary statistics 46

4.3.1 The exponential family . 46

4.3.2 Phases and phase transitions in inference problems . 48

5 ML-approaches to Bayesian Inference . 53

5.1 Introduction 53

5.2 The variational Bayes method 53

5.3 ML alternatives to ABC - I 55

5.4 ML alternatives to ABC - II 57

II Jeff Byers 59

6 The Bayesian approach . 61

6.1 On the Bayesian interpretation 61

6.1.1 Physics as Encoding, Decoding and Bottlenecks . 61

6.1.2 The Bayes’ Theorem . 62

6.1.3 What is probability? . 63

6.1.4 From sets to space of models . 64

6.1.5 Parameters estimation: Gull’s problem solution . 65

6.1.6 Parameters estimation: Bretthrost’ spectral analysis . 66

6.2 Conjugate priors 67

6.2.1 Discrete distributions: solving the Coin Tossing problem . 67

6.2.2 Continuous distributions: Gaussian-shaped likelihood . 68

6.2.3 Predictive posteriors . 69

7 Entropy and Information . 73

7.1 Learning by diffusing: the information potential 73

7.2 Distance measure in information theory 74

7.2.1 Self-information or Information Potential . 75

7.2.2 Decomposition of the Entropy . 75

7.2.3 Joint entropy and conditional entropy . 76

7.2.4 Kullback-Leibler Divergence or Relative Entropy . 77

7.2.5 Alternative measure functions . 78

7.2.6 Mutual information . 79

7.3 Information theory version of Bayes’ rule 81

8 Model Comparison . 83

8.1 Occam’s razor 83

8.1.1 Model comparison and Occam’s razor . 83

8.1.2 The Evidence and the Occam’s factor . 84

8.1.3 The big picture . 85

8.2 Creating models, making choices and Bayesian inference 86

8.3 Language model and distance in the space of parameters 89

8.3.1 Using Fisher information: the Fisher scoring algorithm . 90

8.4 Information Geometry 91

8.4.1 Riemannian Manifold . 91

8.4.2 Example: 1-D Gaussian PDF . 93

8.4.3 Connection with Inference . 95

8.5 Exercise solutions 96

8.5.1 Exercise 28.4 [Mac03] . 96

9 Communications channel . 101

9.1 Communications channels and information transmission 102

9.1.1 Communication models . 102

9.2 Binary classifiers as Binary Asymmetric Channels 103

9.2.1 Evaluating Binary Classifiers . 104

9.3 Relevance 105

9.3.1 Relevance in information theory and data analysis . 106

9.3.2 Information bottleneck . 107

9.4 Machine learning 108

9.4.1 Statistics versus machine learning . 108

9.4.2 Labels . 109

9.4.3 The relationship of machine learning to Bayesian inference 111

9.5 Predictive information 112

9.5.1 Mutual information between the Past and the Future . 114

9.5.2 Determine Ipred for a Markov Process . 115

10 Non parametric models . 117

10.1 Gaussian process 117

10.1.1 Nonlinear regression: parametric approach . 117

10.1.2 From parametric models to Gaussian processes . 118

10.1.3 Using a given Gaussian process model in regression . 120

10.2 The intuition behind Gaussian process and kernels 122

10.2.1 Gram’s matrix and covariance matrix . 122

10.2.2 Kernel as a local average . 123

10.3 Diffusion on a manifold 123

10.3.1 How to infer a generic kernel . 124

10.4 Dirichlet process 125

10.4.1 The Dirichlet distribution . 125

10.4.2 Paper discussion about PDFs of probabilities . 127

10.4.3 The Dirichlet process . 128

11 Appendix . 131

11.1 Notes on Markov Chains 131

11.2 Notes on functional analysis 133

Part I

Carlo Albert

1. Basics Principles

1.1 Bayesian Statistics

Lesson 1

22/03

LR

The paradigm behind Bayesian statistics is to express knowledge (or belief) about any kind of variable in the

form of a probability distribution. A priori, though, it might not be obvious why we should use probability

theory to express some subjective knowledge about variables. One possible explanation goes back to the

De Finetti claim that if we want to find out what a particular person things about the value of a particular

variable, we can operationalize this by means of lotteries. Let’s see an example.

Suppose to play a game in which a dice is tossed and you have to bet on the outcome. You have to choose

between two lotteries:

• L1: if the outcome is 6 you win 1000C, otherwise you have to pay 1C;

• L2: if the outcome is 6 you pay 1000C, otherwise you win 1C

Which of the two alternatives would you take? Unless you’re crazy, it’s obvious that the right choice is L1,

and the reason is that the win/loss ratio is much bigger that the corresponding odds ratio

1000

1
≫ 1− p

p
=

5

1

The idea here is that when the prizes are such that a person is indifferent about L1 or L2, the win/loss ratio

corresponds to the odds ratio he assigns to the event, from which a probability can be derived. For example,

if you ask many people what they think about the lottery

• L3: if the outcome is 6 you win 1000C, otherwise you have to pay 250C;

then, on average, the result will be quite quite balanced. The operational subjective probability can be

therefore derived by setting the prizes of the lottery in such a way to make people indifferent about the bet to

be made.

Under the assumption that that person is rational and wants to avoid sure loss, one can eventually retrieve

the Kolmogorov axioms of probability theory: given an event space Ω, and given two random events

A,B⊂Ω, we have

1. p(A)≥ 0

2. p(Ω) = 1

3. p(A∪B) = p(A)+ p(B) if A∩B = /0

This is the way De Finetti argues why we should use probability theory to express subjective belief.

1.1.1 The setup

In the Bayesian model based data analysis we’re interested in three kind of variables:

• xxx: input variables (known)

• yyy: output variables (to be observed)

• θθθ : parameters (to be inferred)

4 Chapter 1. Basics Principles

Given the input data, the output and the model we want to exploit to describe the phenomenon, the task

of Bayesian inference is to calibrate the model’s parameters in order to have the best agreement with

observations.

As an example, consider the rainfall-runoff analysis of a river (see Figure 1.1). We can model the river as

a cascade of reservoirs (tanks, or pockets), in which the storage, the outflow and the runoff of each reservoir

is governed by differential equations with different parameters. We aim to use our knowledge (data and

observations) about the real world process in order to tune such parameters and to get the best possible

description of the river’s behaviour, in such a way to make predictions based on rainfall forecasts.

Figure 1.1: Model of the rainfall-runoff of a river

Bayesian inference can be summarized in three main steps.

1.1.2 Step 1: Prior

In general, from the basic laws of probability theory we can write the joint probability density of observations

yyy and model’s parameters θθθ given the input data xxx as

f (yyy,θθθ |xxx) = f (yyy|θθθ ,xxx) f (θθθ) (1.1)

The rationale behind this formulation is that we believe that the observations, yyyobs, are a realization from

the distribution f (yyy|θθθ ∗,xxx), for fixed but unknown parameters θθθ ∗. f (θθθ) express our prior knowledge about

parameters, which can come from previous measurements or even heuristic assumptions we make; for this

reason it’s called prior PDF. If a lot of prior knowledge is available, we can make predictions with this prior

(e.g. models based on first principles in physics). In many disciplines, prior knowledge does not suffice to

make predictions, but we need to calibrate the models first, i.e. constrain θθθ based on yyyobs.

In Eq. (1.1) we can recognize two kinds of uncertainty: f (yyy|θθθ ,xxx) represents the aleatory uncertainty

coming from the intrinsic system’s randomness, whereas f (θθθ) brings what is called epistemic uncertainty,

which means that the “error" is influenced by our prior knowledge about the phenomenon. However, most of

times the distinction between the two is not that sharp.

For what concerns the models, we can distinguish them into two categories:

• Mechanistic models: they are specific of the system, and very often the parameters θθθ are interpretable

as physical quantities. This gives us also an intuition on what’s going on.

• Machine learning (ML) models: here the model is not related to the particular system, but it’s an

architecture (neural network or another) made to predict the outcomes or recognize features of the

data. Typically the parameters have no physical meaning at all.

Most of times we deal with something in between.

1.1.3 Step 2: Calibration

Of course, an important step in our Bayesian process is how we use data. Basically, calibration means that we

want to condition our prior on the data yyyobs we collect. The result of this operation is the so called posterior

pdf, namely:

f (θθθ |yyyobs,xxx) =
f (yyyobs|θθθ ,xxx) f (θθθ)

∫
f (yyyobs|θθθ ,xxx) f (θθθ) dθθθ

(1.2)

1.2 Monte Carlo methods 5

where f (yyyobs|θθθ ,xxx) is the likelihood function and the denominator is the marginalized pdf f (yyyobs,xxx) (

called Evidence) and it will play a fundamental role in comparing models. However, this last term is just a

normalization constant, and typically we don’t want to compute it because this would be very expensive: that’s

why MC methods were introduced. This learning process can be iterated every time we collect more data,

and eventually we get a posterior function conditioned by all our set of observations: f (θθθ |yyyobs,1, . . . ,yyyobs,n,xxx).
Modelling not only means to express what we know about a system, but also what we don’t know.

Consider the fact that, since we’re dealing with probability distributions, the outcome of our inference will

be a random variable having its characteristic spread. Traditionally, one approach is to write the probabilistic

model as

YYY (θθθ ,xxx) = yyydet(θθθ ,xxx)+E(θθθ ,xxx),

where YYY is a random variable corresponding to the pdf f (yyy|θθθ). The deterministic term is the result of a PDE

system describing the phenomena, whereas E(θθθ ,xxx) is an additive uncertainty called error modelling. This

paradigm has severe shortcomings, though. First of all it’s difficult to find an appropriate distribution that is

able to represent the intrinsic variability of data, because often the uncertainty is not on the output but it’s

somewhere else (for example in the input, due to some limits of our experimental apparatus). Moreover, the

calibrated model can only be used to predict the output components for which we have data for calibration.

The right way to proceed would be to introduce the uncertainty where it arises, but unfortunately this can

lead to intractable likelihood functions.

1.1.4 Step 3: Probabilistic predictions

After the model has been calibrated, we can use it to make probabilistic predictions, using the posterior as

calibration function:

fpred(yyy|xxx) =
∫

fpred(y|θθθ ,x) fcal(θθθ |yobs) dθθθ (1.3)

The prediction and calibration models are often the same, but they can also be different and share the same

parameters and inputs. All these integrals are often in high dimensions, and the standard numerical methods

for integrating functions would not be able to accomplish the task. This is one of the reasons we need to

introduce Monte Carlo methods (for some more details about this formula see next chapters).

1.2 Monte Carlo methods

Monte Carlo methods have been introduced in the Manhattan project, when physicists and engineers realized

that hard problems can be solved using randomness. For example, suppose that we want to compute the

value of π until a certain precision. In order to do that we can exploit its series expansion:

π

4
=

∞

∑
n=0

(−1)n

2n+1
=

N

∑
n=0

(−1)n

2n+1
+O(1/N)

where the last term is a bias that can be reduced by pushing further and further the computation.

Finding π with the Monte Carlo method instead consists on sampling points uniformly inside the unit

square, and to compute the fraction of them that falls inside the unit circle. If we define

Z = #
{

x2
i + y2

i ≤ 1 : xi ∼U [0,1], yi ∼U [0,1], i = 1, . . . ,N
}
,

then we have 〈Z/N〉= π/4 with no bias, but with an uncertainty
√

Var (Z/N)∼ O(1/
√

N).

6 Chapter 1. Basics Principles

In general, MC can be used to compute expectation values

〈h〉xxx =
∫

h(xxx) f (xxx) dxxx ≈ 1

N

N

∑
n=1

h(xxxn), (1.4)

for xxxn ∼ f (xxx) ∀n = 1...N i.i.d. (“identically and independently distributed in f ”). One can immediately

verify that
〈

1

N

N

∑
n=1

h(xxxn)

〉

= 〈h〉xxx, Var

(

1

N

N

∑
n=1

h(xxxn)

)

=
Var(h)

N

Exercise Prove the relations above.

Solution:

1. By linearity:
〈

1

N

N

∑
n=1

h(xxxn)

〉

=
1

N

N

∑
n=1

〈h(xxxn)〉=
1

�N
�N 〈h(xxx)〉= 〈h〉xxx

2. For the properties of the variance:

Var

(

1

N

N

∑
n=1

h(xxxn)

)

(∗)
=

1

N2

N

∑
n=1

Var h(xxxn) =
N

N2
Var h(xxx) =

Var(h)

N

where in (∗) we used the fact that the covariance of independent variables is zero.

�

If instead we would try to compute a d-dimensional integral using the Riemann sum approximation, we

would have

〈h〉xxx =
N

∑
n=1

h(xxxn) f (xxxn)(∆x)d +O(N−1/d),

where ∆x is the linear spacing of the d-dimensional grid over the x domain. In this case, though, the bias has

a too bad scaling with the dimension (i.e. exponential), because for high d most of the Lebesgue measure is

“in the corners" of the domain (curse of dimensionality). Thus this method is not recommended for volume

estimation in high dimension.

To compute integrals of the kind of Eq. (1.3) we have to find a way to sample variables from a given

distribution, which in our case is often a posterior

f (θθθ |yyyobs) =
f (yyyobs|θθθ ,xxx) f (θθθ)

∫
f (yyyobs|θθθ ,xxx) f (θθθ) dθθθ

∝ f (yyyobs|θθθ) f (θθθ)

Since the normalization at the denominator is expensive, we’d like to avoid computing it. For now, we

assume that the posterior density can be evaluated in reasonable time up to the normalization factor.

1.2.1 General building blocks of samplers

Here we propose some methods of drawing x from a given pdf f (x).

Transformations

Suppose that we want to sample x∼ f (x). We can always search for a change of variables y = y(x) in which

the new pdf is uniform in the interval [0,1], namely f (x) dx = f (y) dy with f (y) = U [0,1]. Since f (y) is

uniform (constantly equal to unity in [0,1]) we can remove it from the previous equation, and we get

f (x) =
dy

dx
⇒
∫ x

−∞
f (x′) dx′

︸ ︷︷ ︸

CDF(x)

=
∫ x

−∞

dy

dx′
dx′ = y(x)

This means that x =CDF−1(y) with y∼U [0,1], so if we’re able to compute the inverse cumulative density

function, then we can generate samples according to f (x) by simply generating random numbers uniformly

in [0,1]. Notice however that this method only works in 1D.

1.2 Monte Carlo methods 7

Figure 1.2: Sampling of x∼ f (x) using the cumulative density function

Importance sampling

Instead of computing the normalization of f (x), we can think to run a weighted average in which the weights

are already normalized:

〈h〉x =
∫

h(x) f (x) dx =
∫

h(x)
f (x)

f̃ (x)
f̃ (x) dx

MC≈ 1

N

N

∑
i=1

h(xi)ωi ; ωi =
f (xi)

f̃ (xi)
; x∼ f̃ (x)

In practice, we first calculate the un-normalized weights ω̂i = fnn(xi)/ f̃ (xi), where fnn is an un-normalized

version of f (e.g., if f is a posterior, fnn could be the product of likelihood and prior), then we simply

normalize the weights: ωi = ω̂i/∑ j ω̂ j. However, using this strategy we’re only shifting the difficulty to

finding a good approximation for the target function. This method is thus helpful if the new sampling

function is sufficiently easy to draw from and if weights are reasonably close to 1 (i.e. if f̃ (x) is close to

f (x)).
An easy example could be the following: suppose you want generate random number accordingly to

some biased dice that you have in mind but you have at disposal only fair dices, how can we simulate the

biased sampling from the physical-unbiased dice? This is a typical example where importance sampling is

used and, looking at the previous equation, we can identify f (x) as the PDF of the biased dice and f̃ (x) as

the PDF of the unbiased one and indeed at the end, we are able to calculate averages over f (x) sampling x

from f̃ (x).

Accept/reject

The accept/reject method is a classical sampling method which allows one to sample from a distribution

which is difficult or impossible to simulate by an inverse transformation (CDF−1). Instead, draws are taken

from an instrumental density and accepted with a carefully chosen probability. With reference to Figure 1.3,

consider a suitable interval A which contains almost all the domain of x, and F as a number greater or equal

to the maximum/supremum of the pdf. Then the idea is to toss randomly points in the rectangle A×F and to

retain only those points that fall under the curve. In practice we have to:

1. Generate x∼U [A]
2. Generate r ∼U [0,1]

3. Retain x only if r < f (x)
F
≡ pacc

Figure 1.3: Accept/reject sampling scheme

8 Chapter 1. Basics Principles

Unfortunately, also this method suffers the curse of dimensionality, and in its pure form it becomes

useless in high dimension problems. However it is an important building block for more powerful sampling

algorithms.

2. Metropolis algorithms

2.1 Markov Chain Monte Carlo

MCMC is a class of techniques for sampling from a probability distribution and can be used to estimate the

distribution of parameters given a set of observations.

2.1.1 From global to local sampling

Lesson 2

26/03

AM

TF

The central task of the whole Bayesian numerics is to get hold of the whole posterior distribution, either via

approximation (i.e. Variational Bayes with ML) or via Monte Carlo sampling. From now on, we assume that

we have a density π(θθθ) (e.g. a posterior), which can be evaluated in reasonable time (104−106 times) up

to a normalization constant. We can do it as discussed in the previous chapter, with a simple accept/reject

method, and at the end of the day we will run into issues caused by the curse of dimensionality (exponentially

loss of efficiency with the dimension of the sampling space). In this chapter, we will discuss instead a local

search and design a stochastic process P(θθθ ′|θθθ) which generates a Markov chain that is meant to sample a

target distribution π(θθθ).

Definition 2.1 — Markov chain. A Markov chain is a stochastic process describing a sequence of

possible events in which the probability of each event depends only on the state attained in the previous

event. In other words, it doesn’t have memory.

By doing such a sampling we will see that the efficiency will decay as a power-law of the dimension

(d−1). The price to pay is that the samples will be no longer independent but auto-correlated, leading to

a reduced effective sample size. To pursue this approach, we must require P(θθθ ′|θθθ) to have π(θθθ) as its

equilibrium distribution and this is directly related to have the detailed balance condition:

P
(
θθθ ′|θθθ

)
π(θθθ) = P

(
θθθ |θθθ ′

)
π(θθθ ′) (2.1)

Definition 2.2 — Stationary Distributions of Markov Chains. A stationary distribution of a Markov

chain is a probability distribution that remains unchanged in the Markov chain as time progresses. In

other words, after an initial transient, the Markov process will eventually generate samples according to

this stationary distribution.

In particular, the detailed balance condition implies that π is a stationary distribution of the Markov

process under exams. If we denote with P̂ as its propagator, then it acts on a probability distribution f (θθθ) as

(
P̂ f
)
(θθθ) :=

∫

P
(
θθθ |θθθ ′

)
f (θθθ ′)dθθθ ′

10 Chapter 2. Metropolis algorithms

Notice that the formula above, tell us how the probability of θθθ ’s change, after we’ve apply the propagator P̂;

in practice when we will apply P̂ n-times we are doing a path integral over the parameters space where we

start from f (θθθ) (e.g our prior) and we end up to π(θθθ) (e.g our posterior -target distribution).

However, we will see that the stronger equilibrium condition (Eq. (2.1)) leads to a real-valued spectra which

lead to favorable convergence properties. Also, we have that the stationary distribution is invariant under the

operator P̂

(
P̂π
)
(θθθ) =

∫

P
(
θθθ |θθθ ′

)
π(θθθ ′) dθθθ ′

(2.1)
=
∫

P
(
θθθ ′|θθθ

)
π(θθθ)dθθθ ′ = π(θθθ)

∫

P
(
θθθ ′|θθθ

)
dθθθ ′

(∗)
= π(θθθ)

where in (*) we use the fact that the probability to take a jump whatever is 1.

Definition 2.3 — Ergodicity. A system (either a dynamical system or a stochastic process) is said to

be ergodic if any θθθ ′ ∈ Θ can be reached from any θθθ ∈ Θ with a positive probability and within a finite

amount of jumps.

Proposition 2.1 If the process defined by P̂ satisfies the detailed balance condition with respect to π and is

ergodic, then (under mild extra conditions)
(

P̂
n

f0

)

(θθθ)→ π (θθθ) in total variation for any initial probability

density f0. More formally, for all subsets A⊂Θ of the parameters’ domain we have that

∫

A

(

P̂
n

f0

)

(θθθ) dθθθ =
∫

A
π (θθθ) dθθθ +O

(
e−rn

)
(2.2)

For some r > 0.

Proof. Let P be an operator acting on a generic function f as follows:

(P f)(θθθ) =
∫

f
(
θθθ ′
)

P
(
θθθ ′|θθθ

)
dθθθ ′

where we are integrating on the final point. Here, f belongs to the Hilbert space H = L2
π (θθθ) such that:

〈 f |g〉 ≡
∫

f (θθθ)g(θθθ)π (θθθ) dθθθ

This operator has two properties:

1. It is self-adjoint: P = P† =⇒ 〈 f |Pg〉= 〈P f |g〉;
2. If has unitary norm: ‖P‖ ≡ sup‖ f‖=1 ‖P f‖= 1.

Exercise Prove the properties of P operator in the proof of proposition 2.1.

Solution:

1. The self-adjointness is trivially proven by direct application:

〈
P† f

∣
∣g
〉
= 〈 f |Pg〉=

∫

f (θθθ)

[∫

g
(
θθθ ′
)

P
(
θθθ ′|θθθ

)
dθθθ ′
]

π (θθθ) dθθθ

(∗)
=
∫ [∫

f (θθθ)P
(
θθθ |θθθ ′

)
dθθθ

]

g
(
θθθ ′
)

π
(
θθθ ′
)

dθθθ ′ = 〈P f |g〉

Where in the (∗) step we exploited the detailed balance property (Eq. (2.1)).

2. The unitary norm can be proven by use of the Cauchy–Schwarz inequality for integrals:

‖P f‖2 = 〈P f |P f 〉=
∫

π(θθθ)(P f)2 (θθθ)dθθθ

(P f)2 (θθθ) =

(∫

f (θθθ ′)P(θθθ ′|θθθ)dθθθ ′
)2

≤
∫

f 2(θθθ ′)P(θθθ ′|θθθ)dθθθ ′

=⇒ ‖P f‖2 ≤
∫

f 2(θθθ ′)P(θθθ ′|θθθ)π(θθθ)
︸ ︷︷ ︸

P(θθθ |θθθ ′)π(θθθ ′)

dθθθdθθθ ′ = ‖ f‖2

2.1 Markov Chain Monte Carlo 11

But since ‖P1‖= 1 it follows ‖P‖= 1

�

As a consequence, the spectrum of the operator is real-valued (property 1) and belongs to the interval

[−1;1] (property 2, since the spectrum is bounded by the operator’s norm).

One may also notice that λ = 1 is an eigenvalue of P, in fact for f = 1 it holds:

(P f)(θθθ) =
∫

f
(
θθθ ′
)

P
(
θθθ ′|θθθ

)
dθθθ ′ =

∫

1 ·P
(
θθθ ′|θθθ

)
dθθθ ′ = 1

since the marginalization of probability density function over the full domain of parameters returns 1.

Furthermore, from the theory of ergodicity, an ergodic operator has a simple (unique) eigenvalue 1 and all

other eigenvalues will have modulus smaller than 1 (this is a requirement to have a irreducible representation

of the algebra generated by P). Now, if ε(θθθ) is an eigenstate of P relative to the eigenvalue λ , from the

eigenvalues’ equation we have

(Pε)(θθθ) = λ ε(θθθ) =⇒ (Pnε)(θθθ) = λ n ε(θθθ)

This means that if we apply P many times, in the end the only eigenspace that will survive is the one that

belongs to 1, and the rest of the spectrum will shrink to zero because it is strictly smaller than 1.

Therefore, under mild extra conditions there exist two (potentially asymmetric) spectral gaps such that P

has a spectrum σ (P) like the one in the following picture.

Figure 2.1: Spectrum of ergodic operator P.

To make these statements more precise let us use a test function g ∈H such that:

〈g〉π ≡
∫

g(θθθ)π (θθθ) dθθθ = 〈1|g〉= 1

Then:

‖Png−1‖2 = 〈Png−1|Png−1〉= 〈Png|Png〉
︸ ︷︷ ︸

=〈g|P2ng〉
−〈1|Png〉
︸ ︷︷ ︸

=〈Pn
1|g〉

−〈Png|1〉
︸ ︷︷ ︸

=〈g|Pn
1〉

+〈1|1〉=

(∗)
=
〈
g
∣
∣P2ng

〉
−1−1+1 =

〈
g
∣
∣P2ng

〉
−1

Where in (∗) we exploited the fact that Pn is self-adjoint and that the identity 1 is the eigenstate of P with

eigenvalue 1. Applying now the spectral theorem one can find the spectral representation of P:

P =
∫

σ(P)
λ dEλ =⇒ 〈g|Pg〉=

∫

σ(P)
λ 〈g|dEλ g〉 ≡

∫

σ(P)
λ dµg (λ) (2.3)

Where dµg (λ) ≡ 〈g|dEλ g〉 is the measure of the spectrum induced by the test function g on dEλ by

projection.

Moreover, for λ = 1 it holds µg (1) = 〈g|1〉〈1|g〉= |〈1|g〉|2 = 1, by using g properties and the fact that the

eigenstate of 1 is the identity. Applying now P multiple times and combining with the previous results:

〈
g
∣
∣P2ng

〉
=
∫

σ(P)
λ 2n dµg (λ) =⇒

‖Png−1‖2 =
〈
g
∣
∣P2ng

〉
−1 =

∫

σ(P)
λ 2n dµg (λ)−1 =

∫

σ(P)\{1}
λ 2n dµg (λ)≤ |λmax|2n

12 Chapter 2. Metropolis algorithms

Since the "−1" term cancels with the contribution to the spectral representation of eigenvalue "1". The term

λmax in the equation above represents the eigenvalue of the remaining spectrum (red box in fig 2.1) with the

largest absolute value and given the fact that ∀λ |λ | ≤ |λmax|< 1 the last term goes exponentially to zero.

So, in the end the norm can be upper bounded:

‖Png−1‖2 ≤ |λmax|2n = O
(
e−rn

)
with r = 2log(1/|λmax|)

Thus we observe that Png→ 1.

To obtain the proposition’s result is now sufficient to observe that:

P̂
n

f = π Pn

(
f

π

)

From which the claim follows (for a generic test function the result can be obtained by re-scaling so to have

a null-mean unitary-variance distribution). �

Exercise Prove that P̂
n

f = π Pn
(

f
π

)

Solution:

(πPn)

[
f

π

]

(θθθ) =
∫

f (θθθ n)

π(θθθ n)
P(θθθ n|θθθ n−1)P(θθθ n−1|θθθ n−2) . . .P(θθθ 1|θθθ)π(θθθ) dθθθ 1 . . .dθθθ n

Using the detailed balance property iteratively we can write

P(θθθ n|θθθ n−1)P(θθθ n−1|θθθ n−2) . . .P(θθθ 3|θθθ 2)P(θθθ 2|θθθ 1)π(θθθ 1)P(θθθ |θθθ 1) =

P(θθθ n|θθθ n−1)P(θθθ n−1|θθθ n−2) . . .P(θθθ 3|θθθ 2)π(θθθ 2)P(θθθ 1|θθθ 2)P(θθθ |θθθ 1) =

...

= π(θθθ n)P(θθθ |θθθ 1)P(θθθ 1|θθθ 2) . . .P(θθθ n−1|θθθ n)

Hence

(πPn)

[
f

π

]

(θθθ) =
∫

f (θθθ n)

✟✟✟π(θθθ n)
✟✟✟π(θθθ n)P(θθθ |θθθ 1)P(θθθ 1|θθθ 2) . . .P(θθθ n−1|θθθ n) dθθθ 1 . . .dθθθ n =

(

P̂
n

f
)

(θθθ)

�

2.1.2 The problem of correlations

Definition 2.4 — Burn-in. Burn-in is a colloquial term that describes the practice of throwing away some

iterations at the beginning of a Markov Chain Monte Carlo (MCMC) run. This can be done in order to

enter a high probability region, a place where the states of the Markov chain are more representative of

the distribution being sampled. In other words, we remove the first part of the chain mostly affected by

the exponentially decreasing error exp(−nr) in the equations above.

The name of this practice comes from electronics. Many electronics components fail quickly (those which

appertain to a less-reliable subset). So a burn-in is done at the factory to eliminate the worst ones.

Once we have done this operation, we can use the MCMC (minus the burn-in) to estimate expectation

values. As we’ve already observed, with MC methods we get rid of the bias, but we have the problem of

noise. In order to estimate the amount of noise, we define a test function g such that 〈g〉= 〈1|g〉= 0 and

variance σ2 = 〈g|g〉−✘✘✘✘(〈g|1〉)2 = 1. After we sample {θθθ 1, . . . ,θθθ N} using MCMC, for large N we calculate

the variance of the average of the values assumed by g as1

1

Var

(
N

∑
n=1

Xn

)

=
N

∑
n=1

Var(Xn)+2
N

∑
m>n

Cov(Xn,Xm) =
N

∑
n,m=1

Cov(Xn,Xm) =
N

∑
n,m=1

〈(Xn−〈Xn〉
︸︷︷︸

=0

)(Xm−〈Xm〉
︸︷︷︸

=0

)〉

=
N

∑
n,m=1

〈Xn Xm〉

2.1 Markov Chain Monte Carlo 13

Figure 2.2: Burn-in example.

Var

(

1

N

N

∑
n=1

g(θθθ n)

)

=
1

N2 ∑
n,m

〈g(θθθ n)g(θθθ m)〉 ≈
N

N2 ∑
n∈Z
〈g(θθθ 0)g(θθθ n)〉=

1

N

(

1+2
∞

∑
n=1

〈g(θθθ 0)g(θθθ n)〉
)

Before analyzing where each term comes from, we want to clarify the notation used: n=0 correspond to the

diagonal terms of the matrix, n=1 the first off-diagonal terms, n=2 to the second ones and so on. Then, the

"1" term comes from the variance 〈g(θθθ 0)g(θθθ 0)〉 and the "2" factor by considering only positive indexes.

The approximation comes from the fact that, the larger n, i.e. the further we are from the diagonal, the fewer

terms we have; but here we do as if we had N terms for each n. For N large, however, the error we make

through this mis-counting is sub-leading. One may also notice that the first contribution to the variance

above is brought by 1/N = δg/N, which is the standard error of a Monte Carlo simulation.

We can see from this last formula that the variance has a non-null contribution depending on the

integrated auto-correlation function τg and in particular the first term of τg is the variance of g (assumed

to be unity in this case) divided by N, representing the typical error of a Monte Carlo process whose noise

scales as σ/
√

N. The total length of the Markov chain divided by τg quantifies the loss of samples

ratio due to auto-correlations and depends on the test function. This means that if we sample points through

a MCMC method, only a fraction of them will be effectively useful to perform calculations, while the

remaining part is not contributing because of the correlations. In the end we get an "effective" sample size

that determines the amount of “useful” points given by the process.

Exercise — Prove that 〈g(θθθ 0)g(θθθ n)〉= 〈g|Png〉
Solution:

〈g(θθθ 0)g(θθθ n)〉=
∫

g(θθθ 0)g(θθθ n)π(θθθ 0,θθθ n) dθθθ 0 dθθθ n

where

π(θθθ 0,θθθ n) =
∫

P(θθθ n|θθθ n−1)P(θθθ n−1|θθθ n−2) . . .P(θθθ 1|θθθ 0)π(θθθ 0) dθθθ n−1 . . . dθθθθθθθθθ 1

hence

〈g(θθθ 0)g(θθθ n)〉=
∫

g(θθθ 0)g(θθθ n)P(θθθ n|θθθ n−1)P(θθθ n−1|θθθ n−2) . . .P(θθθ 1|θθθ 0)π(θθθ 0) dθθθ n . . . dθθθθθθθθθ 0

= 〈g(θθθ 0)|
∫

g(θθθ n)P(θθθ n|θθθ n−1)P(θθθ n−1|θθθ n−2) . . .P(θθθ 1|θθθ 0) dθθθ n . . . dθθθθθθθθθ 1〉

= 〈g|Png〉

�

With the result from the previous exercise and recalling Eq. (2.3), we find that τg can be written as

τg = 1+2
∞

∑
n=1

〈g|Png〉= 1+2
∞

∑
n=1

∫

σ(P)
λ n dµg (λ) = 1+2

∫

σ(P)

(
∞

∑
n=1

λ n

)

dµg (λ)

but 1 = 〈g|g〉=
〈

g

∣
∣
∣
∣
∣
∣
∣
∣

∫

σ(P)
dEλ

︸ ︷︷ ︸
=1

g

〉

=
∫

σ(P)
〈g|dEλ g〉=

∫

σ(P)
dµg (λ)

14 Chapter 2. Metropolis algorithms

thus τg =
∫

σ∗(P)

(

1+2
λ

1−λ

)

dµg (λ) =
∫

σ∗(P)

1+λ

1−λ
dµg (λ) (2.4)

The geometric series ∑
∞
n=1 λ n converges only if |λ |< 1. We can recover this result since given the fact

that 〈g〉 = 〈1|g〉 = 0 then µg(1) = 0 (measure of contribution to eigenspace of λ = 1 is null). The other

eigenvalues, belonging to σ∗ (P) = σ (P)\{1}, are all smaller than one, since the spectrum is shrinking. One

may easily notice that the integrand of the equation above can become arbitrarily large when λ → 1. As a

result, the upper spectral gap is responsible for the amount of auto-correlations. On the other hand, the

convergence rate can be determined by either the upper or the lower (since it depends on the absolute value

of λ). For example, in case of very large upper gap and small lower gap we can have very slow oscillating

modes (i.e., the chain jumps from one side to the other of the distribution) that decay in long times. However,

once they are gone and the process convergences to stationarity they do not contribute to the auto-correlations

anymore.

2.2 Metropolis algorithm

Metropolis is a specific implementation of MCMC. It is a method for sampling from a random distribution

(target distribution), even if we don’t know the normalization constant. To do this, we construct and sample

from a Markov Chain whose stationary distribution is the target distribution we are looking for. Algorithms of

this type are generally used for sampling from multi-dimensional distributions, especially when the number

of dimensions is high.

Algorithm 2.1 — Metropolis

The procedure consists of two steps that are repeated for a large number of iterations:

1. Make a proposal of a new θθθ ′, drawing it from a jump (a proposal) distribution t (θθθ ′|θθθ);
2. Accept the proposal with an acceptance probabilitya a(θθθ ′|θθθ) = min

(

1,
π(θθθ ′)
π(θθθ)

)

.

⋆

aA slight generalization of the Metropolis algorithm is the Metropolis-Hastings algorithm, which allows for non-symmetric

jump distributions. The Metropolis accept/reject probability then has to be replaced by a(θθθ ′|θθθ) = min

(

1,
π(θθθ ′) t (θθθ |θθθ ′)
π(θθθ) t (θθθ ′|θθθ)

)

.

In this last operation, if a(θθθ ′|θθθ) = 1 then for sure we will make the chain jump from the previous to the

proposed candidate. If not, 0 ≤ a(θθθ ′|θθθ) < 1 takes the value of that ratio and so we will still accept the

candidate with a probability given by the ratio itself. In the first case the step is advantageous, while in

the second we still can move to the new parameter drawn, but only with probability a(θθθ ′|θθθ) (this acts as a

correction). The delicate choice is to use a suitable t(θθθ ′|θθθ).
It is important to stress that the sampling is done on the posterior probability distribution, because we want

to evaluate the probability over the parameters space. Indeed the ratio is done in order to evaluate if the new

proposal is more probable respect the actual state; moreover we can exploit the ratio as

π(θθθ
′
)

π(θθθ)
=

p(xxx|θθθ ′)p(θθθ
′
)

✭✭✭✭✭✭✭✭∫
p(xxx|θθθ ′)p(θθθ

′
)dθθθ

′
✭✭✭✭✭✭✭∫

p(xxx|θθθ)p(θθθ)dθθθ

p(xxx|θθθ)p(θθθ)

where we can see that the evidence terms cancel out because is fixed, we can always change the variable

inside the integral.

To put this into formulae, we write

P(θθθ ′|θθθ) = a(θθθ ′|θθθ)t(θθθ ′|θθθ)+δ (θθθ −θθθ ′)

r(θθθ)
︷ ︸︸ ︷
(

1−
∫

a(θθθ ′|θθθ)t(θθθ ′|θθθ)dθθθ ′
)

Exercise Prove that this probability, with an acceptance probability a(θθθ ′|θθθ) and a symmetric proposal

jump distribution, satisfies the detailed balance condition. Prove that ergodicity is satisfied (for a Gaussian

t).

Solution:

2.2 Metropolis algorithm 15

We need to prove that P(θθθ ′|θθθ)π(θθθ) = P(θθθ |θθθ ′)π(θθθ ′). So we start from the definition

a(θθθ ′|θθθ)t(θθθ ′|θθθ)π(θθθ)+δ (θθθ −θθθ ′)π(θθθ)r(θθθ) = a(θθθ |θθθ ′)t(θθθ |θθθ ′)π(θθθ ′)+δ (θθθ −θθθ ′)π(θθθ ′)r(θθθ ′)

The delta sets to zero the rejection part since θθθ ′ 6= θθθ and the proposal jump distribution is symmetric:

t(θθθ ′|θθθ) = t(θθθ |θθθ ′), so we are left with

a(θθθ ′|θθθ)π(θθθ) = a(θθθ |θθθ ′)π(θθθ ′) (2.5)

And to show this identity we go by cases

- π(θθθ)> π(θθθ ′), so a(θθθ ′|θθθ) = 1 and we can invert Eq. 2.5

a(θθθ |θθθ ′) = π(θθθ)

π(θθθ ′)

that is equal to the definition of a(θθθ |θθθ ′) as the acceptance rate.

- π(θθθ ′)> π(θθθ), so a(θθθ |θθθ ′) = 1 and we can invert Eq. 2.5

a(θθθ ′|θθθ) = π(θθθ ′)
π(θθθ)

that is equal to the definition of a(θθθ ′|θθθ) as the acceptance rate.

�

To find out how the efficiency (convergence and auto-correlation) scales with d we now determine the

spectral gap. We firstly define the Metropolis operator P = M+K with

(M f)(θθθ) = f (θθθ)

(

1−
∫

a(θθθ ′|θθθ)t(θθθ ′|θθθ)dθθθ ′
)

(K f)(θθθ) =
∫

f (θθθ ′)a(θθθ ′|θθθ)t(θθθ ′|θθθ)dθθθ ′

where the first is the multiplication operator, which essentially represents the rejection probability (prob-

ability for which we do not jump) r(θθθ), and its spectrum (which is continuous and bounded by 0 and 1

since M is positive and upper-limited) is simply given by the essential range of the rejection probability r(θθθ)
which, for non-pathological target functions t, is bounded away from unity and thus it exists a spectral gap.

The essential range of a function is intuitively the ’non-negligible’ range of the function: it does not change

between two functions that are equal almost everywhere. One way of thinking of the essential range of a

function is the set on which the range of the function is most “concentrated". More precisely, the value of λ
determining the spectrum of M and its upper spectral gap is given by

sup

{

λ ∈ R|
∫

χ(|r(θθθ)−λ |< ε)π(θθθ)dθθθ > 0, ∀ε > 0

}

Looking more deeply into the definition, we observe that

∫

χπ(θθθ)dθθθ ≡ 〈χ〉π , and recalling that the

expectation value of the indicator function χ represents the probability of its argument to be true, we can

rewrite the previous definition as follow:

sup{λ ∈ R|P(|r(θθθ)−λ |< ε)> 0, ∀ε > 0}

In particular, as one may see from Figure 2.3, for a continuous rejection probability r (θθθ) the delimiter of

the essential range is λ = max(r (θ)). The previous definition, however, applies also to a wider range of

less-regular distributions.

The second term of P is the kernel operator K, which is in particular a Hilbert-Schmidt operator, and

therefore a compact operator if

‖K‖2 = Tr
{

K†K
}
=
∫

min{π(θθθ),π(θθθ ′)}t(θθθ ′|θθθ)2dθθθdθθθ ′ < ∞

16 Chapter 2. Metropolis algorithms

Figure 2.3: Example of essential range limit detection for a continuous r (θ)

Compact operators have the nice property to have a discrete spectrum, so K will have it. According to Weyl’s

perturbation theorem, P has then the same essential spectrum (total spectrum minus the isolated eigenvalues)

as M. That is, only a finite number of isolated eigenvalues can populate the spectral gaps left by M, and

therefore also P has a spectral gap. The spectral gap can either be determined by the continuous spectrum

of M or the discrete one of K: this depends on the size, σ , of the jump distribution.

Figure 2.4: Spectrum of ergodic operator P from M’s and K’s spectra. Since M is positive definite, will have

a spectrum only in [0,+1].

In fact, looking at the kernel operator we have at Taylor’s 1st order in the small jump size limit:

t(θ ′θ ′θ ′|θθθ)≃ δ
(
θθθ −θθθ ′

)
+O

(
σ2
)
=⇒

(K f)(θθθ) =
∫

f (θ ′θ ′θ ′)a(θ ′θ ′θ ′|θθθ)t(θ ′θ ′θ ′|θθθ)dθ ′θ ′θ ′ ≃ f (θθθ)+O
(
σ2
)
≡ λ f (θθθ) =⇒

εgap ≡ 1−λmax ≃ O
(
σ2
)

(2.6)

If t(θ ′θ ′θ ′|θθθ) is large (big jumps), then there is a large rejection probability r (θθθ) and thus λmax ∈ σ (M)
(gap determined by M); on the contrary, little jumps assure a little rejection probability and thus the essential

spectrum will be small: as a consequence there will likely be sporadic points belonging to the spectrum of K

that populate the intervals outside σ(M) and therefore λmax ∈ σ (K) (gap determined by K).

Scaling with dimension

Let us see how the supremum of the spectrum of P scales with the dimension d: let us choose t (θθθ ′|θθθ) as a

Gaussian with covariance matrix σ2 ·1. It turns out that when d becomes large σ2 needs to become small,

otherwise the rejection probability r (θθθ) grows too much.

Indeed, the reasoning leading to Eq. (2.6) can be applied also to the rejection probability: at Taylor’s 1st

order it holds

r (θθθ) = 1−
∫

a(θ ′θ ′θ ′|θθθ)t(θ ′θ ′θ ′|θθθ)dθ ′θ ′θ ′ ≃ O
(
σ2 ·d

)

Thus, to have r (θθθ) bounded away from 1 it is necessary that at least σ2 ∝ d−1. However, from Eq. (2.6) we

see that we neither want σ2 to scale faster than d−1, otherwise the discrete spectrum of K becomes too much

close to 1. At the end of the day this means that the best scaling for the jump size is

σ2 ∝
1

d
∝ εgap (2.7)

In this way also the gap decreases linearly while enlarging the dimensionality of the parameters’ domain. As

a consequence, the fraction of rejected point in sampling with MCMC Metropolis is exponentially smaller

than using other global sampling methods; in this case, once convergence is reached, the only source of losses

is due to the auto-correlations. From Eq. (2.4) we see that τg ∼ ε−1
gap ∼ d, meaning that these losses increase

linearly with the dimension and not exponentially like in the brute-force sampling algorithms reported above.

2.3 Metropolis algorithm tuning 17

In a nutshell: All the math done above shows us that there is a trade-off in the tuning of the jump size

σ : we don’t want to jump too far, i.e large σ , otherwise we lose efficiency due to a low acceptance rate

(continuous part of the spectrum close to one) and neither to make jumps too small, otherwise it takes

time to explore the whole space, which in spectral terms it means that we have discrete eigenvalues that

appear close to 1 and so we have a low number of effective samples. On the other side, we would like

to make large jumps because in this way λmax is far away respect 1, and so τg is low, meaning low auto

correlation, while we want also to have little jumps in order to sample carefully the parameters in case of

sharp, multi-modal high-dimensional posteriors.

2.3 Metropolis algorithm tuning

Lesson 3

29/03

GC

FC

Metropolis acceptance-rejection grants that, for any jump distribution t (θθθ ′|θθθ) we choose, we will converge

to our target distribution π(θθθ).
We consider as jump distribution t (θθθ ′|θθθ)∼N (θθθ ,Σ), where Σ is the covariance matrix, that in the simplest

case can be chosen as Σ = σ2 ·1 (meaning that is just a diagonal matrix and we jump with size σ in all

directions). We have then to take into account the following trade-off:

1. A too small σ will lead to a long exploration time of the parameters range;

2. A too large σ will lead to over-jump and so to a low acceptance rate.

This trade-off, as explained in the previous section, can be visualized in the trend of the spectrum.

Now, looking a bit more into this tuning procedure and sticking to t (θθθ ′|θθθ)∼N (θθθ ,Σ), we focus on a

more general covariance matrix Σ.

Ideally, we would like to use a covariance matrix that resembles the shape of the target distribution, namely

Σ ∝ Cov(π) (see figure 2.5 for an intuitive picture). This is however difficult, because it requires the tuning

of
d(d+1)

2
∼ O

(
d2
)

parameters, and in higher dimensions this becomes intractable. Luckily us, there is a

class of algorithms that does this tuning automatically, namely adaptive Metropolis class. Two examples

are reported in the paragraph below.

Figure 2.5: Top-left) with a too small fixed jumping size it’s difficult for the Markov chain to explore the

lowest probability area of the distribution and moreover it will takes a longer time for the whole distribution

to get sampled.

Top-right) a too high fixed jumping size is not likely to be accepted: the process gets stuck for many steps.

Bottom-left) now the jumps are taken from a probability distribution. However, if the shape of the jumping

distribution doesn’t fit properly the target distribution, we end up sampling only a small region of the target.

Bottom-right) with the correct tuning of the jump distribution we are able to sample correctly the target.

2.3.1 Haario algorithm

This algorithm [HST01], starting from the assumption that the MC is sampling the target distribution π(θθθ),
simply uses the history of the chain to estimate Cov(π). So, at step n+1, Σ is chosen to be proportional to

18 Chapter 2. Metropolis algorithms

the empirical covariance ˆCov of the history:

Σn+1 = β ˆCov+ ε1 (2.8)

where

ˆCov =
1

n−1

n

∑
i=1

(θθθ i−θθθ)(θθθ i−θθθ)T , θθθ =
1

n

n

∑
i=1

θθθ i

in which β is a tuning parameter and ε1 prevents the process from degenerating into some linear sub-space

of the parameter space and get stuck on it, that would lead to lose ergodicity.

Exercise Why is there a n−1 and not an n in front of the sum? Prove that given θθθ i ∼ i.i.d. random

variables i = 1, ...,n, then 〈

1

n−1

n

∑
i=1

(θθθ i−θθθ)(θθθ i−θθθ)T

〉

is an unbiased estimator of Cov(θθθ).
Solution:

By definition

Cov(θθθ)≡
〈
(θθθ −〈θθθ〉)(θθθ −〈θθθ〉)T

〉
=
〈
θθθθθθ T

〉
−〈θθθ〉

〈
θθθ T
〉

while we have

E[ˆCov(θθθ)] =

〈

1

n−1

n

∑
i=1

(θθθ i−θθθ)(θθθ i−θθθ)T

〉

=
1

n−1

n

∑
i=1

(〈
θθθ iθθθ

T
i

〉
−
〈

θθθ iθθθ
T
〉

−
〈

θθθθθθ T
i

〉

+
〈

θθθθθθ
T
〉)

(2.9)

In general, since the variables are i.i.d., we have

〈
θθθ iθθθ

T
j

〉
=

{〈
θθθ iθθθ

T
i

〉
=
〈
θθθθθθ T

〉
if i = j

〈

θθθ iθθθ
T
j

〉
i.i.d.
= 〈θθθ i〉

〈

θθθ T
j

〉

= 〈θθθ〉
〈
θθθ T
〉

if i 6= j

Expanding the various terms:

〈

θθθ iθθθ
T
〉

=
〈

θθθθθθ T
i

〉

=
1

n

(

〈
θθθ iθθθ

T
i

〉
+

n

∑
i6= j

〈
θθθ iθθθ

T
j

〉

)

=
1

n

〈
θθθθθθ T

〉
+

n−1

n
〈θθθ〉
〈
θθθ T
〉

〈

θθθθθθ
T
〉

=

〈(

1

n

n

∑
i=1

θθθ i

)(

1

n

n

∑
j=1

θθθ j

)T〉

=
1

n2

[
n

∑
i=1

〈
θθθ iθθθ

T
i

〉
+

n

∑
i> j

(
〈θθθ i〉

〈
θθθ T

j

〉
+
〈
θθθ j

〉〈
θθθ T

i

〉)

]

=
1

n2

[
n
〈
θθθθθθ T

〉
+n(n−1)〈θθθ〉

〈
θθθ T
〉]

=
1

n

〈
θθθθθθ T

〉
+

n−1

n
〈θθθ〉
〈
θθθ T
〉

Inserting in Eq. (2.9) gives

E[ˆCov(θθθ)] =
1

n−1

n

∑
i=1

[
〈
θθθθθθ T

〉
− 2

n

〈
θθθθθθ T

〉
−2

n−1

n
〈θθθ〉
〈
θθθ T
〉
+

1

n

〈
θθθθθθ T

〉
+

n−1

n
〈θθθ〉
〈
θθθ T
〉
]

=
n

n−1

[
n−1

n

〈
θθθθθθ T

〉
− n−1

n
〈θθθ〉
〈
θθθ T
〉
]

=
〈
θθθθθθ T

〉
−〈θθθ〉

〈
θθθ T
〉
= Cov(θθθ)

�

To get a good estimation of this empirical covariance, a rich enough history, i.e. a large number of

accepted samples, is needed. Then, this algorithm is often combined with the delayed rejection technique.

When a proposal, e.g. t1 (θθθ 1|θθθ 0), gets rejected, we try to profit from the gained information and propose

a second, shorter (could be simply just half as far), jump in the same direction. This second jump is thus

depending on two positions: t2 (θθθ 2|θθθ 1,θθθ 0). With such jumps, we need to adapt the Metropolis acceptance-

2.3 Metropolis algorithm tuning 19

rejection probability in order to maintain detailed balance

α1(θθθ 1,θθθ 0) = min

(

1,
π(θθθ 1)t1 (θθθ 0|θθθ 1)

π(θθθ 0)t1 (θθθ 1|θθθ 0)

)

(2.10)

Supposing that this first jump has been rejected because α1 was rather small, we now attempt the second one

with t2 which has to be accepted with a modified acceptance probability α2 such as:

α2(θθθ 2,θθθ 1,θθθ 0) = min








1,
π(θθθ 2)

θ2→θ1→θ0
︷ ︸︸ ︷

t2 (θθθ 1|θθθ 2) t1 (θθθ 0|θθθ 1,θθθ 2)(1−α1(θθθ 1,θθθ 2))

π(θθθ 0) t2 (θθθ 1|θθθ 0) t1 (θθθ 2|θθθ 1,θθθ 0)
︸ ︷︷ ︸

θ2←θ1←θ0

(1−α1(θθθ 1,θθθ 0))








(2.11)

Where the terms (1−α1(θθθ 1,θθθ 2)) and (1−α1(θθθ 1,θθθ 0)) take into account the probability that the first jump

has been rejected.

Exercise Show that detailed balance is maintained �

2.3.2 Vihola algorithm

An algorithm that also tries to learn the covariance structure of the target on the flight is the Vihola algorithm

[Vih12]. This one attempts to enforce a user-defined acceptance rate α∗ through re-scaling, depending on

what we have just learned, of the jump covariance matrix Σn in the direction of the previous jump. So, every

Figure 2.6: Possible covariance rescalings according to the Vihola algorithm.

time we jump, we try to squeeze and inflate the covariance structure along the tested direction, depending on

the α value retrieved by the previous jump (if the α obtained it’s far too small we have probably over-jumped,

so next time we will decrease the jump, squeezing Σ in this direction. On the other hand, if α is too close to

1, we probably need to inflate Σ in that direction, through a larger jump).

In order to mathematically implement this, Vihola uses the Cholesky decomposition of the covariance matrix

Σn:

Σn = LnLT
n

in which Ln is a lower triangular matrix with strictly positive diagonal entries. Given uuu = (u1, . . . ,un)
T ,

where each ui ∼N (0,1) are standard normal samples, we simply have to apply L to it to obtain a sample

with the desired covariance Luuu∼N (0,Σ). This is very easy to prove:

〈Luuu〉= L〈uuu〉

〈(Luuu)(Luuu)T 〉= L〈uuuuuuT 〉LT (⋆)
= LLT = Σ

where in (⋆) we used that 〈uuuuuuT 〉= 1 is the covariance of the standard normal distribution.

Algorithm 2.2 — Vihola

The Vihola algorithm iterates the 3 following steps:

1. at step n of the procedure, sample a vector of i.i.d. standard normal variables uuun ∼N (0,1) and

make a jump proposal:

θθθ ∗n = θθθ n−1 +Ln−1uuun

20 Chapter 2. Metropolis algorithms

2. accept-reject (same as vanilla Metropolis) with probabilitya

αn = min

(

1,
π(θθθ ∗n)

π(θθθ n−1)

)

3. update Σn along the direction of the attempted jump according to

Σn = LnLT
n = Ln−1

(

1+ηn (αn−α∗)
uuunuuuT

n

‖uuun‖2

)

LT
n−1,

where ηn is the learning rate belonging to a predefined diminishing sequence and α∗ is the desired

mean acceptance rate. In the expression above we recognize in brackets the projection matrix onto

the 1D subspace spanned by ununun, which is multiplied by the term (αn−α∗) that keeps Σ constant

once we reach the desired acceptance probability.

⋆

asince we have a symmetric jump distribution we can stick to this simple version

2.3.3 EMCEE sampler

These adaptive Metropolis algorithm try to learn the covariance structure on the fly, but if we have a target

distribution that has a non-linear correlation structure, e.g. it is “banana-shaped”, its correlation structure will

depend on the parameters range considered. This means that it is not possible to find a one-size-fits-all jump

distribution, and the structure learned will be a compromise between the two branches. In such situations,

Figure 2.7: "Banana" distribution on which we identify two regions associated to different covariances.

interacting particle methods allow to overcome this issue to some extent: the idea is to evolve several

Markov chains (instead of a single one) that all together form a population and let them learn from each

other by interaction. We start from a parameters’ space in which we have different starting points, also

called particles. While iterating, we randomly choose one among them and we make a jump in the direction

identified by a randomly chosen partner θθθ
′′

(not necessarily in the starting set of particles). If the jump is

accepted, then we are going to delete the starting particles, otherwise we leave it there. Such algorithms can

also harness the power of parallel computing infra-structure. An example of this idea is the EMCEE-sampler,

implementing the stretch move.

Algorithm 2.3 — EMCEE stretch move

In one step within the iterations:

1. we randomly select a θθθ in the set of initial particles;

2. we randomly select a θθθ ′′ in the initial space of particles a and we identify a vector between the two.

The proposal θθθ ′ will be a point along the stretched or loosed (by a scaling factor z) vector direction.

θθθ
′
= θθθ

′′
+Z

(

θθθ −θθθ
′′)

,

in which Z ∼ f (z) is a random variable, satisfying the following scaling condition f
(

1
z

)
= z f (z);

one can prove that f (z)∼ 1√
z
, usually with z ∈

[
1
a
,a
]
, in which a is a tuning parameter;

2.3 Metropolis algorithm tuning 21

3. the proposal θθθ ′ is then accepted with a modified Metropolis probability

a(θθθ
′ |θθθ) = min

(

1,zd−1 π (θθθ ′)
π (θθθ)

)

(2.12)

⋆

abe careful that in a general particle algorithm it is not required to choose one companion among the starting set

Exercise Prove that (2.12) satisfies detailed balance

Solution:

We want to prove that

P(θθθ ′|θθθ)π(θθθ) = P(θθθ |θθθ ′)π(θθθ ′) (2.13)

If we move to polar coordinates centered at θθθ ′′, then

π(θθθ)dθθθ ∝ π(r)rd−1dr

π(θθθ ′)dθθθ ′ ∝ π(r′)r′d−1dr′

and, since z = r′
r

,

f (z)dz = f (r′)dr′ =⇒ f (r′) = f (z)
dz

dr′
= f

(
r′

r

)
1

r

At the same time:

f (z)dz = f (r)dr =⇒ f (r) = f (z)
dz

dr

∗
= f

(r

r′

) 1

r′

Conditioning (2.13) on θθθ ′′, we get

P(θθθ ′|θθθ ,θθθ ′′)π(θθθ) = f

(
r′

r

)

min

(

1,

(
r′

r

)d−1 π(r′)
π(r)

)

π(r)rd−2

= f

(
r′

r

)

min
(

π(r)rd−1,π(r′)r′d−1
) 1

r

∗
= f

(r

r′

)

(r′)−1 min
(

π(r′)r′d−1,π(r)rd−1
)

= f
(r

r′

)

min

(

1,
(r

r′

)d−1 π(r)

π(r′)

)

π(r′)r′d−2

= P(θθθ |θθθ ′,θθθ ′′)π(θθθ ′)

where in (∗) we used the property f (1/z) = z f (z) �

The strength of this algorithm is that the direction of the jump is position dependent, a characteristic

that this not found in the standard Metropolis algorithm, which sets the same direction for every starting

point. That’s why stretch move methods work well for non-linear and also multi-modal target.

Figure 2.8: EMCEE stretch move. The direction of the updates depends on the structure of the distribution.

22 Chapter 2. Metropolis algorithms

Convergence

Adaptive Monte Carlo algorithms (Haario and Vihola) are not Markov chains anymore, since they exploit

their history, losing their Markovian-property: the convergence proofs become a lot harder, to the point that

for the Vihola algorithm a general convergence proof can’t be found. This problem can be bypassed by

using an adaptive algorithm just at the beginning and then, after the covariance structure is assumed to be

learned, switching to the traditional Metropolis. On the other hand, the convergence proof of the interacting

particle algorithm is rather easy, since here the jumps only depends on the current state of all the particles (it

is therefore a Markov process).

2.4 Gibbs Sampling

Lesson 4

31/03

AZ

Gibbs sampling refers to the idea of sampling one component xi ∈ xxx at a time, while keeping all the other

components fixed (see Fig. 2.9). This strategy becomes very useful in high dimensional spaces when

combined with the Metropolis algorithm, allowing a much higher acceptance rate that we wouldn’t have by

jumping toward random directions in the parameters’ space.

Figure 2.9: Visual explanation of Gibbs sampling.

Let’s make an example to make things more concrete. Suppose to measure some quantity that gives in

output N i.i.d. variables identified as yi ∼N (µ,σ), i = 1, . . . ,N (you can think, for example, to measure

the heights of students in a class). A handy re-parameterization of the problem is by means of the so called

precision, defined as τ = σ−2, so that the parameters that we want to infer are now θθθ = (µ,τ). The likelihood

of this model, obtained as the product of the N N (yi|µ,σ) distribution, is

f (yyy|µ,τ) ∝ τ
N
2 exp

{

−τ

2

N

∑
i=1

(yi−µ)2

}

,

while for the prior we can choose a so-called conjugate-prior, meaning that both prior and posterior belongs

to the same PDF family (or class). For example, if we choose a normal prior for the parameter µ

f (µ) ∝
1

σ∗
exp

{

− (µ−µ∗)2

2(σ∗)2

}

that is parametrized by the hyper-parameter θθθ = (µ∗,σ∗), if we multiply it by a normal likelihood, the

posterior is still a normal distribution (the product of gaussian PDFs is gaussian itself). This means that if

we keep updating the prior with the likelihood, we stay in the same family of PDFs. This is particularly

convenient, because this way we can visualize the learning as a curve in the space of hyper-parameters

(µ∗,σ∗). Instead, for the precision we shall use a gamma distribution that is again a conjugate-prior, because

if we multiply it by the likelihood we increase the parameters α,β but we keep having a gamma PDF.

f (τ) = Γ(τ;α,β) ∝ τα−1e−βτ α,β > 0

2.4 Gibbs Sampling 23

One of the major caveat in Bayesian analysis is that we can’t express knowing nothing, because we

need to propose a prior. However, we can try to introduce as less information as possible in the process by

means of a conjugate prior distribution within the class of non-informative priors (sometimes called also

uninformative priors), obtained as results of some proper limits of the parameters

f (µ)
σ∗→∞−→ 1

f (τ)
α,β→0−→ τ−1

This way the final posterior is

f (µ,τ|yyyobs) ∝ τ
N
2 −1 exp

{

−τ

2

N

∑
i=1

(yi−µ)2

}

Now, in order to perform a MCMC that samples (µ,σ) from this posterior, it is convenient to exploit the

Gibbs sampling method. Indeed, if we keep τ fixed then we have that f (µ,τ|yyyobs) is a normal PDF, and if we

keep µ fixed then we have a gamma PDF. In both cases it’s easy to sample numbers from such distributions

at the computational level. In summary, the Gibbs sampling method consists on the iteration of the following

two steps:

1. Fix µ , extract τ ∼ Γ
(

N
2
, 1

2 ∑
N
i=1(yi−µ)2

)

2. Fix τ , extract µ ∼N
(

1
N ∑

N
i=1 yi ,

1
Nτ

)

However, in general we cannot perform direct sampling from the posterior. In these cases it’s very useful

to combine Gibbs sampling with the Metropolis algorithm, especially in high dimensional spaces. Recall

that in the Metropolis algorithm one has to scale the size of the jump distribution as σ2 ∼ d−1 in order to

stay away from an exponential loss in the sampling. Nevertheless, if we now apply the Gibbs sampling, just

a fraction of the parameters is changed at a time, and the rest is kept fixed. This means that we can make

larger jumps, at the cost of performing them in a subspace of the parameter’s space.

� Example 2.1 — Ising model. A typical physical example where this procedure can be used successfully

is the Ising model, where we want to sample Ising configurations, i.e classical spins xi =±1, on a lattice.

These configurations are distributed as

f (xxx|β ,h) = Z
−1(β ,h) e−βH(xxx,h)

where the Hamiltonian is

H(xxx,h) =−∑
〈i, j〉

xix j +h∑
i

xi

and the first summation is performed over nearest neighbors. Here the Gibbs sampling procedure consists on

keeping fixed all spins but one, which has to be flipped, obtaining a new configuration X → X
′
. Then, the

usual Metropolis accept/reject step is performed with acceptance ratio

a(xxx′|xxx) = min

(

1,e−β
[

H(xxx′,h)−H(xxx,h)
])

= min

(

1,e−β∆H

)

(2.14)

and we iterate until thermalization. Note that here we are not doing Bayesian inference, but we’re just

simulating the system’s configurations from the likelihood given some fixed parameters (β ,h). The opposite

problem, i.e. given the configuration we want to infer (β ,h), is instead a much harder problem. This is due

to the fact that sampling from the posterior f (β ,h|xxxobs) with the classical Metropolis requires to compute the

likelihood many times, but since it contains the partition function this would be very expensive. For this kind

of tasks a more affordable approach is given by the Approximate Bayesian Computation (see next chapter). �

� Example 2.2 — Rainfall-runoff modelling. As mentioned in the first chapter, traditionally if people want

to predict the runoff of a river based on rain forecast, they use models of the kind

yyyruno f f (rrr,θθθ) = yyydet(rrr,θθθ)+E(rrr,θθθ),

24 Chapter 2. Metropolis algorithms

where rrr is the rain given as an input and θθθ are the parameters of the model. However, it is known that one

of the major sources of uncertainty comes from the rain measurements, and therefore it would be better

to model the uncertainties directly on the input data instead of trying to describe them through the error

modelling E. To tackle this problem, a possible strategy is perform the model calibration by splitting into

two parts the observations yyyobs = (yyyrain,yyyruno f f), and to treat the real rain realizations xxx as an unknown that

we’ll try to infer together with the parameters of the model: qqq = (xxx,θθθ). This way we can write the joint

model likelihood f (yyyrain,yyyruno f f |θθθ) as the marginalization over the unknown real rain “hidden variable” xxx

f (yyyrain,yyyruno f f |θθθ) =
∫

f (yyyruno f f |xxx,θθθ) f (yyyrain|xxx,θθθ) f (xxx|θθθ)dxxx,

where f (xxx|θθθ) is called "rain generator" because it generates rain time series (we will refer to them also as

trajectories or realizations) according to some stochastic models and parameters θθθ . The result is that we

moved from an intractable likelihood in a low dimensional space Θ to a relatively easy likelihood in a high

dimensional space Q = (Θ,X) with a nasty integral over all the rain realizations.

We shall therefore sample the qqq’s from the joint posterior

f (xxx,θθθ |yyyobs) ∝ f (yyyobs|xxx,θθθ)
︸ ︷︷ ︸

likelihood

f (xxx|θθθ) f (θθθ)
︸ ︷︷ ︸

prior

and consider them as microscopic states of some statistical mechanics problem

f (qqq|yyyobs) ∝ Z
−1(yyyobs) e−H(qqq, yyyobs)

At this point we can apply Gibbs-sampling together with the classical Metropolis algorithm as described

above:

1. Fix a rain realization xxx and sample θθθ with Metropolis.

2. Fix θθθ and sample a rain realization. This can also be done in a Gibbs-like way, meaning that we can

select just a small time window, generate a piece of trajectory and update the full time series if the

Metropolis accept/reject step allows it (see Fig. 2.10).

Figure 2.10: Updating a rain time series with Gibbs sampling. A realization is sampled between time τ and

τ +∆τ , and the proposal can be accepted or not according to the Metropolis rule.

�

3. Hamiltonian Monte Carlo

3.1 Basic Concepts

So far we’ve seen how Metropolis algorithms can be used for sampling the posterior distribution of an

inference problem. However, many times it happens that the strategy of performing random jumps in the

parameters’ space can be very inefficient, because many proposal are not accepted. For difficult inference

problems it becomes of paramount importance that the algorithm converges to the target distribution in an

acceptable time, and we therefore have to find out a strategy to increase the acceptance rate. Metropolis

algorithms become a lot more efficient if we use the local shape of the posterior (i.e. its derivatives) to decide

where to jump, and here is where Hamiltonian Monte Carlo (HMC) algorithms come in play. The idea is to

introduce auxiliary momentum variables ppp, for each degrees of freedom qqq = (xxx,θθθ), so that we can write the

posterior as

f (qqq|yyyobs) = Z
−1(yyyobs) e−V (qqq, yyyobs)

(⋆)
∝ Z

−1(yyyobs)
∫

exp

{

−V (qqq, yyyobs)−∑
i

p2
i

2mi

}

dppp

where we’ve defined the potential V (qqq,yyyobs) =− log(f (yyyobs|qqq) f (qqq)) and where in (⋆) we’ve introduced an

identity up to a constant factor due to the integration of the Gaussian kinetic term. We can now define the

Hamiltonian as

H(qqq,ppp; yyyobs) = T +V = ∑
i

p2
i

2mi

+V (qqq, yyyobs) (3.1)

so that the posterior PDF can be written as

f (qqq|yyyobs)∝Z
−1(yyyobs)

∫

e−H(qqq,ppp; yyyobs) dppp

The previous equation now suggests to use Hamiltonian dynamics to retrieve a Markov chain with an high

acceptance probability, that means: we no longer perform random jumps, but we rather follow the directions

given by the Hamilton equations associated to the Hamiltonian (3.1). We know in fact that the Hamilton

equations preserve the energy, so when we compute the acceptance probability (see Eq. (2.14)) we have an

energy difference ∆E = 0 that leads to an acceptance probability of 1. So, in principle, we will always accept

the proposal update in the accept/reject step. This is actually quite not true, since we need to perform a

discretization of the Hamilton equations that will unavoidably introduce some errors, invalidating the energy

conservation. To mitigate this drawback we thus still keep a final accept-reject step. The intuition behind

HMC is that we kick all the degrees of freedom with a random force (sampled from the Gaussian kinetic

energy) and then let the system explore the associated energy-shell of the phase space. Sampling a new set

of momenta in each iteration makes sure that all the energy shells are sampled.

26 Chapter 3. Hamiltonian Monte Carlo

In a nutshell: We’ve seen that the energy conservation property of the Hamiltonian dynamics allows to

have an acceptance probability close to 1. However, how can we visualize the fact that the Hamiltonian

somehow is able to describe the geometry of the target distribution?

Let’s have a look at the picture in Fig.3.1. To sample from a probability distribution, it’s trivial to say that

we want to toss more points in the high probability region, an less points elsewhere. Thus, an efficient

sampler should explore more likely the regions where our posterior has its maximum values. In HMC,

what we do is to “encode” the negative logarithm of the un-normalized posterior in the potential of the

Hamiltonian; this way, if we propagate the equations of motion for a certain duration τ , the dynamics

will spontaneously explore the region around the minimum of the potential, corresponding to the high

probability region of the posterior.a

aYou can find some nice animations at https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.

html

Figure 3.1: In HMC, we turn the posterior PDF into a potential and we exploit the Hamiltonian dynamics to

explore the high probability region

As we mentioned above, to simulate numerically the Hamilton equations we are forced to introduce a

discretization. In general, it is known that discretizations introduce errors in energy conservation, and we

can handle them, but we can’t allow errors in reversibility. Indeed, we have to choose a discretization that

is reversible in time and volume preserving, meaning that the Liouville’s theorem must hold (needed in

order to guarantee the detailed balance condition).

An example of a discretization that preserves detailed balance is the Leapfrog scheme and moreover, the

rejection probability in the Metropolis step of HMC is ∼ O(∆τ2) i.e it depends by the time interval chosen

in the Leapfrog discretization.

Algorithm 3.1 — Leap Frog

1. Initialize the momenta with some explicit methods like the Euler’s one:

pi

(

τ +
∆τ

2

)

= pi(τ)−
∂V (q)

∂qi

|τ ∆τ +O(∆τ2)

2. Alternatively update positions and momenta







qi(τ +∆τ) = qi(τ)+ pi(τ +
∆τ
2
)∆τ

mi
+O(∆τ3)

pi(τ +
∆τ
2
) = pi(τ− ∆τ

2
)− ∂V (q)

∂qi
|τ ∆τ +O(∆τ3)

(3.2)

⋆

Exercise Prove that the leap frog discretization is time reversible.

3.2 Advanced Hamiltonian Monte Carlo 27

Figure 3.2: Leapfrog procedure.

Solution: First, we can re-arrange the formula above and put the changed sign inside the time interval

{

qi(τ) = qi(τ +∆τ)+ pi(τ +
∆τ
2
)
(
− ∆τ

mi

)

pi(τ− ∆τ
2
) = pi(τ +

∆τ
2
)− ∂V (q)

∂qi
|τ (−∆τ)

Then, we can define a new time interval ∆τ ′ =−∆τ , which is just the time reverse of the previous one;

so we end up with:
{

qi(τ) = qi(τ−∆τ ′)+ pi(τ− ∆τ ′
2
)∆τ ′

mi

pi(τ +
∆τ ′
2
) = pi(τ− ∆τ

′

2
)− ∂V (q)

∂qi
|τ ∆τ ′

The p’s equation is in the same form of the original Leapfrog scheme, while the q’s equation is not.

The reason is that, when we invert the arrow of the time in a q− p scheme, the first variable to be updated

is p, and not q anymore (look at figure 3.2). In order to fix this we can just add a ∆τ ′ term everywhere

inside the parenthesis of the q, and finally we retrieve the original leapfrog scheme but in a reverse-time

fashion. �

Finally, in order to correct errors of order O(∆t2) in energy conservation, we need an accept/reject step

of the Metropolis algorithm.

Algorithm 3.2 — HMC

Tuning parameters: {mi}i=1...N , τ;

1. Sample momenta ppp∼ exp
{

−∑i
p2

i
2mi

}

;

2. Propagate for a duration τ the Hamilton equations

q̇i =
∂H(qqq,ppp)

∂ pi

, ṗi =−
∂H(qqq,ppp)

∂qi

using the leapfrog discretization;

3. Accept the proposal move with acceptance probability

min

(

1,exp

{

−H
(
q(τ +n∆τ), p(τ +n∆τ)

)
+H

(
q(τ), p(τ)

)
})

(3.3)

⋆

HMC methods are incredibly powerful, but the cost to pay is that we need to calculate derivatives

(see Eq. (3.1)). Nowadays there exist highly-optimized routines as Automated Differentiation that uses

meta-programming, meaning that they take a function in input and give you back another function which

calculates the exact derivative of the first one.

3.2 Advanced Hamiltonian Monte Carlo

3.2.1 Example: Stochastic differential equation (SDE) model

Lesson 5

07/04

FC

LR

To improve this basic scheme of Hamiltonian Monte Carlo we’ve seen so far, we shall go through an

important example coming from hydrological models. This gives us the opportunity to introduce the

stochastic differential equation models (in short, SDE), which are becoming quite popular in many fields.

Consider a state variable x(t) whose evolution is given by the Langevin equation

ẋ(t) = r(t)−ρ(t)x(t) (3.4)

28 Chapter 3. Hamiltonian Monte Carlo

For example, if we’re describing the rainfall-runoff of a river by means of a bucket-model, then x(t) can be

the amount of water in a catchment, r(t) is a (known) input variable representing the rain and ρ(t)x(t) is the

outflow (see Fig. 3.3). Reasonably, the outflow of the model is proportional to the amount of water in the

tank, but we also introduce a variable ρ(t) which represents a stochastic process. For this model we choose a

simple stationary gaussian process, meaning that it’s completely described by only two time-independent

momenta,

ρ0 = 〈ρ(t)〉, 〈(ρ(t)−ρ0)(ρ(t
′)−ρ0)〉= δ (t− t ′)ρ0γ,

where the delta function means that the noise is totally uncorrelated. Often this term is also called white noise,

because if we take the Fourier transform of the correlation function we find a constant value representing an

equal contribution of all frequencies (hence the name white). The parameters here introduced are the mean

of ρ(t), ρ0 ([ρ0] = t−1), and the dimensionless noise magnitude, γ .1

Figure 3.3: The model we use describes the evolution of the tank level x(t) as a function of the incoming

rain r(t) and a stochastic term ρ(t)

In order to work with our model we also choose a discretization framework, that in our case will be Itô

discretization

xi = x(ti), ti+1− ti = ∆t, xi+1 = xi +∆t(ri−ρixi).

In the last formula, the term xi in brackets could have been also (xi+1− xi)/2 (Stratonovich discretization) or

other kind of discretizations, but this could lead, in principle, to an entirely different model. For this specific

case, instead, the change of discretization would translate to just a change of the parametrization.

Given the discretized framework we can rewrite ρ as

ρi = ρ0 +ηi, 〈ηiη j〉= γρ0

δi j

∆t
−→ 〈ηi〉 ∼

√

〈η2
i 〉=

√
γρ0

∆t

from which we can finally get the discretized Langevin equation

xi+1 = xi +∆t(ri−ρ0xi)
︸ ︷︷ ︸

Drift term

+
√

∆tρ0γ xiεi
︸ ︷︷ ︸

Noise

, εi ∼N (0,1) (3.5)

from which we can easily simulate realizations for the model. Notice that for small ∆t the stochastic

term becomes the dominant one, since it depends on
√

∆t, and from this observation we conclude that

∆xi = xi+1− xi ∼ O(
√

∆t). As a consequence, in the limit ∆t → 0 typical realizations of SDE will be

continuous, but not differentiable anywhere. This also allows us to explain how changing the discretization

can afflict the resulting model; in fact, if we imagine to choose xi+1 = xi +∆x in place of xi, in the end we

would get an additional term

xi+1 = xi +∆t(ri−ρixi+1) = xi +∆t(ri−ρixi)+∆t∆x(ρ0 +ηi)

where ∆t∆xρ0 ∼ ∆t
3
2 and so we will neglect it, while ∆t∆xηi ∼ ∆t so we have

xi+1 = xi +∆t(ri−ρixi + ci) = xi +∆t(r̃i−ρixi)

1It is worth to notice that the combination of variables chosen for right hand side of the correlation function is consistent in terms of

dimensional analysis (recall that [δ (t− t ′)] = t−1)

3.2 Advanced Hamiltonian Monte Carlo 29

For this particular problem the effective difference would be only a reparametrization (r̃i), but in some cases

it can lead to new terms and different behaviours.

We shall study now the special case for which we have a time-independent input r(t) ≡ r0 and solve

the model by finding the stationary distribution for x in the limit t→ ∞. By taking the average of Eq. (3.5)

we immediately find that the resulting distribution will have 〈x〉= r0/ρ0. Also, if in Eq. (3.4) we consider

x≫ r0/ρ0 then the first term becomes negligible, and we get a scale-invariant equation2: ẋ = r−ρx≈−ρx.

Since power laws are the only scale-invariant distributions, our result must be power law-like in the right tail.

By solving the model one can actually find that the final distribution is a inverse gamma distribution that

satisfies the power law tail condition. (**CIT paper)

Figure 3.4: Resulting stationary distribution for x

What we described so far can be taken as a reference model, but what follows is true in general. Suppose

we made a set of measurements {yI} at times {tI}, I = 1 . . .n, such that tI+1− tI ≫ ∆t, meaning that there’s

a non trivial dynamics happening between two observation points. Our measurements will be subject to

some amount of error that we suppose to be gaussian

yI = x(tI)+σ ε̃I , ε̃I ∼N (0,1).

Our target is therefore to infer θθθ = (ρ0,γ,σ). Often, this kind of problems are solved using a Kalman filter,

which however require our states to be normally distributed. Instead, the model we’ve shown above is an

example of a system in which the variables are distributed according to a non normal distribution with

power-law tails, therefore this strategy wouldn’t work in our case. A good way to proceed is instead using

HMC. The posterior of the discretized model is of the form

f (θθθ |yyyobs) =
∫

f (yyyobs|xxx,θθθ) f (xxx|θθθ) f (θθθ) dxxx,

where f (xxx|θθθ) is the component of the prior which is given by the stochastic model.

It is convenient to treat the realizations xxx together with θθθ as the parameters of the model to be inferred,

and to write the integral in the usual Boltzmann-like form. Finally, we can couple the parameters with the

corresponding momenta (θθθ ,xxx)↔ (πππ,ppp) by introducing a kinetic term

f (θθθ |yyyobs) = Z
−1(yyyobs)

∫

exp [−Vobs(xxx,θθθ ; yyyobs)−Vmodel(xxx,θθθ)−Vprior(θθθ)] dxxx

= Z
−1(yyyobs)

∫

exp [−Vtot(xxx,θθθ ; yyyobs)−K(πππ,ppp)] dxxx dπππ dppp

= Z
−1(yyyobs)

∫

exp [−H(xxx,θθθ ,πππ,ppp; yyyobs)] dxxx dπππ dppp

where

H(xxx,θθθ ,πππ,ppp; yyyobs) = +Vobs(xxx,θθθ ; yyyobs)+Vmodel(xxx,θθθ)+Vprior(θθθ)+∑
p2

i

2mi

+∑
π2

α

2mα
(3.6)

Note that we could take the formal limit ∆t→ 0 and write this integral as a path integral over continuous

realizations xxx. A nice visualization of the problem is given by looking at the time series of xxx as it was a

swinging polymer chain constrained to obey some external potentials (see figure 3.5). In this case, Vobs

forces the polymer to agree with the observations we made at times {tI}, while Vmodel guarantees that the

points between consecutive observations are a plausible realization of the model. In the same way the θθθ ’s

will explore the parameter’s space according to our potentials.

2The model is invariant under a multiplication of x by some constant c

30 Chapter 3. Hamiltonian Monte Carlo

Figure 3.5: Interpretation of the realizations xxx as a polymer constrained by Vobs in correspondence of the

observations, and by Vmodel elsewhere

We shall now look closely at the different components of the Hamiltonian:

• Vprior(θθθ): typically is chosen as a simple functions of θθθ , such as a log-normal distribution

• Vobs(xxx,θθθ ; yyyobs): assuming to have observations with a symmetric, normal uncertainty, we can use the

logarithm of a normal distribution

Vobs(xxx,θθθ ; yyyobs) =
1

2σ2

n

∑
I=1

(
x(tI)− yobs,I

)2
+n ln

(√
2πσ

)

• Vmodel(xxx,θθθ): this term has to be derived from the model. From Eq. (3.5) we can write the discretized

Langevin equation

∆xi = (ri−ρ0xi)∆t +
√

ρ0 γ ∆t xiεi, εi ∼N (0,1)

and therefore the associated potential reads, after a suitable change of parameters from εi to xi, as

Vmodel(xxx,θθθ) =
1

2
∑

i

ε2
i

εi→xi−−−→ 1

2
∑

i

[∆xi−∆t(ri−ρ0xi)]
2

ρ0 γ ∆t x2
i

+
1

2
ln
(
ρ0 γ x2

i

)

where the last term comes out from the Jacobian of the transformation. Notice that this is nothing

but the contribution to the posterior given by the discretized path integral associated to the Langevin

equation (3.5).

At this point one can choose a suitable time step ∆τ , propagate the equations of motion for a time window τ
and apply the usual HMC algorithm. However, it turns out that this method applied to our specific model

leads to very poor performances in terms of efficiency (citare paper). The reason for this becomes clear when

we look at the Hamiltonian and realize that the various terms have dynamics happening at very different

time scales. Indeed, the number of discretization points is much larger than the number of observations,

N≫ n≫ 1, and the scaling of the potentials is

• Vmodel(xxx,θθθ) :

∑
i

∆x2
i

∆t
∼∑

i

∆t

∆t
∼ O(N)

∑
i

∆xi ∆t

∆t
∼ N ∆x∼ N

√
∆t ∼ N

1√
N
∼ O(

√
N)

∑
i

∆t2

∆t
∼∑

i

∆t ∼ N
1

N
∼ O(N0)

• Vobs(xxx,θθθ ; yyyobs)∼ O(n)
Via a re-parametrization, the O(

√
N) terms can be reduced to O(N0) terms. Thus, upon discretization, the

Hamiltonian naturally splits into three terms

H = HN
︸︷︷︸

Fast dynamics

+ Hn
︸︷︷︸

Intermediate dynamics

+ H1
︸︷︷︸

Slow dynamics

3.2 Advanced Hamiltonian Monte Carlo 31

Vanilla HMC would adjust the discretization time-step ∆τ for the Hamiltonian dynamics to the fastest part

of the dynamics HN , which, at the same time, encodes a rather trivial kind of dynamics! In fact, with an

adequate parametrization, this part reduces to N uncoupled harmonic oscillators (citare paper). Therefore,

we would like to allow for different temporal discretizations for the different parts of the dynamics; this is

achievable by means of the Trotter’s formula.

Trotter’s formula

From classical mechanics we know that, given an observable function of the positions qqq and the momenta ppp,

f (qqq,ppp), the evolution of the observable under the dynamics generated by the Hamiltonian H is given by

d f

dτ
= { f ,H}=

N

∑
i=1

(
∂ f

∂qi

∂H

∂ pi

− ∂ f

∂ pi

∂H

∂qi

)

=−L f , (3.7)

where {·, ·} indicates the Poisson parentheses whose action can be encapsulated in the operator L . From the

last expression we see that the formal solution of (3.7) is given by

f (τ) = e−τL f (0)

If we have an Hamiltonian H which is given by the sum of a fast-dynamics term HN and a slow-dynamics

one H ′, then

H = HN +H ′ =⇒ L = LN +L
′.

Once we introduce the discretization τ = P ∆τ , the Trotter’s formula stands

e−τL =
(

e−
∆τ
2 LN e−∆τL ′ e−

∆τ
2 LN

)P

+O(∆τ2) (3.8)

which means that we can describe the full dynamics using fast-slow dynamics alternatively (notice that

inside Trotter’s formula there are operators not functions). Moreover we can use a finer discretization to

approximate the propagator associated with the fast dynamics.

From now on, to simplify the notation we’re going to denote with πππ the momenta and with θθθ all the

parameters we want to infer.

3.2.2 Riemann Manifold Hamiltonian Monte Carlo

So far we’ve introduced a kinetic term in the Hamiltonian without caring about the masses. But how can

we choose them? Using some physical intuition, we would like to have larger masses where the potential

changes rapidly, because the “particles” have to move slower; on the other hand, in the flat and broad regions

of the potential a light, fast dynamics is desirable. In other words, we need to have an inertia which depends

on the curvature of the potential [GC11].

To achieve that, we can generalize our kinetic term with a more general quadratic form

K(πππ) =
N

∑
i=1

π2
i

2mi

−→ πππT g(θθθ)πππ

where g(θθθ) is the metric tensor that describes how the curvature of the potential changes depending on where

we are. To find out a good candidate for the metric tensor we have first to introduce some kind of “distance“

in the parameters’ space. One possibility is given by the relative entropy (also known as Kullback-Leibler

divergence)

S(θθθ ,θθθ ′) = KL
(

f (yyy|θθθ)|| f (yyy|θθθ ′)
)
=
∫

f (yyy|θθθ) ln
f (yyy|θθθ)
f (yyy|θθθ ′) dyyy (3.9)

which represents the difference in the information content between f (yyy|θθθ) and f (yyy|θθθ ′). Intuitively, since the

logarithm of the likelihood has the meaning of a potential, the relative entropy defined above can be also

interpreted as the average difference between the potential computed in the two points θθθ and θθθ ′. If we now

expand Eq. (3.9) in Taylor series around θθθ we find

S(θθθ ,θθθ ′) =
1

2
(θθθ −θθθ ′)T G(θθθ) (θθθ −θθθ ′)+O(

∣
∣θθθ −θθθ ′

∣
∣3) (3.10)

where

Gi j(θθθ) =−
〈

∂ 2 ln f (yyy|θθθ)
∂θi ∂θ j

〉

θθθ

=−
∫

f (yyy|θθθ) ∂ 2 ln f (yyy|θθθ)
∂θi ∂θ j

dyyy (3.11)

is the inverse of the Fisher metric.

32 Chapter 3. Hamiltonian Monte Carlo

Exercise Prove Eq. (3.10) and (3.11)

Solution:

We can write Eq. (3.9) as

S(θθθ ,θθθ ′) =
∫

f (yyy|θθθ) ln f (yyy|θθθ) dyyy−
∫

f (yyy|θθθ) ln f (yyy|θθθ ′) dyyy (3.12)

and expand the logarithm of the second term around θθθ

ln f (yyy|θθθ ′) = ln f (yyy|θθθ)+(θθθ ′−θθθ) ·∇θθθ ln f (yyy|θθθ)+ 1

2
∑
i j

(θθθ ′−θθθ)i

∂ 2 ln f (yyy|θθθ)
∂θi ∂θ j

(θθθ ′−θθθ) j +O(|θθθ ′−θθθ |3)

By substituting in Eq. (3.12) we get

S(θθθ ,θθθ ′) =−
∫

f (yyy|θθθ)(θθθ ′−θθθ) ·∇θθθ ln f (yyy|θθθ) dyyy +

− 1

2
∑
i j

(θθθ ′−θθθ)i

〈
∂ 2 ln f (yyy|θθθ)

∂θi ∂θ j

〉

θθθ

(θθθ ′−θθθ) j +O(|θθθ ′−θθθ |3)

where we can recognize the Fisher metrics Gi j(θθθ). The first integral splits into a sum whose i-th element

is given by

−
∫

f (yyy|θθθ)(θθθ ′−θθθ)i

∂

∂θi

ln f (yyy|θθθ) dyyy =−
∫

f (yyy|θθθ)(θθθ ′−θθθ)i

1

f (yyy|θθθ)
∂

∂θi

f (yyy|θθθ) dyyy

= (θθθ ′−θθθ)i

∂

∂θi

∫

f (yyy|θθθ) dyyy

︸ ︷︷ ︸

=1

= 0

and we are therefore left with Eq. (3.10)

S(θθθ ,θθθ ′) =
1

2
(θθθ −θθθ ′)T G(θθθ) (θθθ −θθθ ′)+O(|θθθ −θθθ ′|3)

�

The idea is that the model f (yyy|θθθ) naturally induces a metrics in the parameter’s space which is independent

on the observations yyyobs and that can be evaluated as the leading term in the relative entropy expansion. The

Fisher metrics is also used to fix a lower bound on the error that we make for estimating the parameters of

the model.

Theorem 3.1 — Cramer-Rao Given a probability distribution f (XXX |θθθ), whatever unbiased estimator θ̂θθ of

the parameters of the model will have a variance bounded from below by

Var(θ̂θθ)≥ G(θθθ)−1 =−
〈

∂ 2 ln f (XXX |θθθ)
∂θi ∂θ j

〉−1

θθθ

(3.13)

Exercise Given N i.i.d. random variables drawn from a normal distribution with mean µ and standard

deviation σ

f (yyy|µ,σ) ∝ σ−N exp

[

− 1

2σ2

N

∑
i=1

(yi−µ)2

]

,

show that

G(µ,σ) =
N

σ2

(
1 0

0 2

)

.

This result confirms the well-known fact that the variance of the estimator of the mean of a normal

distribution is given by σ2/N

3.2 Advanced Hamiltonian Monte Carlo 33

Solution:

It’s easy to see that

∂ 2

∂ µ2
ln f (yyy|µ,σ) =− N

σ2
;

∂ 2

∂σ ∂ µ
ln f (yyy|µ,σ) =

∂ 2

∂ µ ∂σ
ln f (yyy|µ,σ) =− 2

σ3

N

∑
i=1

yi +
2Nµ

σ3
;

∂ 2

∂σ2
ln f (yyy|µ,σ) =

N

σ2
− 3

σ4

N

∑
i=1

(yi−µ)2

and taking the average we get

−
〈

∂ 2 ln f

∂ µ2

〉

=
N

σ2

−
〈

∂ 2 ln f

∂ µ ∂σ

〉

=−
〈

∂ 2 ln f

∂σ ∂ µ

〉

=
2

σ3

〈
N

∑
i=1

yi

〉

︸ ︷︷ ︸

Nµ

−2Nµ

σ3
= 0

−
〈

∂ 2 ln f

∂σ2

〉

=− N

σ2
+

3

σ4

〈
N

∑
i=1

(yi−µ)2

〉

︸ ︷︷ ︸

Nσ2

=
2N

σ2

The Fisher metrics follows. �

If we have an informative prior, we can replace Eq. (3.11) by

G̃i j(θθθ) =−
〈

∂ 2 ln f (yyy,θθθ)

∂θi ∂θ j

〉

θθθ

= Gi j(θθθ)−
∂ 2 ln f (θθθ)

∂θi ∂θ j

(3.14)

where the additional term is nothing but the Hessian matrix of the prior. We are now tempted to use the

inverse of the Fisher matrix as the mass matrix of our Hamiltonian, but before doing that we need the

following

Proposition 3.2 The Fisher metrics defined as

Gi j(θθθ) =−
〈

∂ 2 ln f (yyy|θθθ)
∂θi ∂θ j

〉

θθθ

is positive definite.

Proof. Notice that
∫

f (yyy|θθθ)∂ ln f (yyy|θθθ)
∂θi

dyyy =
∂

∂θi

∫

f (yyy|θθθ) dyyy

︸ ︷︷ ︸

=1

= 0,

thus

0 =
∂

∂θ j

∫

f (yyy|θθθ)∂ ln f (yyy|θθθ)
∂θi

dyyy =
∫

∂ f (yyy|θθθ)
∂θ j

∂ ln f (yyy|θθθ)
∂θi

dyyy +
∫

f (yyy|θθθ)∂ 2 ln f (yyy|θθθ)
∂θi ∂θ j

dyyy

︸ ︷︷ ︸

−Gi j(θθθ)

=⇒ Gi j(θθθ) =
∫

∂ f (yyy|θθθ)
∂θ j

∂ ln f (yyy|θθθ)
∂θi

dyyy =
∫

f (yyy|θθθ)∂ ln f (yyy|θθθ)
∂θ j

∂ ln f (yyy|θθθ)
∂θi

dyyy

=
〈

(∇θθθ ln f)(∇θθθ ln f)T
〉

i j
= Cov(∇θθθ ln f)i j

Since the covariance matrix is positive definite, also G(θθθ) is positive definite as well. �

34 Chapter 3. Hamiltonian Monte Carlo

For the case of the likelihood joined with the prior (Eq. (3.14)) we have no guarantee that the Hessian of

the prior is positive definite. However this is not typically a problem, since the prior is usually a quite flat

distribution way less informative than the likelihood. This means that the first term is predominant, and the

total resulting matrix is still positive definite.

By introducing a kinetic term that exploits the inverse of the Fisher metrics as a mass matrix, the posterior

can be written as

f (θθθ |yyy) = Z −1(yyyobs)
√

detG(θθθ)

∫

exp

[

ln f (yyy|θθθ ,xxx)− 1

2
πππT G−1(θθθ)πππ

]

dxxx dπππ = Z
−1
∫

e−H(θθθ ,xxx,πππ) dxxx dπππ

where

H(θθθ ,xxx,πππ) =− ln f (yyy|θθθ ,xxx)
︸ ︷︷ ︸

Potential

+
1

2
πππT G−1(θθθ)πππ +

1

2
lndetG(θθθ)

︸ ︷︷ ︸

Kinetic term

(3.15)

An example of how this approach works can be taken from the simple likelihood in exercise 3.3. In this case

the masses associated to the parameters are

mµ =
N

σ2
, mσ =

2N

σ2
.

These expressions are quite reasonable: the more data we have, the more the likelihood is informative (i.e.

peaked) and the sharper will be the landscape of the associated potential; this means that heavier masses are

desirable. On the other hand, a small value of σ determine a broader likelihood and a quite flat potential,

hence requiring lighter “particles".

Starting from the Hamiltonian (3.15) (and absorbing the input variables xxx into the parameters θθθ), the

Hamilton equations become

θ̇i =
∂H

∂πi

=
(
G−1(θθθ)πππ

)

i

π̇i =−
∂H

∂θi

=
∂ ln f (θθθ |yyy)

∂θi

+
1

2
πππT

[

G−1(θθθ)
∂G(θθθ)

∂θi

G−1(θθθ)

]

πππ− 1

2
Tr

[

G−1(θθθ)
∂G(θθθ)

∂θi

]

However, with these new Hamilton equations a problem arises: a naive leap-frog discretization will no longer

be volume-preserving and time-reversible, and would hence violate detailed balance. For detailed balance to

be satisfied, we need an implicit discretization

πππ(τ +∆τ/2) = πππ(τ)− ∆τ

2
∇θθθ H

(
θθθ(τ),πππ(τ +∆τ/2)

)
,

θθθ(τ +∆τ) = θθθ(τ)+
∆τ

2

[
∇πππ H

(
θθθ(τ),πππ(τ +∆τ/2)

)
+∇πππ H

(
θθθ(τ +∆τ),πππ(τ +∆τ/2)

)]
,

πππ(τ +∆τ) = πππ(τ +∆τ/2)− ∆τ

2
∇θθθ H

(
θθθ(τ +∆τ),πππ(τ +∆τ/2)

)

The duration, τ , of a HMC update step is also an important parameter to tune. Because the constant-energy

level sets are topologically compact, trajectories will eventually return to previously explored neighborhoods.

This means that, after a while, samples from that given level set will be no longer informative, and proceeding

further with the integration would be just a waste of computational time. Hence if we want to fully exploit

these Hamiltonian trajectories then we need to identify the optimal integration time dynamically. No U-turn

samplers (NUTS) detect automatically when a trajectory starts swinging back forth, and stops the simulation.

State-of-the-art software for HMC can be downloaded from http://mc-stan.org.

Still, if we attempt to sample many coupled degrees of freedom (parameters and system’s realizations)

even this kind of algorithm is very slow. In fact, since the parameters are coupled with all the degrees of

freedom of the system’s realizations, if we want to make a jump with our parameters we have to drag along

the whole system’s realization. This can become fatal if the landscape we want to sample is multi-modal,

and the algorithm is so slow that it prevents us to go from one local energy well to the other.

3.2 Advanced Hamiltonian Monte Carlo 35

Figure 3.6: Sampling in the parameter’s space using vanilla HMC (first and third images from the left) and

Riemann manifold HMC (second and fourth images). We can appreciate how the convergence to the target

distribution is much faster with Riemann manifold HMC.

Figures taken from [GC11]

4. Approximate Bayesian Computation

4.1 Basic concepts

Lesson 6

09/04

LR

AZ

These methods are applied for model classes for which is rather cheap to simulate (sampling with the

above methods) an output given a set of parameters, yyy∼ f (yyy|θθθ), but it’s expensive to evaluate the likelihood

function for a given set of observations, f (yyyobs|θθθ).
� Example 4.1 One of the classes cited above is the one of stochastic differential equation (SDE) models,

just as the one we’ve seen in the previous chapter:

xi+1 = xi +∆t(ri−ρi xi), ρi = ρ0 +

√
γρ0

∆t
εi (4.1)

yI = x(tI)+σε̃I (4.2)

where ε and ε̃ are random variables following a standard normal distribution. Sampling from this model

means:

1. Simulate a time series xxx according to the Langevin equation (4.1)

2. Simulate yyy given xxx using Eq. (4.2)

Thus all in all the sampling procedure is very simple. On the contrary, the likelihood evaluation is totally

another business, because we have to compute a marginalization over all the systems’ realizations that pass

through the data

f (yyyobs|θθθ) =
∫

f (yyyobs|xxx,θθθ) f (xxx|θθθ) dxxx (4.3)

�

� Example 4.2 The likelihood function of the Ising model is

f (xxx|β ,h) = Z
−1(β ,h)e−βHh(xxx) (4.4)

where xxx is a spin configuration, Z (β ,h) is the partition function, β is the inverse temperature and h is

an external magnetic field. Also in this case, if we are given β and h is rather simple to generate some

realizations, for example by using Gibbs sampling and Metropolis algorithm. Instead, evaluating the

likelihood is almost infeasible due to the huge amount of computational resources needed to compute the

partition function

Z (β ,h) = ∑
{xxx}

e−βHh(xxx),

where the sum is extended at all possible spin realizations. �

38 Chapter 4. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) are inference methods based on model simulation rather

than likelihood evaluation. Basically, what we do is to generate data, sampling them from the likelihood for

certain fixed parameters. Then, we compare the simulated dataset with the real data and we decide whether

to retain the parameters we used or not. The basic idea follows by the trivial statement that we can write the

posterior as

f (θθθ |yyyobs)∝
∫

f (yyy|θθθ) f (θθθ)δ (yyy−yyyobs) dyyy (4.5)

where we are conditioning our joint prior of outputs and parameters (definition of posterior) on the observa-

tions. From this, we can derive the following preliminary algorithm:

Algorithm 4.1 — Rejection ABC algorithm

1. Sample θθθ ∼ f (θθθ)
2. Simulate yyy∼ f (yyy|θθθ)
3. Accept the proposal iif yyy = yyyobs

⋆

In general, the output of a model is not just apples, bananas and strawberries, and we cannot pretend the

simulated data to perfectly match the observations. In other words, we are often dealing with real numbers

and so we have to relax the last constraint by making two types of approximation:

1. We introduce a tolerance ε such that yyy≈ yyyobs;

2. We work with summary statistics. Generally, when we have for example a time series, we don’t want

to compare every element inside, but rather compare only some features: yyy→ sss(yyy) that is a map from

an high to a lower dimensional space. This is again to avoid the curse of dimensionality.

4.1.1 Summary statistics: basic idea

We’re going to go deeper in the important topic of summary statistics later on, but for now it’s useful to

introduce the concept, in order to better understand what follows. The key point is that we would like to

reduce the dimensionality of the variables we’re going to deal with, in such a way that the sss retain all the

information of yyy that are informative about the parameters and that throws away all the rest, which is just

noise. Mathematically, the requirement for sss(yyy) to contain all the information about parameters θθθ translates

in the concept of sufficiency

f (yyy|θθθ) = c(yyy) g(sss(yyy),θθθ),

where we multiply a function that depends on the data only through summary statistics with a term that

does not depend on parameters. This is because, for the sake of inference, we are only interested in how f

depends on θθθ . If the part of the function that depends on θθθ only depends on sss, then it’s clear that this piece

alone contains all we want to know about our parameters. Obviously, sss(yyy) = yyy, i.e the identity, is always a

sufficient statistics, but we want a map in a lower dimensional space.

� Example 4.3 Suppose y1, . . . ,yN ∼N (µ,σ) i.i.d., so that effortlessly

f (yyy|µ,σ) ∝ σ−N exp

[

− 1

2σ2 ∑
i

(yi−µ)2

]

= σ−N exp

[

− 1

2σ2 ∑
i

y2
i

︸︷︷︸

S2(yyy)

+
µ

σ2 ∑
i

yi

︸︷︷︸

S1(yyy)

−Nµ2

2σ2

]

= g(sss(yyy),θθθ)

So if we have a large set of observations and we want infer about θθθ = (µ,σ), it is sufficient to consider only

two summary statistics, for example the mean and the empirical variance. Another example is given by the

Ising model, where we can try to infer the temperature for a given configuration just by computing the energy

and the magnetization. However, in general, finding such low dimensional sss(yyy) it’s hard, and indeed it’s a

typical machine learning problem. �

4.2 Tolerance: the SABC algorithm

Now we shall focus on finding a good tolerance ε . The choice of the tolerance, i.e what we mean by having

a good fit between observations and simulations, is a crucial point. In fact, if we choose ε too large we will

4.2 Tolerance: the SABC algorithm 39

end up with a large bias in our posterior, while a parameter too small will never make the algorithm converge.

Inspired by thermodynamics, we can think to interpret this tolerance as a temperature, so that the metric that

we use to measure the distance between simulated an observed outputs, ρ(yyy) := ρ(yyy,yyyobs), will correspond

to an energy. Indeed, what we strive for is to approximate our posterior in the form of a sort of Gibbs state

πT (yyy,θθθ) = f (yyy,θθθ)exp

{

−ρ(yyy,yyyobs)

T

}

(4.6)

where as usual f (yyy,θθθ) = f (yyy|θθθ) f (θθθ). Notice that here we write in the measure the explicit dependence on yyy

and yyyobs, but we can actually think at it to depend only on the summary statistics.

The idea now is to use simulated annealing, a procedure widely used in optimization algorithms, where

annealing simply means reducing gradually the temperature. In terms of inference, this means that we

gradually move from the prior to the posterior. In fact, if in Eq. (4.6) we take T → ∞ then we have simply

the joint prior of outputs and parameters, while if we take T → 0 the Gibbs factor reduces to a Dirac’s delta

centered in yyyobs, and we’re left with the definition of the posterior.

Consider now figure 4.1, and think of the green area as a system composed of particles in the product

space of parameters and model’s outputs. The environment is represented by our computer, and it is

parameterized by the temperature T e. Each computer update consists on asking a question to our system,

and the result can be seen as a flow of entropy (and heat) from the system to the environment. Part of this

entropy flux is well-invested, because it allows us to get from the wide prior to the narrow posterior, but part

of it is just wasted computation. This waste is quantified as a unavoidable entropy production due to the

irreversibility of the process. Our goal is to define this problem, circumscribe and quantify the waste and try

to minimize it, in order to get as closer to the posterior as possible with the minimum computational effort.

Figure 4.1: We move our prior population closer to the posterior, by continuously addressing questions to

the system to gain information. The entropy of the system decreases in time while the one of the computer

does the opposite.

Lesson 7

12/04

TF

AM

This idea is implemented by seeing the system as a gas of particles, where each particle has two

components {zzzi := (θθθ i,yyyi)} ∼ Pt(zzz) and the latter is drawn from a distribution that we will call Pt(zzz) and we

will make sure that these particles represent P(zzz)≈ πTf
(zzz), i.e., our final distribution. Let’s now describe the

process.

Algorithm 4.2 — SABC The algorithm breaks down in the following steps:

1. Pick a random particle from the population, zzzi;

2. Jump, first in positions, drawing θθθ ∗ ∼ t(θθθ |θθθ i);
3. Simulate yyy∗ ∼ f (yyy|θθθ ∗);
4. Accept (θθθθθθθθθ ∗,yyy∗) with a probability of min

(

1,
f (θθθ ∗)
f (θθθ i)

exp

{−ρ(yyy∗)+ρ(yyyi)

T e(t)

})

where exponential

is a Boltzmann factor.

5. We lower the temperature T e(t) a bit.

⋆

Exercise Check detailed balance. �

Let’s firstly observe that if the temperature is kept constant in time, i.e. T e(t) = T e, then the detailed

40 Chapter 4. Approximate Bayesian Computation

balance condition is satisfied and so

Pt(zzz)−→
t→∞

πTe(z) = f (zzz)e−
ρ(zzz)
T e

i.e the particles distribution converges to our target, where f (zzz) = f (yyy|θθθ) f (θθθ) is the joint prior (notice that

we can write either zzz or yyy: always remember that the distance depends on the yyy component of the particle).

Notice also that if we keep the temperature sufficiently low we have that the Boltzmann factor will be very

sharply concentrated around the observations and will condition our joint prior f (zzz) to yyyobs.

Considering now an environment temperature that is evolving in time T e(t): in this case the dynamic of the

system under examination (given that it corresponds to a sufficiently large population) is described by the

Master Equation (ME)
∂Pt(zzz)

∂ t
=
∫

Pt(zzz|zzz′)Pt(zzz
′)−Pt(zzz

′|zzz)Pt(zzz)dzzz′ (4.7)

in which we define Pt(zzz
′|zzz) as the transition rate, and it has the following expression

pt(zzz
′,zzz) = t(θθθ |θθθ ′) f (yyy′|θθθ ′)min

(

1,
f (θθθ ′)
f (θθθ)

e
−ρ(yyy′)+ρ(yyy)

T e(t)

)

where t(θθθ |θθθ ′) is the jump probability. If we want to turn it into a probability distribution, we have to add a

part from the probability to reject the move, so finally:

Pt(zzz
′|zzz) = pt(zzz

′,zzz)+δ (zzz′−zzz)

(

1−
∫

pt(zzz
′,zzz)dzzz′

)

(4.8)

The meaning of (4.7) is clear: we have the probability to jump in state zzz from zzz′ minus the one of jumping

away from it. But now the question is: how do we lower T e? We need to be aware of the fact that, if in the

extreme case T e is 0 from the beginning, then any update state away from the target is surely rejected (look at

the formula in point 4 of the algorithm), and if instead T e = ∞ then yobs does not play any role. Summarizing,

if we lower the temperature too fast we get a bias in the final posterior estimate, if we lower the temperature

too slow we are just wasting computational time. The way in which the temperature is lowered is one of the

most crucial points of the algorithm. In order to accomplish this task there exist several ways: one can follow

a deterministic schedule or an adaptive schedule. The first one consists in lowering the temperature slower

than a certain power law T e(t)> ct−
α
n , and there is a theorem that ensures the desired convergence:

Theorem 4.1 — [AKS14] Choosing as a distance

ρ(yyy,yyyobs) =
1

α

n

∑
i=1

∣
∣yi− yobs,i

∣
∣α , α > 0

then, for

T e(t)> ct−α/n

we have that ∫

Pt(zzz)dyyy−→
t→∞

f (θθθ |yyyobs)

where the convergence is in the total variation (TV) sense.

As we can deduce, the larger is n (the dimension of the output space), the slower we are allowed to

reduce temperature in order to be sure to converge to the right result, indeed in the limit we have T e(t)
n→∞
> c.

Notice that this theorem doesn’t tell anything about the simulation time of the algorithm (if we early stop

we don’t know where we are). This is a deterministic schedule, but rather we are interested in an adaptive

schedule where we adapt the T e to average distance of yyyi to yyyobs, and we want to do it in such a way

that Sprod is minimized. It’s weird to say, but good algorithm are not always supported with a rigorous

convergence proof. And this is the case of SABC and for an adaptive temperature decrease.

In a nutshell: Roughly speaking: we must find a way to update the environmental temperature and we

can do it in two ways. For the deterministic approach it exists a theorem stating that convergence can be

achieved if a certain distance in variable space is exploited, but no information about which α parameter

4.2 Tolerance: the SABC algorithm 41

and how many iterations are needed is reported. As a consequence, the deterministic way may result really

computational demanding because of the necessary trial to calibrate the procedure. On the other hand, the

adaptive approach is not formally proven to come to convergence but direct experience confirms good

results. Moreover, we can convince ourselves of the quality of this method according to an heuristic point

of view (see next paragraphs).

4.2.1 Adaptive schedule

Let’s now switch to an adaptive schedule and discuss a heuristic proof of converge of the algorithm. Recalling

Fig. 4.1, we can write the total invested entropy as

Senv = [S(Pti)−S(Pt f
)]

︸ ︷︷ ︸

>0

+Sprod (4.9)

The term between squared brackets (difference between entropy for the prior and the posterior) is usually

greater than 0 since the prior is broader (and thus "less informative") than the posterior. This is also the term

quantifying the right amount of entropy that should flow from the system to the environment in order to

have optimal information transmission: the last term represents the ulterior entropy that the environment

gains, which is not exploited and results in a waste of calculations. As we already said above, the aim is to

minimize this entropy of production. Mathematically speaking, for a given annealing schedule in a number

n discrete time-steps T e
n , Sprod is defined on the space of paths Γn = (zzz0,zzz1, . . . ,zzzn−1)

Sprod =
∫

P(Γn) ln
P(Γn)

PR(Γn)
dΓn (4.10)

where

- P(Γn) = Pn−2(zzzn−1|zzzn−2) . . .P1(zzz1|zzz0)P0(zzz0) is the forward probability of seeing a path realized (direct,

annealing)

- PR(Γn) = P0(zzz0|zzz1) . . .Pn−2(zzzn−2|zzzn−1)Pn−1(zzzn−1) is the backward probability of seeing the same path

realized (reverse, heating).

This is a measure of irreversibility, that under detailed balance is 0. We use this derivation as a measure

of entropy production. Now we plug these two inside the integral. The only surviving terms are:

Sprod = S(Pn−1)−S(P0)+Senv

Hence, if P0(zzz) = f (yyy,θθθ), the entropy production is the difference between the entropy reduction in the

system (difference between the approximate posterior entropy and the prior entropy) and the entropy increase

in the environment (number of questions asked through computer updates). The entropy difference between

two steps reads

∆Sprod = Sprod(n+1)−Sprod(n) =
∫

dzzzn−1dzzzn ln
Pn−1(zzzn|zzzn−1)Pn−1(zzzn−1)

Pn−1(zzzn−1|zzzn)Pn(zzzn)
Pn−1(zzzn|zzzn−1)Pn−1(zzzn−1)

(4.11)

It’s time now to go back to our particle population point of view. In the large population limit (move to a

continuous representation), we pass from probability to transition rates

Ṡprod(t) =
∫

dzzz dzzz′ ln
pt(zzz

′,zzz)Pt(zzz)

pt(zzz,zzz′)Pt(zzz′)
pt(zzz

′,zzz)Pt(zzz) (4.12)

Exercise Prove the last equation

Solution:

In the continuum limit we can denote zzz≡ zzzn−1 and zzz′ ≡ zzzn. Eq. (4.11) can be split as

Ṡprod(t) =
∫

ln
Pn−1(zzz

′|zzz)
Pn−1(zzz|zzz′)

Pn−1(zzz
′|zzz)Pn−1(zzz) dzzz dzzz′

︸ ︷︷ ︸

(a)

+
∫

ln
Pn−1(zzz)

Pn(zzz′)
Pn−1(zzz

′|zzz)Pn−1(zzz) dzzz dzzz′

︸ ︷︷ ︸

(b)

In the first term, when zzz = zzz′ the ratio in the logarithm is 1, and therefore this contribution is zero. From

42 Chapter 4. Approximate Bayesian Computation

Eq. (4.8) we therefore see that we can write pt(zzz
′,zzz) in place of Pn−1(zzz

′|zzz), where we also identify tn−1 ≡ t.

Hence

(a) =
∫

pt(zzz
′,zzz)

pt(zzz,zzz′)
pt(zzz

′,zzz)Pt(zzz) dzzz dzzz′

The (b) term can be further split as

(b) =
∫

Pn−1(zzz
′|zzz)Pn−1(zzz) lnPn−1(zzz) dzzz dzzz′

︸ ︷︷ ︸

(c)

−
∫

Pn−1(zzz
′|zzz)Pn−1(zzz) lnPn(zzz

′) dzzz dzzz′

︸ ︷︷ ︸

(d)

where

(c) =
∫ (∫

Pn−1(zzz
′|zzz) dzzz′

)

︸ ︷︷ ︸

=1

Pn−1(zzz) lnPn−1(zzz) dzzz =
∫

Pn−1(zzz) lnPn−1(zzz) dzzz

(d) =
∫ (∫

Pn−1(zzz
′|zzz)Pn−1(zzz) dzzz

)

︸ ︷︷ ︸

=Pn(zzz′)

lnPn(zzz
′) dzzz′

zzz↔zzz′
=
∫

Pn(zzz) lnPn(zzz) dzzz

Thus

(b) = (c)− (d) =− d

dt

∫

lnPt(zzz)Pt(zzz) dzzz =−∂Pt(z)

∂ t

∂

∂Pt(z)

∫

lnPt(zzz)Pt(zzz) dzzz

=−∂Pt(z)

∂ t

∫

1+ lnPt(z) dzzz =−
∫

lnPt(zzz)
∂Pt(zzz)

∂ t
dzzz

Now we can substitute the master equation (4.7), obtaining

(b) =−
∫

lnPt(zzz)

[∫

pt(zzz,zzz
′)Pt(zzz

′)− pt(zzz
′,zzz)Pt(zzz) dzzz′

]

dzzz

=−
∫

lnPt(zzz) pt(zzz,zzz
′)Pt(zzz

′) dzzz dzzz′+
∫

lnPt(zzz) pt(zzz
′,zzz)Pt(zzz) dzzz dzzz′

In the first term we can exchange zzz↔ zzz′, and joining all the pieces together we end up with

Ṡprod(t) =
∫
(
lnPt(zzz)− lnPt(zzz

′)
)

pt(zzz
′,zzz)Pt(zzz) dzzz dzzz′

=
∫

ln
pt(zzz

′,zzz)Pt(zzz)

pt(zzz,zzz′)Pt(zzz′)
pt(zzz

′,zzz)Pt(zzz) dzzz dzzz′

�

We have a little information on how the distribution behaves, so we make two assumptions:

• Endo-reversibility assumption. At any given point in time, a system under the endo-reversibility

assumption is always in an equilibrium state, i.e. it is described by a Gibbs state

Pt(zzz) = Z−1(T (t)) f (yyy,θθθ)e
− ρ(yyy)

T (t) (4.13)

where T (t) ' T e(t) is the system’s temperature, that is slightly larger than the temperature of the

environment. The latter is defined by the tolerance used for the update step and subject to a deter-

ministic or adaptive annealing schedule. Intuitively, this assumption is satisfied if there is sufficiently

fast mixing in the system. In our setting, mixing is determined by the width of the jump distribution

t(θθθ ′|θθθ), which should be as large as the typical scale of particles movements. Please notice that if this

assumption is not satisfied, then we incur in a bias (no convergence to the solution).

• A weaker assumption. We assume that the prior f (θθθ) carries negligible information, i.e., we set it

equal to a uniform (constant) distribution. This is often the case since, as compared to the prior, the

posterior is narrower. Furthermore, the annealing techniques tends to work better when the prior is

flat.

4.2 Tolerance: the SABC algorithm 43

By inserting Eq. (4.13) into Eq. (4.12) we get the following expression for the entropy production rate

Ṡprod =

(
1

T
− 1

T e(t)

)

︸ ︷︷ ︸

F(t)

d

dt

∫

ρ(zzz)Pt(zzz)dzzz

︸ ︷︷ ︸

U(t)

= F(t)U̇(t)

where F(t) is the thermodynamic force and U̇(t) the thermodynamic heat flux from the system.

Exercise Prove the previous equation �

Figure 4.2: Possible annealing schedules

Since the entropy production represents the wasted computation of the algorithm, in order to move

towards convergence it is necessary to minimize it, i.e., make its derivative vanish. One must take into

account that the system could explore multiple paths from an initial to a final energy state in time, thus we

exploit variational calculus to collect significant results. If we impose boundaries conditions at the initial

and final state (namely δU0 = δU f = 0) and we notice that in this thermodynamical approach we can find a

one-to-one correspondence between T ⇐⇒ U and T,T e ⇐⇒ U̇ (see next paragraphs) we have:

δSprod = δ

(∫ t f

0
Ṡprod dt

)

= δ

(∫ t f

0
F (T,T e)U̇ dt

)

= δ

(∫ t f

0
F
(
U,U̇

)
U̇ dt

)

=

=
∫ t f

0

(
∂F

∂U
δU U̇ +

∂F

∂U̇
δU̇ U̇ +F δU̇

)

dt
∗
=
∫ t f

0
δU

(
∂F

∂U
U̇− d

dt

(
∂F

∂U̇
U̇ +F

))

dt

where in (*) we’ve applied an integration by parts to the last two terms. From the previous equations we can

conclude that if we want to minimize the entropy production (and therefore its variation vanishes), then:

δSprod = 0 ∀δU ⇐⇒ ∂F

∂U
U̇− d

dt

(
∂F

∂U̇
U̇ +F

)

= 0

This last requirement is in the form of the Euler-Lagrange equations and expanding the last term one obtains

0 =
�
�
�∂F

∂U
U̇− d

dt

(
∂F

∂U̇

)

U̇− ∂F

∂U̇
Ü−

�
�
�∂F

∂U
U̇− ∂F

∂U̇
Ü

(∗)⇐⇒ 0 =

(
d

dt

(
∂F

∂U̇

)

U̇ +2
∂F

∂U̇
Ü

)

U̇ =
d

dt

(
∂F

∂U̇

)

U̇2 +2
∂F

∂U̇
U̇Ü =

d

dt

(

U̇2 ∂F

∂U̇

)

Where in (∗) we multiplied by a U̇ factor and absorbed a (−) sign.

As a consequence of the previous result, we can thus conclude that the minimization on the entropy

of production corresponds with the time conservation of the product of the squared time derivative of the

internal energy, multiplied by the derivative of the force w.r.t. the time derivative of the energy itself:

δSprod = 0 ∀δU ⇐⇒ U̇2 ∂F

∂U̇
=: v = const. (4.14)

The v parameter in equation (4.14) is defined the adaptive annealing speed and is one of the parameters to

be tuned for this algorithm.

44 Chapter 4. Approximate Bayesian Computation

Formalization of T ⇐⇒ U and T,T e ⇐⇒ U̇

In the previous calculations we exploited the fact that there exist two direct correspondences between energy

and temperatures: we now aim to formalize them. Firstly, we recall that is has not been defined so far the

distance ρ (yyy) between the generated variables and the observed data. Hence, we attempt to choose it such

that the system has a constant heat capacity, i.e., such that

U (t)≈ T (t)

as requested previously. This can be achieved by redefining the energy function as the cumulative density

function of the newly user-specified distance measure ρ (yyy) under the prior f (yyy,θθθ):

u(yyy) :=
∫

ρ(y′y′y′)≤ρ(yyy)
f
(
yyy′,θθθ

)
dθθθ dyyy′ (4.15)

At the beginning, in the initialization phase of the algorithm, we draw a large number of particles from the

prior, so the previous equation can be approximated to

u(yyy)≈ #{zzzi = (yyyi,θθθ i)∼ f (zzz) |ρ (yyyi)≤ ρ (yyy)} ,

and from here it is easy to calculate the mean energy of the system under f :

U(t) = 〈u〉= Z−1 (t)
∫

u(zzz) f (zzz)exp

(

−u(zzz)

T

)

dzzz

Finally, one can notice that dzzz ≡ dθθθ dyyy by definition of zzz and dyyy ≡ dρ dΩ(ρ) by moving to spherical

coordinates and identifying the radial and superficial contributions, thus the following holds

∫

f (zzz)dθθθ dΩ(ρ) =
du

dρ

Notice that this derivative gives the prior measure in a shell of radius ρ . So, by substitution in the previous

equation one can conclude:

U(t) = Z−1 (t)
∫ 1

0
u exp

(

− u

T (t)

)

du =

∫ 1
0 u exp

(

− u
T (t)

)

du

∫ 1
0 exp

(

− u
T (t)

)

du
= T (t)+o

(
T (t)k

)
∀k > 0 (4.16)

where the normalization is given by the partition function.

To conclude, one can be easily convinced that the last expression approximated at the first order in Taylor’s

expansions returns:

U (t) = T (t)+h.o. (4.17)

where with higher orders we means exponentially small terms.

The previous result confirms the one-to-one relation existing between energy and temperature. We now

aim to find a similar expression for the correspondence U̇ ↔ T,T e. In fact, we can write:

U̇ ≡ dU

dt
=

d

dt

∫

u(zzz)Pt (zzz)dzzz
(4.7)
=
∫
(
u(zzz)−u

(
z′z′z′
))

pt

(
zzz,z′z′z′
)

Pt

(
z′z′z′
)

dzzzdz′z′z′

One can solve the latter expression by using Taylor’s series approximation at the second order around u

and u′, given the fact that re-normalized energies are << 1 for most of the process and after some tedious

calculations that go beyond the goal of this course we can conclude:

U̇
1st order
= −γ

(

T 2− (T e)2
)

=⇒ T e =

√

U2 +
U̇

γ
(4.18)

Where the γ factor is a constant value setting the proportionality.

4.2 Tolerance: the SABC algorithm 45

4.2.2 SABC tunable parameters

We finally summarize the tunable parameters of this algorithm. We have already shown that v is one of these,

but its form makes it hard to calculate directly. Nevertheless, recalling equation (4.14) we have:

v = U̇2 ∂F

∂U̇
= γ2

[

U2− (T e)2
]2
[

∂

∂U̇

(
1

T
− 1

T e

)]

=
γ
[

U2− (T e)2
]2

2(T e)3

where γ = (f (yyyobs))
−2
∫

t
(
θθθ |θ ′θ ′θ ′

)
f (yyyobs,θθθ) f

(
yyyobs,θ

′θ ′θ ′
)

dθθθ dθ ′θ ′θ ′

Thus, since both v and γ are unknown parameters of the algorithm, we redefine a unique effective annealing

speed ṽ:

ṽ :=
v

γ
=

[

U2− (T e)2
]2

2(T e)3
(4.19)

Since ṽ is an hyperparameter set by the user and the internal energy U is an observable quantity of the

population (average distance from the target w.r.t the normalized metric), solving Eq. (4.19) for T e then

gives us the annealing temperature for the next update step. i.e:

(T e)4 +2ṽ(T e)3 +2U2(T e)2−U4 = 0

Finally, one can see that for small U we encounter a dimension-independent scaling T e ∼U4/3, which

shows how the annealing slows down for low internal energy. The whole process of tuning ṽ has the physical

meaning of adaptation of the tolerance to the average distance of the particles to the target.

Further into tunable parameters of the algorithm, we will want to adapt the jump-covariance in

parameter space to the empirical covariance of the population: this can be achieved by introducing a

scaling parameter β named mixing speed:

Σ jc (θ)≡ βΣemp + ε1 = βΣemp + sTr(Σemp)1 (4.20)

Where Σemp is the covariance of the parameters θi taken from the population at a given step. Technically,

this means preserving some memory (the quantity is set by β) about the system’s condition while evaluating

how to make the next jump proposal, so to look for the next θs in the range in which the parameters are

actually living at a given iteration. The last term proportional to the identity is instead needed to make

sure the population does not get stuck on a linear submanifold (the logic behind it’s similar of the Vhiola’s

algorithm).

Since making too small jumps does not ensure the endo-reversibility of the process, we must make sure that

β is not too small w.r.t. ṽ.

The last technique we can adopt is the addition of a rejuvenation step every once in a while to kill

trailing particles. This is achieved by the importance sampling method, which we could sometimes exploit

instead of the canonical updating schedule to set the temperature. Technically speaking, if the reversibility

holds for every time, the population’s pdf can be written in the form:

Pt (zzz) = Z−1 f (zzz)exp

(

− u(zzz)

T (1−δ)

)
1st or≃ Z−1 f (zzz)exp

(

−u(zzz)

T
(1+δ)

)

where f (zzz) is the joint prior and the term 1−δ (where δ is the rejuvination parameter of the algorithm)

ensures a low temperature value.

Having now a look at equation (4.13), we can notice how the idea behind rejuvenation consists of redefining

the pdf by attaching to each particle zizizi a weight wi = exp
(

−δ
u(zizizi)

T

)

, namely zizizi 7→ (zizizi,wi), and then perform

the importance sampling according to this newly weighted data. By resampling from a multinomial

distribution we can finally get new particles:

zizizi
rejuv(δ)
=⇒ (zizizi,wi)

resample
=⇒ (z̃izizi,1)≡ z̃izizi (4.21)

The application of this method leads to killing particles which are far from the target and duplicate

particles close to the target. Its benefit consists of narrowing the particles population towards the target,

46 Chapter 4. Approximate Bayesian Computation

but it has the drawback of a loss in the effective sample size (i.e., we reduce the number of independent

particles). This is the reason for which this last step must be not be used consistently are requires caution.

To sum up, the complete set of tuning parameters of the Simulated Annealing ABC (SABC) is given

by the effective annealing speed ṽ, the mixing speed β , and the rejuvenation parameter δ . The algorithm is

quite robust w.r.t. these parameters. However, we must make sure that, depending on the annealing speed,

the mixing is large enough, as otherwise we might violate the endo-reversibility assumption. This means that

there might be additional entropy production within the system, or, in other words, that we might end up

with an additional bias that is hard to control.

4.3 Summary statistics

Lesson 8

16/04

GC

AM

Considering a model f (yyy|θθθ), summary statistics are functions from the high-dimensional model output yyy to

low-dimensional statistics sss(yyy), that retain the more θθθ -related information as possible

s : yyy 7→ s(yyy)

Definition 4.1 In particular we say that summary statistics sss(yyy) are sufficient if and only if they contain

all the information about the parameters, i.e. if it is possible to write

f (yyy|θθθ) = c(yyy)g(sss(yyy),θθθ) (4.22)

If we’re doing Bayesian inference we can plug in the latter our observations

f (yyyobs|θθθ) = c(yyyobs)g(sss(yyyobs),θθθ) (4.23)

that leads to

f (θθθ |yyyobs) ∝

∫

f (yyy|θθθ) f (θθθ)δ (yyy−yyyobs)dyyy ∝

∫

f (sss|θθθ) f (θθθ)δ
(
sss−sss(yyyobs)

)
dsss

∝

∫

f (yyy|θθθ) f (θθθ)dΩsss ∝ f (θθθ |sss(yyyobs))

where dΩs denotes the surface element induced by the Lebesgue-measure on the shell of constant sss(yyyobs) = sss.

� Example 4.4 — Ising model. In the Ising model we can write the output distribution of spin configurations

yyy as

f (yyy|β ,h) = Z−1(β ,h)exp

(

β

S1(yyy)=Energy
︷ ︸︸ ︷

∑
〈i, j〉

yiy j +βh∑
i

yi

︸︷︷︸

S2(yyy)=Magnetization

)

and it’s manifest that the energy and the magnetization of a spin configuration are all we need to know in

order to constrain the parameters (β ,h). �

4.3.1 The exponential family

The Ising model belongs to a very special class of models, called exponential family. It encompasses all

distributions with the functional form

f (yyy|θθθ) = Z−1(θθθ)c(yyy)exp

(

−∑
i

gi(θθθ)si(yyy)

)

= Z−1(θθθ)c(yyy)exp
(
−ggg(θθθ)Tsss(yyy)

)
, (4.24)

that follows the structure of (4.23), therefore the si(yyy) in the (4.24) are sufficient statistics.

In the case gi(θθθ) = θ i we call it a natural parametrization (it’s not the case of the Ising model). The

exponential family has the following property:

Theorem 4.2 — Pitmann-Koopmann-Dormois

Among the distributions whose domain does not depend on the parameters, only the family of exponential

distributions has a finite number of sufficient summary statistics that does not grow unlimited with the

4.3 Summary statistics 47

number of degrees of freedom.

For example, in the Ising model, it doesn’t matter how many spins there are, the summary statistics are

always two.

As a counter-example we consider N i.i.d. samples following a Cauchy distribution, yi ∼ f (y|θ) ∝ 1
1+θy2 , so

that f (yyy|θ) ∝ ∏i
1

1+θy2
i

.

Here you can’t individuate any summary statistics of yyy that has the form (4.23), hence you need every single

yi to retain all the information about θ . However, for practical purposes we don’t really pretend to have

every single bit of information, but we rather want to retain almost all of it. For example, given a set of yyyobs

Cauchy-distributed draws, we can’t infer θ by simply computing the first moments (as we would do for a

gaussian distribution) because the Cauchy distribution has no converging moments. Nevertheless, its entropy

is well-defined

S =−
∫

f (y|θ) ln f (y|θ) dy = ln(4π)− 1

2
ln(θ) (4.25)

and retrieve from here almost all the info about θ . A more practical definition of sufficiency comes from

information theory:

Definition 4.2 — Asymptotic sufficiency.

sss(YYY) is asymptotically sufficient for ΘΘΘ if and only if

I(SSS,ΘΘΘ)≡ I(sss(YYY),ΘΘΘ) = I(YYY ,ΘΘΘ)+O(N−1) (4.26)

where N is the number of data points (spins for example) while I denotes the mutual information

between correlated random variables defined as

I(SSS,ΘΘΘ) :=
∫

f (sss,θθθ) ln
f (sss,θθθ)

f (sss) f (θθθ)
dsss dθθθ (4.27)

Here, ΘΘΘ is the parameter prior with given density f (θθθ) and, for given θθθ , YYY ∼ f (yyy|θθθ).

Notice that if sss and θθθ are independent then the joint probability factorizes, and there’s no mutual information.

Practical requirements for s(y)

The practical conditions that we wish to have from our summary statistics in ABC are

1. Asymptotic sufficiency: I(SSS,ΘΘΘ) = I(YYY ,ΘΘΘ)+O
(
N−1

)

2. Asymptotic minimality: of course the whole dataset is a sufficient statistics, but we want to have a

minimality requirement. In information theory this translates in asking our summary statistics to have

asymptotically a minimal entropy. This express our wish that as the number of degrees of freedom

grows, noise should cancel out. In this way, our sss(yyy) retain as much information as possible about

parameters but do not encode information about the noise.

We can express the mutual information as a difference of entropies:

I(SSS,ΘΘΘ) =
∫

f (sss,θθθ) ln
f (sss,θθθ)

f (sss) f (θθθ)
dsss dθθθ =

∫

f (sss,θθθ) ln
f (sss|θθθ)✟✟✟f (θθθ)

f (sss)✟✟✟f (θθθ)
dsss dθθθ

=−
∫

f (sss,θθθ) ln f (sss) dsss dθθθ
︸ ︷︷ ︸

S(sss)

+
∫

f (sss,θθθ)
︸ ︷︷ ︸

f (sss|θθθ) f (θθθ)

ln f (sss|θθθ) dsss dθθθ

= S(sss)−
∫ (

−
∫

f (sss|θθθ) ln f (sss|θθθ) dsss

)

︸ ︷︷ ︸

S(sss|θθθ)

f (θθθ) dθθθ = S(sss)−〈S(sss|θθθ)〉θθθ

Notice that this result is true for any couple of random variables. Since we want I(SSS,ΘΘΘ) to be maximum and

S(sss) to be minimum then 〈S(sss|θθθ)〉θθθ should go to 0. This means that conditions 1) and 2) lead to the so called

concentration property

〈S(sss|θθθ)〉θθθ = O
(
N−1

)
→ 0

This is an equivalent for general stochastic models of the well-known ensembles equivalence in statistical

mechanics: as the number of degrees of freedom grows to infinity, all the fluctuations around the mean

48 Chapter 4. Approximate Bayesian Computation

values of the thermodynamic variables (such as the energy or the number of particles) fade, and the result

of the computations is the same either if take this variables fixed or if we allow them fluctuate around

their average value. Hence, we can interpret minimally sufficient statistics that satisfy 1) and 2) as

generalized thermodynamic state variables.

4.3.2 Phases and phase transitions in inference problems

From the concentration property we can get the following: sufficient summary statistics that are asymptoti-

cally sufficient and of minimal entropy will locally concentrate around a sub-manifold of the same dimension

of the parameter’s space of our model. We report here the example of a 3d summary statistics space and

Figure 4.3: Summary statistics manifolds

a model with 2 parameters. After fixing the parameters θθθ and retrieving some realizations yyy ∼ f (yyy|θθθ),
we calculate the correspondent s(yyy), then, due to this concentration property, summary statistics will be

concentrated on (potentially more than one) sub-manifolds of the dimension of the parameters space, in this

case a 2d manifold. When we have more than one manifold, it is clear that we need an higher dimension for

the summary statistics’ space compared to the parameters’ one to discriminate the different phases.

In statistical mechanics different phases emerge because of a competition between energy and entropy. When

these two are comparable, there’s not a one-way equilibrium state for the system, but there could be a coexis-

tence between two different phases: one which is energy-favoured and the other is entropy-favoured (think

about the solid and the liquid phase of a liquid, respectively). This competition gives rise to a multi-modal

free energy, each mode corresponding to a different phase:

F(s,θ) =− ln f (s,θ) =− ln

∫

f (yyy|θ)
︸ ︷︷ ︸

Energetic term

Entropic term
︷ ︸︸ ︷

dΩs(yyy) , (4.28)

where dΩs(yyy) denotes the surface element induced by the Lebesque-measure on the shell of constant sss(yyy) = sss.

If we have a large number of degrees of freedom that are integrated over in (4.28), the entropic term becomes

important, and may lead to the emergence of thermodynamic states sss(yyy) characterized by micro-states yyy with

a low probability/high energy, simply because there are so many micro-states associated with it (i.e. they

come with a large phase-space volume dΩs(yyy)). For Bayesian inference, it is important to know which

phase the observations belong to, because the posterior may strongly depend on it.

� Example 4.5 — Ising model. We report here, as an example, the distribution of the summary statistics for

the Ising model. We can see how, for h = 0, above a certain critical temperature there is no magnetization,

whereas below both the spin-up and the spin-down magnetization are possible. If a small magnetic field

is turned on, we can observe a two dimensional manifold embedded in the space. When we are in the

ferromagnetic phase, we can either have a energetically favoured state where most of spins are aligned with

h, or a entropically favoured state. In the latter case, we are a bit above the lower ceiling where all spins are

anti-aligned with the external magnetic field, meaning that there are more ways for this macro-state to be

realized than the energetically favoured state, even though each realization is less probable.

These two possible states could be inferred by the trend of the free energy, that displays two modes.

Depending on the observed magnetization, the posterior will be skewed towards either one of the two states.

�

4.3 Summary statistics 49

Figure 4.4: Distribution of summary statistics for the Ising model

Stochastic non-linear model

We now move away form statistical mechanics to show that these concepts are important also to study

stochastic models in general. We consider a stochastic non-linear model, in the form of an iterative map

yi+1 = αg(yi)+σεi, εi ∼N (0,1)

In this model θθθ = (α,σ)T , y0 is given, and g is a non-linear function that admits two stable solutions, e.g.

x2e−x.

We start by studying the dynamics of this model forgetting the stochastic term: in this case the determin-

istic map will have two stable fixed-point, one for y′′ = 0 and the other at y′ > 0 (see Figure 4.5). Depending

on the value of α and on the curvature of g, the dynamics toward this second fixed point can be either

monotonically converging, oscillating or even chaotic.

Now suppose that we turn on the noise. What is the fixed point corresponding to what we called

energetically favoured state? Since the energy is the (negative) logarithm of a probability, the energetically

favoured state will be the most probable one, namely the one corresponding to the deterministic solution

(ε = 0). So, depending on the initial value of y0 it can be either y′ or y′′. As the magnitude of the noise

increases, the entropy of the system becomes more and more relevant, until the point in which the dynamic

can converge toward the entropically favoured state. These two different model-behaviours correspond to

different phases in statistical mechanics.

Figure 4.5: Deterministic dynamics toward one of the possible fixed points

Since we chose this model belonging to the exponential family, the number of its sufficient summary

50 Chapter 4. Approximate Bayesian Computation

statistics is bounded and we can easily parametrize our time-series likelihood f (yyy|θθθ) like follows:

f (yyy|θθθ) ∝ exp

[

− 1

2σ2 ∑
i

(yi+1−αg(yi))
2

]

= exp

[

− 1

2σ2 ∑
i

y2
i+1

︸ ︷︷ ︸

s̃1(yyy)

+
α

σ2 ∑
i

yi+1g(yi)

︸ ︷︷ ︸

s̃2(yyy)

− α2

2σ2 ∑
i

g(yi)
2

︸ ︷︷ ︸

s̃3(yyy)

]
(4.29)

Here we need three different summary statistics even if dim(θθθ) = 2, because there are three linearly

independent functions of the parameters in front of them. This can seem quite surprising, since we usually

need a number of summary statistics equal to the number of parameters. Indeed, this is actually true unless

we are in presence of phase transitions: in this case this third summary statistics has the role of an order

parameter telling us what is the phase we ended up. To see this, let’s redefine the summary statistics through

the bijective function SSS(s̃ss):

S1(yyy) = α̂(yyy) =
∑

N−1
i=0 yi+1g(yi)

∑i g(yi)2
auto-correlation estimator

S2(yyy) = σ̂(yyy) =
1

N

N−1

∑
i=0

(yi+1− α̂(yyy)g(yi))
2 sigmas/noise estimator

S3(yyy) =
1

N

N−1

∑
i=0

g(yi)
2 order parameter

Here S1(yyy),S2(yyy) are actually MLE parameter-estimators regressors that can be used for estimating α and

σ , but they don’t tell anything about the phase. To know in which phase we are we need to compute S3(yyy):
when we are in y′′ all the gi will be close to 0, whereas when gi display higher values we are in the “upper”

phase y′. When we do Bayesian inference it’s important to have also this information, because the two

posteriors can be very different and contain different amount of information (such as the average value of y

around which the dynamic happens, which is also important for inferring α).

Infer summary statistics: Machine Learning

When the summary statistics of the problem you are studying are not known, they can be retrieved for

example through machine learning regression techniques yyy
ML7−−→ sss(yyy). After sampling θi ∼ f (θ), it is possible

to sample realizations yyy ∼ f (y|θ) and then, through the chosen ML technique, we try to infer θ̂ from yyy

through regression: this will be our s(yyy)

θi ∼ f (θ)→ yyy∼ f (yyy|θ) (4.30)

s(yyy) := θ̂(yyy)
lin reg←−−− yyy (4.31)

However, this regression models are limited by the fact that they give you just as many summary statistics

as the number of parameters involved. To work-around this problem people came out using autoencoders.

Starting from a high-dimensional variable yyy, these models able to compress it in sss(yyy) (also called bottleneck)

and then they try to reconstruct the input. This way the autoencoder just retain information about parameters

and cuts-off the noise.

4.3 Summary statistics 51

Figure 4.6: Schematic representation of an autoencoder

5. ML-approaches to Bayesian Inference

5.1 Introduction

Lesson 11

26/04

AM

So far, methods we introduced were especially meant for sampling from the posterior: θi ∼ f (θ |yobs).
Metropolis, HMC and ABC (if sufficient summary statistics are used) are all asymptotically exact, i.e. in the

limit of infinite number of iterations N→ ∞ parameters are sampled from the exact posterior, but are also

very expensive.

To overcome this issue, we could exploit Machine Learning (ML) techniques by turning Bayesian

inference into an optimization problem.

Definition 5.1 — Neural density estimators. We define neural density estimators the probability distri-

butions qφφφ (θθθ) belonging to a large parametrized family that determines the hypotheses class for the ML

optimization.

The goal of ML will be finding the optimal set of parameters φφφ ∗ so to find the neural density estimator

which is the closest to the given PDF (prior, posterior or likelihood): qφφφ∗ ≈ f . The distance between the

functions can be measured, for example, as the Kullback–Leibler (KL) divergence and is the loss function of

the ML model.

The type of models used for these density estimators are neural network models, which make it easy to

calculate derivatives of the loss function w.r.t. φφφ (via backpropagation, which essentially is the chain rule),

and therefore allow optimization through steepest descent methods. For Bayesian inference, we are thus

using (conditional) neural density estimators.

Even if the optimization is efficient, it can lead to biased results, depending on how large the hypotheses

class (i.e., the set of models between which we are looking for the best estimator) is. Therefore, one may

want to find an optimal threshold between accuracy and efficiency.

5.2 The variational Bayes method

A popular way to estimate via neural network the posterior for a given model is given by the variational

inference (or variational Bayes) method. Since the KL-divergence can be used as a "distance of functions"

to estimate closeness between target and best guess, in this method the loss function is set to be the

54 Chapter 5. ML-approaches to Bayesian Inference

KL-divergence in the form:

KL
(
qφφφ || fpost

)
=
∫

qφφφ (θθθ) ln

(
qφφφ (θθθ)

f (θθθ |yyyobs)

)

dθθθ =
∫

qφφφ (θθθ) ln

(
qφφφ (θθθ) f (yyyobs)

f (yyyobs|θθθ) f (θθθ)

)

dθθθ

= ln f (yyyobs)
∫

qφφφ (θθθ)dθθθ
︸ ︷︷ ︸

=1

+
∫

qφφφ (θθθ) ln

(
qφφφ (θθθ)

f (θθθ)

)

dθθθ −
∫

qφφφ (θθθ) ln f (yyyobs|θθθ)dθθθ = (5.1)

= ln f (yyyobs)+F (φφφ) (5.2)

where we’ve defined

F (φφφ) =
∫

qφφφ (θθθ) ln

(
qφφφ (θθθ)

f (θθθ)

)

dθθθ

︸ ︷︷ ︸

−S

−
∫

qφφφ (θθθ) ln f (yyyobs|θθθ)dθθθ
︸ ︷︷ ︸

−U

(5.3)

The term F (φφφ) is sometimes called "variational free energy", since it can be seen as F (φφφ) =U−S given

the fact that the first term of equation (5.3) is equal in form to a (-) relative entropy, and the expectation value

over θθθ of the negative logarithm of a PDF can be seen as an energy term (please notice that those are only

conventional terms). Another name for it is "negative evidence lower bound" (- ELBO), since in the limit

KL
(
qφφφ || fpost

)
→ 0 it returns, with a minus sign, a bound of the evidence f (yyyobs).

Looking at equation (5.2) is clear that since f (yyyobs) does not depend on φφφ , the ML algorithm will find

the best parameters by minimizing the variational free energy F (φφφ).
But what is commonly a good choice for the family of neural density estimators? The best way to tackle

problems like the one above without wasting too many computational resources is to work on transformations

instead on single models. That is, we agree on a default, simple basis model q0 (e.g., the normal Gaussian)

and define a set of transformations Φφφφ : Θ→ Θ such that we can express any estimator qφφφ in terms of Φ and

q0, as shown in the following equations. Firstly, we must recall that PDFs do not transform as functions but

as densities and thus we must preserve the volume by taking into account the Jacobean on the transformation:

In 1D, let y = Φ(x) and f (y)dy = f (x)dx , then f (y) = f
(
Φ−1 (y)

) dx

dy
and dy =

dΦ(x)

dx
dx (5.4)

So, in our case:

qφφφ = q0

(

Φ−1
φφφ (θθθ)

)

·
(

det

∣
∣
∣
∣

dΦφφφ (θθθ)

dθθθ

∣
∣
∣
∣

)−1

(5.5)

Hence, rewriting equation (5.3) as

F (φφφ) =

〈

ln
qφφφ (θθθ)

f (θθθ)
− ln f (yyyobs|θθθ)

〉

qφ

=

=
〈
lnqφφφ (θθθ)− ln f (yyyobs,θθθ)

〉

qφ
+ const. independent of φ

and recalling that equation (5.4) formally means that expected values are preserved under transformation of

parameters, we conclude:

F (φφφ) =
〈
lnqφφφ (θθθ)− ln f (yyyobs,θθθ)

〉

qφ
=

=
〈
lnqφφφ

(
Φφφφ (θθθ)

)
− ln f

(
yyyobs,Φφφφ (θθθ)

)〉

q0
=

=

〈

lnq0 (θθθ)− lndet

(
dΦφφφ (θθθ)

dθθθ

)

− ln f
(
yyyobs,Φφφφ (θθθ)

)
〉

q0

(5.6)

In particular, the last expression above shows how the expected value can be evaluated directly on q0 (chosen

a priori) and does not depend on φφφ . As a result, we can calculate it in a Monte Carlo fashion:

F (φφφ)≈ 1

N

N

∑
i=1

[

− lndet

(
dΦφφφ (θθθ i)

dθθθ

)

− ln f
(
yyyobs,Φφφφ (θθθ i)

)
]

+C (yyy,θθθ) (5.7)

Where θi ∼ q0 (θθθ). The goal of the ML algorithm reduces thus to minimize the sum of two terms (since

the last does not depend on φφφ). To accomplish this task in a good way, the set of transformations Φ(θθθ) must

belong to a class of functions that satisfy two conditions:

5.3 ML alternatives to ABC - I 55

1. Must be sufficiently flexible and expressive (in order to model any distribution that we would like);

2. Must be invertible (and, since calculating the Jacobean scales badly w.r.t the number of parameters,

should allow also an easy computation of the inverse and their derivatives w.r.t φ).

Proven this condition as satisfied, then we can use it both for calculate density functions as done in Equ. 5.5

and to sample data i.e

θθθ i ∼ q0 (θθθ) ⇐⇒ Φφφφ i
(θθθ)∼ qφφφ (θθθ)

A popular set of transformations respecting such properties is the one of auto-regressive (AR) transfor-

mations.

Definition 5.2 — Auto-regressive transformations. Given a set of parameters θθθ = (θ1,θ2, . . . ,θD), a

transformation Φφ ,iφ ,iφ ,i (θθθ) with index i is said to be auto-regressive if it is a bijective function of the i− th

parameter θi and of and arbitrary complex function of all the previous parameters θ j, j < i:

Φφ ,iφ ,iφ ,i (θθθ) = h
(
θi;ψi (θ1, . . . ,θi−1)

)
(5.8)

For the specific case of ML applications, the functions ψi (θ j<i) will be neural networks.

A function of this form trivially satisfies invertibility (since h is bijective) and has a cheap determinant (it

looks clear that dΦi /dθ j = 0 for j > i, hence the Jacobean is a triangular matrix and thus the determinant

is just the product of diagonal terms), allowing a gain in scalability from O
(
N3

param

)
to O(Nparam). More-

over, a universality theorem states that they can approximate any suitably regular distribution with

arbitrary accuracy.

In practise, it is usual to pick as ψi some simple models: a common choice is the linear auto-regressive

model

h(θ) = ψ1θ +ψ2 where ψi : R
i−1→ R

2 (5.9)

Which is the standard affine model employed in neural networks, up to the activation function which can be

decided independently. However, the simplicity of this method is usually too much to ensure universality:

hence, it is a good practice to stack many AR-transformations on the top of each other and exploit the chain

rule for the backpropagation phase in NNs. This technique is known as "auto-regressive flow":

q0) θθθ
Φφ1→ θθθ (1)

Φφ2→ ·· ·
Φφk→ θθθ (k) (qφφφ

We refer to auto-regressive flow with q0 = N (0,1) in terms of "normalized flow" (since moving

backwards until the zero stage we ultimately find a normal distribution).

5.3 ML alternatives to ABC - I

The method above requires many evaluations of the likelihood function and its derivatives (like in HMC).

When those calculations are too computationally expansive, it is convenient to exploit other methods such

as ABC [PSM19]. Here we present the first method to enhance algorithm performances by learning the

posterior via ML. In this case, the KL-divergence representing the loss function is:

KL
(

fpost ||qφφφ

)
=
∫

f (θθθ |yyyobs) ln

(
f (θθθ |yyyobs)

qφφφ (θθθ |yyyobs)

)

dθθθ =−
〈
lnqφφφ (θθθ |yyyobs)

〉

f (θθθ |yyyobs)
+C (yyyobs,θθθ) (5.10)

Where the C term is independent of φφφ . We observe that this function is the complementary of the previous

algorithm, that is, the KL-divergence in which the roles of the posterior and the neural density estimator are

inverted.

Focusing on the task, we can thus neglect the C term and look for the best set of parameters to maximize

the expected value of the logarithm of the estimator:

min
φφφ

(

KL
(

fpost ||qφφφ

)
)

⇐⇒ max
φφφ

(
〈
lnqφφφ (θθθ |yyyobs)

〉

f (θθθ |yyyobs)

)

≈max
φφφ

(

1

N

N

∑
i=1

lnqφφφ (θθθ i|yyyi)

)

(5.11)

Where the approximation is made in a Monte Carlo fashion with θθθ i ∼ f (θθθ) and yyyi ∼ f (yyy|θθθ i). Please notice

that this last expression does not exploit the observations {yyyobs}, thus the method could be highly inefficient:

56 Chapter 5. ML-approaches to Bayesian Inference

we must pay attention while sampling yyy so to have these values sufficiently "close" to the observed data w.r.t

the set of parameters φφφ .

It is important to highlight how in this case qφφφ has an explicit dependence on yyyobs: from a practical point

of view, we could see the ML parameters φφφ as the weights of a neural network mapping from the space of

outputs YYY to the space of some parameters, ΞΞΞ(yyy,φφφ), which parametrize the space of approximate posteriors

qφφφ .

In a nutshell: Since these “parameters” start flourishing everywhere, let’s make a recap to avoid getting

confused:

• θθθ , as usual, are the parameters of the model we want to calibrate, i.e. that we sample from the

posterior once we’ve learnt it;

• φφφ are the “structural” parameters of the ML machinery that we tune with the training procedure.

For example, they can be thought as the weights of a neural network;

• The neural density estimator depends on φφφ and yyy through ΞΞΞ, which can be seen as a set of “high

level” parameters coming out from a neural network (see Figure 5.1)

� Example 5.1 An expressive example of the case we are studying is to consider as neural density estimator

family the set of Gaussian mixtures in the form:

qφφφ (θθθ |yyy) =
K

∑
k=1

ωφφφ ,k (yyy)N
(
µφφφ ,k (yyy) ,Σφφφ ,k (yyy)

)

Where in this case ΞΞΞ≡
[(

ωφφφ ,1,µφφφ ,1,Σφφφ ,1

)
, . . . ,

(
ωφφφ ,K ,µφφφ ,K ,Σφφφ ,K

)]
. In order to find the best approximated

posterior we could proceed in two ways:

1. Implement a neural network which takes outputs yyy as inputs and returns the optimal parameters ΞΞΞ for

the estimator (in this case the set φφφ represents the set of weights on the edges of the network);

2. Adopt the previously mentioned AR flow technique and define the mode transformations:

Φ = Φφφφ ,i (θθθ ,yyy) = h(θθθ i,ψ (θθθ j<i,yyy)) (5.12)

For this particular case, it can be shown that the latter method is better performing. �

Figure 5.1: ΞΞΞ estimation trough a neural network

As mentioned above, this method allows to get approximate posteriors for any dataset yyy and its quality for

a specific task is strictly bounded by the ability to focus on some given observations yyyobs. Hence, a suitable

way to stay close to the observations would be perform importance sampling in an iterative way, starting

from an original prior f (θθθ) and replacing it with a proposal prior f̃ (θθθ) which is updated every time setting

it equal to the approximate posterior which the ML algorithm returns.

Algorithm 5.1 — Iterative importance sampling for ML-ABC I Consider the loop of two steps:

• STEP 1:

– Set the first proposal prior f̃ (θθθ) = f (θθθ);
– Sample θθθ i ∼ f̃ (θθθ) and yyyi ∼ f (yyy|θθθ i);
– Train qφφφ (θθθ |yyy) so to obtain the best set of parameters φφφ ∗ according to equation (5.11);

– Set the new proposal prior f̃ (θθθ) = qφφφ∗ (θθθ |yobsyobsyobs);

5.4 ML alternatives to ABC - II 57

• STEP 2:

– Sample θθθ i ∼ f̃ (θθθ) and yyyi ∼ f (yyy|θθθ i);
– Train qφφφ (θθθ |yyy) so to obtain the best set of parameters φφφ ∗;
– Set as new approximate posterior

qnew
φφφ (θθθ) = qφφφ∗ (θθθ |yyyobs)

f (θθθ)

f̃ (θθθ)

by importance sampling (the last term acts as a correction that quantifies the approximation

made by sampling from f̃ instead of the true prior f);

– Set the new proposal prior as the best neural density estimator of the posterior so far:

f̃new (θθθ) = qnew
φφφ (θθθ).

This way the result gets closer at each loop to the true posterior. Iterate STEP 2 until the result stabilizes.

⋆

5.4 ML alternatives to ABC - II

While the previous algorithm focuses on learning the posterior, an alternative way to use learning algorithms

to enhance ABC is to learn the conditional probability density f (yyy|θθθ) ≃ qφφφ∗ (yyy|θθθ), i.e, find the best

parameters for a "conditional density estimator" qφφφ (yyy|θθθ). Then, we can use standard methods to sample

from a posterior obtained as the product of the prior and the learned likelihood.

Like before, we must specify the objective function which is again the KL-divergence in the form:

KL
(

flikeh||qφφφ

)
=
∫

f (yyy|θθθ) ln

(
f (yyy|θθθ)

qφφφ (yyy|θθθ)

)

dyyy =−
〈
lnqφφφ (yyy|θθθ)

〉

f (yyy|θθθ)+C (yyy,θθθ) (5.13)

Like for the previous algorithm minimizing the KL-divergence by modifying φφφ corresponds to maximize the

approximate expected value of the logarithm of the density estimator:

min
φφφ

(

KL
(

flikeh||qφφφ

)
)

⇐⇒ max
φφφ

(
〈
lnqφφφ (yyy|θθθ)

〉

f (yyy|θθθ)

)

≈max
φφφ

(

1

N

N

∑
i=1

lnqφφφ (yyyi|θθθ i)

)

(5.14)

Where θθθ i ∼ f̃ (θθθ) is drawn from a proposal prior and yyyi ∼ f (yyy|θθθ i) are the model simulations.

In this case the choice of the prior does not really affect the results: in fact, the neural network only

focuses on understanding how samples yyy behave given the parameters θθθ . Nevertheless, like before a choice

for the proposal prior which is close to the true posterior and that depends on the observed data yyyobs will be

beneficial for the simulation.

Algorithm 5.2 — Iterative importance sampling for ML-ABC II Consider the loop of two steps:

• STEP 1:

– Set the first proposal prior f̃ (θθθ) = f (θθθ);
– Sample θθθ i ∼ f̃ (θθθ) and yyyi ∼ f (yyy|θθθ i);
– Introduce an archive to store all the previously drawn params and samples: A = {(yyyi,θθθ i)};
– Train qφφφ (yyy|θθθ) on A so to obtain the best set of parameters φφφ ∗ according to equation (5.14);

– Get the approximate posterior f̃ (θθθ |yyyobs) as the product between the true prior and the condi-

tional density estimator (approximated likelihood), which will be eventually a proportional

approximation of the true posterior: f̃ (θθθ |yyyobs) = qφφφ∗ (yyyobs|θθθ) · f (θθθ) ∝∼ f (θθθ |yyyobs).
So far the representation is still poor (the true prior is still much broader than the true posterior),

but the second step improves the results.

• STEP 2:

– Set as new proposal prior the approximated posterior of step 1: f̃new (θθθ) = f̃ (θθθ |yyyobs);
– Sample θθθ i ∼ f̃new (θθθ) and yyyi ∼ f (yyy|θθθ i) (e.g., via MCMC). Since we only want to train the

model for yyyi conditioned to θθθ i, add the new samples (yyyi,θθθ i) to A ;

– Train qφφφ (yyy|θθθ) on the new archive A so to obtain the best set of parameters φφφ ∗;
– Get the approximate posterior as in step 1: f̃ (θθθ |yyyobs) = qφφφ∗ (yyyobs|θθθ) · f (θθθ).

58 Chapter 5. ML-approaches to Bayesian Inference

At the end of the second step the approximate posterior should be closer to its true form. The last step

can be iterate until a satisfactory result is achieved. ⋆

In this algorithm sampling is done iteratively, starting with the prior and then narrowing in more and

more on the posterior. The advantage of learning the output density is that all the output samples generated

in previous iterations can be used as well (the ”wrong” prior does not matter because we are conditioning on

θθθ). This is the reason to introduce an archive and store all generated samples to enlarge the training set for

the neural network.

Finally, it is also worth mentioning that also for the conditional probability estimation AR-flows are

possible solutions.

Part II

Jeff Byers

6. The Bayesian approach

Lesson 9

19/04

FC

TF

Lesson 10

23/04

LR

6.1 On the Bayesian interpretation

6.1.1 Physics as Encoding, Decoding and Bottlenecks

Information theory is about compressing information down, and find what matters inside a larger set of data.

Have a look at figure 6.1. The yyy object on the left could be the result of an experiment, or ourselves out in

the world collecting data. Since this huge amount of information doesn’t fit inside our brain, we need to

compress it down into something that generalize it and keeps only the important features. This “something”

is what we call a model, and the xxx in the figure can be thought as its parameters. This compression process is

nothing but the inference process. Eventually, we want to use our calibrated model to predict the future, and

conceptually this is like decoding our compressed information into simulated data. Ideally, a good inference

process has been accomplished if the input and the reconstructed one match together.

Figure 6.1: Enconding and decoding world data

The Bayesian inference is on the left. There are several types of model that we can choose for representing

the process underneath our data. By looking at figure 6.2, those models that are typical of physics are in the

upper left corner. In natural sciences we often deal with causality, a massive amount of theory is supporting

us and there are just a few parameters that describe systems.

The opposite of physics is distinguishing images from the net of cats and dogs. There is nothing deep

underlying images of animals, we just have an enormous amount of data, and we have to learn features with

statistical correlations in order to be able to predict fresh images of cats and dogs in the future. The problem

tends to be non-parametric since we don’t know a priori how many features we will need or how many of

them our unsupervised algorithm will be able to find out.

Classical statistics is an intermediate case: there is some theory and formulas to calculate, say, a standard

deviation or a Gaussian probability density function, but that is enough to describe the model.

The upper right part, where there is causality and no parameters are predefined, is kind of a terra incognito.

We will discuss this part also taking into account the rightmost part of the table, where we see explanation

62 Chapter 6. The Bayesian approach

and predictions: people in machine learning sometimes are happy to be able to predict correctly but they

often do not know how this happens. But when there is the need of interpretability, machine learning is not

enough, and we need to build different kind of models.

Figure 6.2: Types of models in Bayesian inference

6.1.2 The Bayes’ Theorem

It’s worth to spend some time looking deeper at the Bayes’ formula

Posterior
︷ ︸︸ ︷

P(model | data) =

Likelihood
︷ ︸︸ ︷

P(data | model)

Prior
︷ ︸︸ ︷

P(model)

P(data)
︸ ︷︷ ︸

Evidence

The interpretation is the following. We collected some data, and we propose some possible models which are

supposed to describe more or less the particular occurrence we got. For concreteness, suppose we assume

a gaussian distribution for the data and we want to infer the parameter µ (however, we could also have

totally different models); in this case, when we say “model”, we’re referring to a particular value of µ . The

probability that we assign to each of those values is given by two contributions.

The first one is the Prior, namely the knowledge, or belief, that we have on a particular model, and it

somehow express our ignorance about the problem. Remember that learning is a process, and the prior is

actually where we start.

The second term carries the information we have from our data, and it is the Likelihood. An important

remark has to be done about the likelihood: it is not a probability distribution. When we write P(data | model),
we have to bare in mind that the data are fixed, while the particular model is not. This means that the

likelihood is a function of the model (or parameters) given the data. For example: suppose you made a

survey, and you discovered that 30 out of 150 people prefer the color brown to the color red. Then, if x is the

number of people who prefer brown, the likelihood will be Binom(x = 30|N = 150, p), and it is a function

of p, not a PDF!

It is also a dangerous practice to choose the model by evaluating only the likelihood (Maximum Likelihood

Estimation, MLE), because this tend to overfit the data. In the bayesian context, this cannot happen because

there is something that regularizes the choice of models, and this is the prior.

The theoretical way of thinking about the world, is that we have the answer (which is like a model) and

our data is noisy, around the model. The Bayes theorem is telling to think in a different way: you measured

something, the data is fixed, and the model is fluctuating around the data. Maybe our data is noisy, but

compared to what?

The Bayes formula can be used also for comparing different models. The idea is that our data carry a

fixed amount of probability (the Evidence at denominator) and we have to spread it among all the different

models. This means that if we pretend to describe the phenomenon with a complicated model having a lot of

parameters, each particular set of those values will have a small probability. On the other hand, a simple

model with a couple of parameters will have a higher probability for each particular choice. This can be seen

as a sort of Occam’s razor principle that keeps us safe from overfitting the data.

6.1 On the Bayesian interpretation 63

6.1.3 What is probability?

How can we define probability, and how can we interpret it? According to MacKay, we should start from the

concept of ensemble.

Definition 6.1 — Ensemble. An ensemble X is a triple (x,AX ,PX), where the outcome x is the value

of a random variable, which takes on one of a set of possible values, AX = {a1,a2, . . . ,ai, . . . ,aI}, having

probabilities PX = {p1, p2, . . . , pI}, with P(x = ai) = pi, pi ≥ 0 and ∑ai∈AX
P(x = ai) = 1.

Figure 6.3 is a nice representation of this concept. All the possible outcomes from the phenomenon we’re

measuring represent the Sample space. Each time we do a measure, we get an outcome x. The set of all

the propositions we can make about the outcome is called Event space, and possibly it can contain a huge

number of elements. For example, a proposition can be: “I get an outcome that can be either 2 or 3”. Finally,

we map each proposition into a real number, the probability, which can be seen as the corresponding volume

in the event space.

Figure 6.3: Ensemble

Now comes a delicate question: does the probability belong to the world, or is it in the model? The

answer is not trivial at all, especially for physicists who are trained to thing that all the predictions we can

make about the fundamental processes of Nature are only probabilistic. A really nice reasoning about this

point can be found in [Jay89], and we strongly suggest you to have a look at it. Essentially, in the first part

the author retrieves the Einstein’s formula for the diffusion coefficient through Bayesian reasoning, and it

goes as follows.

Bayesian inference in diffusion processes

Consider a diffusion process, and denote with n(x, t) the density of particles at position x and time t. We

know (phenomenologically) that the flux of particles is J =−D ∇n, and we want to compute the the diffusion

constant D. Starting from position x at time t, from the central limit theorem we can assert that the probability

for the particle to be at position y at time t + τ is given by a gaussian distribution

P(y|x, I) = Aexp

[

− (y− x)2

2σ2(τ)

]

.

However, there’s no way to predict “ab initio” a flux of particles from there, because the distribution is

symmetric and the average displacement is zero. The solution is to think the other way around: What is

the probability that the particle was at position z, given that now it is at position x?. What makes all the

difference here, is that by focusing on the past we have additional information: the equations of motions are

symmetric in past and future, but our information about the particles is not. Hence, the posterior probability

for the particle to be at position z is

P(z|x, t, I) = A P(x|z, I)P(z|I).
Now, of course the prior probability to be at position z must be proportional to the particles’ density at that

point. By taking the logarithm of both sides and replacing all the pieces we get

lnP(z|x, I) = lnn(z)− (z− x)2

2σ2(τ)
+ const.

64 Chapter 6. The Bayesian approach

Differentiating, we find that the most probable value of the past position z is not x, but

ẑ = x+σ2 ∇(lnn) = x+(δx)2 ∇(lnn).

The average flux over a time interval 2τ centered in the present is

J = n v = n
x(t + τ)− x(t− τ)

2τ
,

and replacing x(t + τ)≡ x, x(t− τ)≡ z, we get

J(x, t) =− (δx)2

2τ
∇n =⇒ D =

(δx)2

2τ
.

Notice that we didn’t even assume that the gradient of n must be present: Bayes’ theorem told us that

automatically. What can seam strange here, is that we updated the propagator of motion with our prior

information about the process; a physicist would say that we’re not allowed to modify the laws of Nature

merely because our state of knowledge has changed! The point here is that the gaussian distribution above

(and probability in general) is not a law of Nature: it’s just a way we have to model our ignorance about the

world. As such, it’s perfectly reasonable to update it as soon as our state of knowledge changes.

In a nutshell: Probability quantifies uncertainty in our representations and the corresponding inference

procedures from data to models. Probability is just a tool in order to understand what is going on, it is not

a physical property! It’s just a “map” from us to the world that help us to describe it, but it’s not actually

in the world. To appreciate the distinction between physical predictions and inference it is essential to

recognize that propositions at two different levels are involved.

6.1.4 From sets to space of models

So far we’ve talked about sets of models, that on our Bayesian view are fluctuating around the data. But

when we talk about comparing models, we necessarily have to recognize some sort of structure in the space

where all the models live. By introducing a topology we can’t already put a number one each model, but we

start to have the notion of closeness between two different models, namely how similar they are. The next

step is to put a measure in the models’ space, so that one can say precisely how far two models are from

each others.

� Example 6.1 — Gull’s Decay Length Problem. The following problem is taken from [Mac02], chapter

3.

Unstable particles are emitted from a source and decay at distance x, a real number that has an exponential

probability distribution with a characteristic length, λ :

p(x|λ) = e−
x
λ

Z
(6.1)

Decay events can only be observed if they occur in the window extending from x= a= 1 cm to x= b= 20

cm. N decays are observed at locations {x1, . . . ,xN}. What is λ? We’re going to go through the solution later

Figure 6.4: Configuration example

on. For the moment, let us focus on what we have here. The likelihood we have above depends on just one

parameter, λ , and it’s quite remarkable that we can describe the whole phenomenon with just one number!

Form the perspective we’re building, we can think of λ as an index for all possible models, rather than just a

parameter to fit on the data we collect. Also, since λ is a positive real number, we automatically inherit the

topology and the notion of distance that we have in R, allowing us to compare easily different models. Of

course, it’s not always that easy. When we want to compare more complicated parametric models with more

than one parameter, we will see that a good distance is given by the Fisher metrics. �

6.1 On the Bayesian interpretation 65

The "Ball in a Box" analogy

Another way to visualize this Bayesian reasoning is depicted in Figure 6.5. The cloud on the right represents

all the data we can potentially observe from the experiment, for example all the measurements we can make

in the interval x ∈ [1,20] cm in the Gull’s problem presented above. The blue ball around the set of data

we took represents the uncertainty that we have on our measurements. It can be devoted for example to

the non-infinite accuracy of our detectors, and it can actually change shape within the different regions of

the data space. Then, the Bayesian inference takes the observations and “pull them back” into the model

space, the interval (0,+∞) where λ lives. This procedure produces a lot of points, which eventually create

the green ellipse concentrate around the best estimate we can give for the parameter.

Figure 6.5: Mapping between two spaces

6.1.5 Parameters estimation: Gull’s problem solution

Let’s go through the resolution of the Gull’s decay length problem. The Bayes’ formula we want to apply is

nothing but the green lips into the space of models that we have on figure 6.5. The blue ball is instead the

likelihood (6.1), and it tells us how a particular choice of λ looks like over the data space

p(x|λ) = e−
x
λ

Z
, Z(λ ;a,b) =

∫ b

a
dxe−

x
λ = λ

(
e−

a
λ − e−

b
λ
)

N samples−−−−−→ p({x}|λ) =
N

∏
n=1

p(x|λ) = e−
〈x〉
λ

λ N
(

e−
a
λ − e−

b
λ

)N
Likelihood

where it is worth to notice that the this function is normalized over x. Now we have to choose a prior. Since

we know that our measurements lie in the interval [a,b], a simple choice is to use a uniform (flat) prior.

Another possibility is given by the gamma distribution, but in this case is not trivial how to set the parameters

of the distribution. The ideal scenario it that we have so many measurements that the particular choice of the

prior doesn’t matter anymore.

p(λ |a,b) = 1

b−a
1[a,b] Uniform prior

p(λ |α,β) =
β α

Γ(α)
λ α−1e−βλ Gamma prior

Let’s consider the uniform prior. The evidence is very often computed via numerical integration (or

Monte Carlo methods), but here we can write it in the analytical form:

p({x}) =
∫ ∞

0
dλ p({x}|λ)p(λ) =

1

b−a

∫ b

a
dλ

e−
〈x〉
λ

λ N
(

e−
a
λ − e−

b
λ

)N
←
(

λ = u−1

dλ =−u−2du

)

=
1

b−a

∫ b−1

a−1
du uN−2 e〈x〉u

(e−au− e−bu)
N

Evidence

Putting all pieces together, we get the Posterior

p(λ |{x}) = p({x}|λ)p(λ)

p({x}) =
e−
〈x〉
λ

λ N
(

e−
a
λ − e−

b
λ

)N ∫ b−1

a−1 du uN−2 e〈x〉u

(e−au−e−bu)
N

1[a,b] Posterior

66 Chapter 6. The Bayesian approach

6.1.6 Parameters estimation: Bretthrost’ spectral analysis

In this section we report few steps taken from the article [Bre08], just to emphasize how Bayesian inference

can be exploited to do parameters estimation. We recommend to have a look at the source for a complete

understanding of the problem.

The problem of estimating the frequency of a sinusoid occurs in many different areas of science and

engineering. From the standpoint of estimating a frequency, uniform samples are not more informative

than nonuniform samples; they are more convenient because of the almost universal use of the fast discrete

Fourier transform in the frequency estimation procedure. We will see how probability theory generalizes the

discrete Fourier transform.

Suppose that we are taking some astronomical data, and our apparatus give us the complex and the real

part of the signal; by the fact that data points are taken at different times, then we have two different data

sets, DR ≡ {dR(t1) . . .dR(tNR
)} and DI ≡ {dI(t1) . . .dI(tNI

)}. The actual measurement data is therefore

d̃(t j) = dR(t j)+ i dI(t j)

We impose no restrictions on the number of data samples or the acquisition times in either channels.

If the complex data are given by the equation above, then the data and the sinusoid are related by

d̃(t j) = Ãexp
{
− f̃ (t j)

}
+ ñ(t j)

where the complex amplitude is given by Ã = A1− iA2, and is equivalent to the amplitude and phase of the

sinusoid. The complex frequency, f̃ = α +2πi f , contains two parameters: the decay rate constant, α , and

the frequency, f . The quantity ñ(t j) represents the complex noise at time t j. Note that in this equation the

times t j, simply designate the times at which we actually have data.

Consequently we can split our data sample dR(ti) and dI(t j) as

dR(ti) = MR(ti)+nR(ti) dI(t j) = MI(t j)+nI(t j)

where

MR(ti) =

[

A1 cos(2π f ti)−A2 sin(2π f ti)

]

exp{−αti}

MI(t j) =−
[

A1 sin(2π f t j)+A2 cos(2π f t j)

]

exp
{
−αt j

}

In probability theory as logic, all of the information about an hypothesis is summarized in a probability

density function, in our case P(f ,α|DR,DI , I). We can obtain such PDF marginalizing over parameters that

we are really not interested about:

P(f ,α|DR,DI , I) =
∫

dA1dA2dσ P(DR,DI | f ,α,A1,A2,σ , I)P(f ,α,A1,A2,σ |I)

If the two data sets are logically independent, the joint direct probability for the data will factorize as

P(DR,DI | f ,α,A1,A2,σ , I) = P(DR| f ,α,A1,A2,σ , I)×P(DI | f ,α,A1,A2,σ , I)

We will assume that the prior can be factorized into independent prior distributions for each parameter. These

will be uniform priors for the amplitudes, frequency and decaying rate, and a Jeffreys’ prior for the standard

deviation of the noise.

If for the likelihood we use Gaussians, we have

P(f ,α|DR,DI , I) ∝

∫

dA1dA2
dσ

σ
×σ−NR exp

{

− 1

2σ2

NR−1

∑
i=0

[
dR(ti)−MR(ti)

]2

}

×σ−NI exp

{

− 1

2σ2

NI−1

∑
j=0

[
dI(t j)−MR(t j)

]2

}

6.2 Conjugate priors 67

Finally we obtain

P(f ,α|DR,DI , I) ∝

∫

dA1dA2dσ σ−(NR+NI+1) exp

{

− Q

2σ2

}

∝
1√

ab− c2

[

(NR +NI)d2−h2

]1−NR+NI
2

(6.2)

where Q,a,b,c,h2,d2 are particular summary statistic of the data, with

d2 =
1

NR +NI

[NR−1

∑
i=0

dR(ti)
2 +

NI−1

∑
j=0

dI(t j)
2

]

The interesting thing is that h2 is a summary statistic that generalizes the discrete Fourier transform

power spectrum to nonuniformly nonsimultaneously sampled data.

If one is interested only in estimating the frequency or the decaying rate, he can always marginalize over

the other parameters; moreover if we know that absolutely there is no decaying in the signal we can just

substitute α = 0 and NI = 0, meaning no imaginary part of the signal. Our calculation then reduce to:

P(f |D, I) ∝
1√

ab− c2

[

Nd2−h2

]1−N
2

where d2 =
1

N

N

∑
n=1

d2
n (6.3)

6.2 Conjugate priors

When facing Bayesian inference problems, we usually get trapped into really nasty integrals. We also had

better avoid Monte Carlo methods to solve them: they must be seen as a parachute, used only in case of

emergency. One way to choose the path of mathematical convenience is to find the right matching between

the likelihood and the prior, selecting our distribution for the parameters from the family of conjugate

priors. In the following, we’re going to present two examples: the first one represents the family of discrete

distributions, whereas the second one is taken from the continuous distributions’ family.

6.2.1 Discrete distributions: solving the Coin Tossing problem

Considering the toss of a coin, we want to evaluate whether the coin is fair or not. Our goal is therefore to

infer the probability B (bias) to get a head (H) from a toss and to verify the compatibility with the fair value

B = 1/2. The likelihood for a single toss is given by p(x = H|B) = B, and consequently p(x = T |B) = 1−B.

Our data consist in the number of heads NH obtained in N trials, and the likelihood is given by the binomial

distribution:

p(NH |B,N) =

(
N

NH

)

BNH (1−B)N−NH Likelihood

In order to exploit the mathematical properties of the conjugate priors, we choose the beta distribution

p(B|α,β) =
Bα−1(1−B)β−1

B(α,β)
, Prior

in which B(α,β) is the beta function

B(α,β) =
∫ 1

0
xα−1(1− x)β−1dx

The evidence can be computed directly by integration,

p(NH |N; I) =
∫ 1

0
p(NH |B,N)p(B|α,β)dB =

(
N

NH

)

B(NH+α,N−NH+β)
︷ ︸︸ ︷
∫ 1

0
dB BNH+α−1(1−B)N−NH+β−1

B(α,β)
Evidence

and the Bayes’ theorem gives us the posterior

p(B|NH ,N; I) =
p(NH |B,N)p(B|α,β)

p(NH |N; I)
=

BNH+α−1(1−B)N−NH+β−1

B(NH +α,N−NH +β)
Posterior

68 Chapter 6. The Bayesian approach

In the above expression, we observe that we can get the posterior starting from the prior simply through an

hyper-parameters update

α → α ′ ≡ α +NH

β → β ′ ≡ β +N−NH = β +NT

In this way, we can interpret the inference as a dynamical process in the manifold of beta distributions, where

the dynamics is pushing our prior parameters toward two different α ′, β ′ in the manifold (figure 6.6).

The mathematical convenience of choosing a prior within the conjugate family of a given likelihood is clear:

all the inference problem reduces to the update of few numbers, and we can spare ourselves the effort of

computing nasty integrals. Moreover, the Beta distribution has a very versatile behaviour when changing the

parameters α and β , ranging from a uniform distribution (α = β = 1) to very peaked shapes (see Figure

6.7).

Figure 6.6: The inference process can be seen as a trajectory in the models’ space

At this point we can give an estimate of the most probable value of B through the Maximum A Posteriori

(MAP) Estimator, i.e. by evaluating the value of maximum of the posterior; we define a = NH +α−1 and

b = N−NH +β −1, so

0 =
d

dB
Ba(1−B)b = aBa−1(1−B)b−bBa(1−B)b−1

= (aB−1−b(1−B)−1)Ba(1−B)b = 0

⇐⇒ aB̂−1−b(1− B̂)−1

=⇒ a(1− B̂) = bB̂

=⇒ a = (a+b)B̂

=⇒ B̂ =
a

a+b

In our case:

B̂MAP =
NH +α−1

N +α +β −2
MAP

The corresponding frequentist estimator is the Maximum Likelihood Estimator (MLE), that in our case

returns

B̂MLE =
NH

N
MLE

Notice that the two estimators coincide if we choose a uniform prior (i.e. selecting α = β = 1). From this

fact we can conclude that the MLE method hides some implicit mathematical prescription for our ignorance,

whereas the Bayesian approach makes the choice of the prior explicit!

6.2.2 Continuous distributions: Gaussian-shaped likelihood

Consider a Gaussian likelihood evaluated over n observations {xi}i=1...n ≡D

N (D |µ,σ2) =
n

∏
i=1

1√
2πσ2

exp

[

− (xi−µ)2

2σ2

]

Likelihood

6.2 Conjugate priors 69

Figure 6.7: Beta distribution for different values of parameters α and β . Source: https://en.wikipedia.

org/wiki/Beta_distribution

The conjugate priors for the parameters of such a likelihood, turn out to be an inverse gamma distribution

over σ2 (or a gamma disribution over 1/σ2 and a Gaussian PDF over µ

p(µ|σ2; µ0,κ0) =

√
κ0

2πσ2
exp
[

− κ0

2σ2
(µ−µ0)

2
]

µ Prior

p(σ2|α = ν0,β = σ2
0) ∝

σ2
0

Γ(ν0)

(
σ2

0

σ2

)ν0−1

exp

(

−σ2
0

σ2

)

σ2 Prior

The total normalized prior is therefore given by

p(µ,σ2|µ0,κ0,ν0,σ
2
0) =

√
κ0

2πσ2

1

σ2
0 Γ(ν0)

(
σ2

0

σ2

)ν0+1

exp

[

−2σ2
0 +κ0(µ−µ0)

2

2σ2

]

which is also called Normal-Inverse-Gamma (NIG) distribution. The Bayes’ theorem reads

p(µ,σ2|µn,κn,νn,σ
2
n) =

1

Z
N (D |µ,σ2) p(µ,σ2|µ0,κ0,ν0,σ

2
0) Posterior

The proof of the parameters’ update rule goes through the computation of the normalization factor Z, and

here we omit the details. In the end one gets

κn = κ0 +n νn = ν0 +
n

2
;

µn =
κ0µ0 +nx

κ0 +n
; σ2

n = σ2
0 +

ns2

2
+

1

2

nκ0

κ0 +n
(x−µ0)

2

where

x =
1

n

n

∑
i=1

xi; s2 =
1

n

n

∑
i=1

(xi− x)2

Once we define the precision λ = 1/σ2, we can visualize the iso-contours of the probability distribution

in the µ −λ space, as shown in Figure 6.8. This plot allows us to see what is our ignorance about our

parameters. As we add some data, hopefully the the contour plot will get narrower around some point in the

parameters’ space.

6.2.3 Predictive posteriors

Another field we can get into is the one of predictive posteriors: once we have computed the posterior for

the parameters of the model, we try to forecast the next observation x̃ given all the information we collected

until that point, namely our sample XXX = (x1, ...,xn). In other words, the posterior predictive distribution is

the distribution of possible unobserved values conditioned on the observed values:

p(x̃,XXX) =
∫

Θ
p(x,θθθ |XXX)dθθθ =

∫

Θ
p(x|θθθ)p(θθθ |XXX)dθθθ

70 Chapter 6. The Bayesian approach

Figure 6.8: Contour plot in the parameters’ space that quantify our ignorance about the parameters of the

model. Image taken from [Bis06], p.102

In the specific case we’re dealing with, if we take a Gaussian N (x|µ,σ2), we multiply it by the posterior

found above and we integrate out µ and σ2, in the end what we get is

p(x̃|µn,κn,νn,σ
2
n) =

∫ ∞

0
dσ2

∫ ∞

−∞
dµN (x̃|µ,σ2) p(µ,σ2|µn,κn,νn,σ

2
n) (6.4)

=
1

√

2πσ2
n

Γ(νn +1/2)

Γ(νn)

√
κn

κn +1

(

1+
κn

κn +1

(x̃−µn)
2

2σ2
n

)−(νn+
1
2)

The Student-t distribution is defined as

tν(x̃|µ,σ2) =
Γ(ν/2+1/2)

Γ(ν/2)

1√
νπσ

[

1+
1

ν

(
x−µ

σ

)2
]− ν+1

2

where the parameter ν is called degrees of freedom, and it’s known that the Student-t distribution tends to a

Gaussian in the limit ν → ∞, as shown in figure 6.9.

If we now look at Eq. (6.4), we immediately realize that the predictive posterior for a Gaussian random

process with mean and variance unknown is given by the Student-t distribution

p(x̃ | µn,κn,νn,σ
2
n) = t2νn

(

x̃ | µn,
σ2

n (κn +1)

κnνn

)

The Student-t distribution is a smartest version of the Gaussian for describing our data. Indeed, the thin tails

of the Gaussian are very sensible to outliers, and when we have few data the distribution strives to adapt his

shape to accomodate them. Instead, the Student-t has very fat tails when the number of samples is small,

meaning that the appearance of outliers is not a big deal.

This is a sort of Bayesian interpretation of why we do the Student-t testing for finite number of samples, and

it’s definitely more satisfying than all the tricky reasoning one has to do in the frequentist approach.

For a nice summary of all the discrete and continuous conjugate priors and predictive posteriors we recom-

mend the Wikipedia’s page https://en.wikipedia.org/wiki/Conjugate_prior.

6.2 Conjugate priors 71

Figure 6.9: The Student-t distribution for different values of ν . In the limit ν → ∞ we retrieve a Gaussian

distribution. Figure taken from [Bis06], p. 103

7. Entropy and Information

Lesson 12

30/04

GC

FC

7.1 Learning by diffusing: the information potential

Let’s start by considering a physical problem, where a bunch of particles are moving within a unknown

potential, u(xxx). In general, the aim of physics is to study population dynamics given the potential; however,

in the inference problem things go in the opposite direction: the shape of u(xxx) is what we want to infer

staring from the position of the particles.

One possible way to solve this problem is to place the N particles in some chosen points in the space and

study their evolution. Starting from the initial state, by using the drift-diffusion equation we can get the final

equilibrium state.

IC: p(xxx,0) =
1

N

N

∑
n=1

δ (xxx−xxxn) ∂t p = ∇ · (D∇p+ p∇u)

As we know from statistical mechanics, in the equilibrium state the probability distribution is Boltzmann-like:

lim
t→∞

p(xxx, t) = Z−1e−u(xxx)/D⇒ u(xxx) =−D ln p(xxx)−D lnZ

and we can see an interesting relation between the potential and the negative logarithm of the probability

distribution. The constant term coming out from the partition function is actually not important, since we’re

always interested in difference of potential.

Starting from the assumption u = 0, the diffusion equation is solved by the Green function G, that defines

the probability for a particle to be at position xxx at time t given that we started at the point xxx′

G(xxx,xxx′; t) =
1

(4πDt)
d
2

exp

(

−‖xxx−xxx′‖2

4Dt

)

To compute the probability distribution, we have first to determine the characteristic time t∗ at which the flux

of particles (and hence of probability) is zero: JJJ(t∗) = 0. Once we’ve done this, we can average the Green’s

function over the number of particles and get the estimated PDF

p(xxx|t∗) = 1

N

N

∑
n=1

1

(4πDt∗)
d
2

exp

(

−‖xxx−xxxn‖2

4Dt∗

)

At this point it’s possible to compute the final potential as u(xxx) = −D ln p(xxx|t∗). This physical approach

allows us in some way to reverse our usual perspective, and see probability distributions as actual potentials

in which particles are "trapped". The final result clearly depends on how many particles are involved in the

simulation (see figure 7.1). This parameter can be seen as a temperature: in the limit of an infinite number

of particles (infinite low temperature), the posterior will match the underlying undisclosed potential.

74 Chapter 7. Entropy and Information

Figure 7.1: Estimation of the real potential (black curve) from the positions of the particles. From left to

right, the number or samples has been increased, and the estimated curve (orange line) moves closer to the

true potential. The resulting effect can be seen as a progressive lowering in temperature.

Figure 7.2 shows the beautiful interpretation of the process. Data have been generated according to

a superposition of three Gaussian distributions, and particles are clustered around the regions of high

probability. On the other hand, if we compute the information potential as the negative logarithm of the

generating PDF, we can get a physical intuition of the process: the potential acts through a force on the

particles that constrains them close to the potential’s minima.

Figure 7.2: On the left, the black line represents the PDF used to generate the samples. On the right there is

the corresponding information potential

7.2 Distance measure in information theory

In order to understand how different is a probability distribution from another one, we need to define some

functions that can actually measure “distances” between them. There are many different ways we can use to

carry out this task and we report here some of them:

• Root mean square error (RMSE):

DL2(p,q) =

(∫

dx|p(x)−q(x)|2
) 1

2

• Hellinger distance:

D0(p,q) = 2

∫

dx
(√

p(x)−
√

q(x)
)2

This is quite interesting in quantum mechanics, where one would take the difference between the two wave

functions and square it to get a probability distribution.

• Kullback-Leibler divergence (KL) (or Relative entropy):

DKL(p||q) =
∫

dxp(x)(uq(x)−up(x)) =
∫

dxp(x) ln
p(x)

q(x)

7.2 Distance measure in information theory 75

The Kullback-Leibler (KL) divergence is the most used one since it allows to express properly some

information related properties of the probability distribution, as we will see later on.

We can now introduce some function in order to deal with information. So, given a sample, which information

does it provide? This can be quantified by the self-information:

ip(xxx) = log

(
1

p(xxx)

)

=− log p(xxx) (7.1)

Notice that this quantity resembles what we previously called information potential. A way to compare

different distribution is by means of the relative self-information:

δp,q(xxx) = iq(xxx)− ip(xxx) = log

(
p(xxx)

q(xxx)

)

(7.2)

and in our physical analogy it represents the difference in potential energy between two different distributions.

If we average these two expressions over p(xxx), we get respectively:

H =
〈
ip(xxx)

〉

p
=−

∫

p(xxx) log p(xxx)dxxx Entropy

DKL(p||q) =
〈
δp,q(xxx)

〉

p
=
∫

p(xxx)(iq (xxx)− ip(xxx))dxxx =
∫

p(xxx) log
p(xxx)

q(xxx)
dxxx Relative Entropy

The relative entropy compares two probability distribution, and in some way allows to know how far

they are from each other. The relative entropy has the important property to be non-negative, and this can

be proven using the Jensen’s inequality. But is not a distance, since it doesn’t satisfy some fundamental

properties that a distance function must have, such as the symmetry property.

In the definitions listed above we used the base-2 logarithm, but often they’re defined using the natural

logarithm instead. In the first case they’re measured in bits, and it is conceptually easier to interpret them as

measures of information. The natural logarithm is used instead when we want to take derivatives, so that we

avoid annoying prefactors arising in computations. In this case the unit of measure is called nat.

7.2.1 Self-information or Information Potential

What is the interpretation we can give to the expressions above? How can we get a feeling of the fact that

Eq. (7.1) assigns higher content of information to the less probable events?

A simple example can be given by the uniform binning of a Gaussian (see figure 7.3). What we want

to do is to distribute the events in such a way that each bin correspond to a total probability of Pn = 2−Ln ,

with ∑Pn ≤ 1 and Ln being an integer number. Using this assumption, it is possible to associate a bin to the

corresponding probability and to binary code using an Huffman Tree.

The idea is that each bifurcation of the tree corresponds to a decision to take; each of the two possible

paths is labelled with “1” or “0”, and they have the same probability to be chosen. As we proceed downward

the tree, we collect the bits corresponding to the decisions we take, and at the bottom we end up in one of the

possible bins of the Gaussian. Since each branch is equally probable, it’s clear that the more bifurcations we

encounter, the more decisions we have to take and the less probable the bin we fall in will be. At the same

time, to get an unlikely bin we have also to collect many bits, and so the amount of information associated is

also large.

There is another interesting observation to point out. If we plot the number of bits Ln (i.e. the number of

decisions to take) as a function of the position in the Gaussian, x, what we find is a parabolic shape (figure

7.4, on the left). But Ln, which is measured in bits, is also the negative logarithm of the probability, and

therefore it is nothing but the information potential! This is again showing us how the information content of

the data is encoded in this “minus the logarithm of the probability”.

7.2.2 Decomposition of the Entropy

Let us illustrate an interesting property of the entropy through an example. Imagine that a random variable

x ∈ {0,1,2} is created by first flipping a fair coin to determine whether x = 0; then, if x is not 0, flipping a

fair coin a second time to determine whether x is 1 or 2. The probability distribution of x is

p(X = 0) =
1

2
p(X = 1) =

1

4
p(X = 2) =

1

4

76 Chapter 7. Entropy and Information

Figure 7.3: Huffman tree example

Figure 7.4: Left) Each bin of the Gaussian is associated with an information content. The more unlikely is

the bin, the longer the sequence of bit to describe it will be.

Right) The negative logarithm of the probability gives the information potential, that in this case is a parabola.

What is the entropy of X? We can either compute it by brute force

H(X) =
1

2
log2+

1

4
log4+

1

4
log4

or we can use the following decomposition, in which the value of x is revealed gradually.

Imagine first to learn whether x = 0 or not, and then, if x is different from 0, to learn which non-zero

value is the final outcome. The discovery of whether x = 0 or not entails revealing a binary variable whose

probability distribution is {1/2,1/2}. This revelation has an entropy H(1/2,1/2) = 1
2

log2+ 1
2

log2 = 1 bit.

If x is not 0, we learn the value of the second coin flip. This is again a binary variable whose probability

distribution is {1/2,1/2}, and whose entropy is 1 bit. We only get to experience the second revelation half

the time, however, so the entropy can be written:

H(X) = H

(
1

2
,

1

2

)

+
1

2
H

(
1

2
,

1

2

)

Generalizing, the observation we are making about the entropy of any probability distribution p= {p1, p2, . . . , pI}
is that

H(ppp) = H(p1,1− p1)+(1− p1)H

(
p2

1− p1
,

p3

1− p1
, . . . ,

pI

1− p1

)

7.2.3 Joint entropy and conditional entropy

In what follows we define some quantities which we’ll have to deal with and we prove some of their

properties.

7.2 Distance measure in information theory 77

Definition 7.1 — Joint entropy. The joint entropy H(X ,Y) of a pair of discrete random variables (X ,Y)
with a joint distribution p(x,y) is defined as

H(X ,Y) =− ∑
x∈AX

∑
y∈AY

p(x,y) log p(x,y) (7.3)

We also define the conditional entropy of a random variable given another as the expected value of the

entropies of the conditional distributions, averaged over the conditioning random variable.

Definition 7.2 — Conditional entropy. If (x,y)∼ p(x,y), the conditional entropy H(Y |X) is defined as

H(Y |X) = ∑
x∈AX

p(x)H(Y |X = x)

=− ∑
x∈AX

p(x) ∑
y∈AY

p(y|x) log p(y|x)

=− ∑
x∈AX

∑
y∈AY

p(x,y) log p(y|x) (7.4)

This measures the average uncertainty that remains about y when x is known.

The naturalness of the definition of joint entropy and conditional entropy is exhibited by the fact that the

entropy of a pair of random variables is the entropy of one plus the conditional entropy of the other. This is

proved in the following

Proposition 7.1 — Chain rule. H(X ,Y) = H(X)+H(Y |X) = H(Y)+H(X |Y)

Proof.

H(X ,Y) =− ∑
x∈AX

∑
y∈AY

p(x,y) log p(x,y)

=− ∑
x∈AX

∑
y∈AY

p(x,y) log [p(y|x)p(x)]

=− ∑
x∈AX

∑
y∈AY

p(x,y) log p(x)− ∑
x∈AX

∑
y∈AY

p(x,y) log p(y|x)

=− ∑
x∈AX

p(x) log p(x)− ∑
x∈AX

∑
y∈AY

p(x,y) log p(y|x)

= H(X)+H(Y |X)

More directly, we can also write

log p(X ,Y) = log p(X)+ log p(Y |X)

and take the expectation of both sides to obtain the claim of the proposition. The other version follows from

the symmetry of the joint entropy. �

7.2.4 Kullback-Leibler Divergence or Relative Entropy

As we said the KL allows us to measure distances, and so it can be used to check whether data generated

from a model is able to reproduce the data we observed in Nature. We can even go further with this idea and

minimize the KL in order to find the best PDF for the given data.

Here we want to study closer what is the behaviour of this quantity in different situations

DKL(p||q) =
∫

p(xxx) ln
p(xxx)

q(xxx)
dxxx

Usually we use to think that p(xxx) is probability of the data, which in general is not given, whereas q(xxx) is the

probability distribution of what the model thinks the data belongs to. However, what we can do is to generate

synthetic data according to some known distribution, and to compare it with the distribution inferred by

the model through KL-minimization. We choose p(xxx) (green) as a multivariate Gaussian with a non-trivial

covariance matrix p(xxx) =N (xxx|µ,Σ), and q(xxx) (red) as a simpler symmetric Gaussian q(xxx) =N (xxx|µ,σ2
12).

78 Chapter 7. Entropy and Information

In figure 7.5 we can see what are the effects in minimizing DKL(p||q) rather than DKL(q||p). What we see is

that DKL(p||q) tends to fit tighter the high probability regions of the distributions, whereas the minimization

of DKL(q||p) gives more importance to the external regions, where the probability is lower. This very

different behaviour shows why the KL divergence cannot actually be seen as a distance: it is not symmetric.

p p

q

q

σ

π
−− − − −

=

=

= μ Σ z μ

μ Σ
μ Ι

μ Σ Σ



min (||)KL
q

D p q min (||)KL
q

D q p

 
=  

 
∫

Figure 7.5: Inference of p(xxx) starting from different definitions of the KL divergence. Image from [Bis06], p.

468

In figure 7.6 we repeat this experiment, this time with data sampled from a multimodal-multivariate

normal distribution. In this case

Data: p(xxx) = π1N (xxx|µ1,Σ1)+π2N (xxx|µ2,Σ2)

Model: q(xxx) = N (xxx|µ1,Σ1)

We see that DKL(p||q) tries to cover as much as possible the region where the two modes lie, whereas

the minimization of DKL(q||p) can get stuck in a local minimum. This shouldn’t be seen in general as a

disadvantage, though; the choice of the KL depends on what one wants to do.

min (||)
KL

q
D p q min (||)

KL
q

D q p

π π

π
−− − − −

= ⋅ + ⋅
=

= μ Σ z μ

μ Σ z μ Σ
μ Σ

μ Σ Σ

LOCAL MINIMUM LOCAL MINIMUM



SADDLE POINT

Figure 7.6: The two kinds of KL divergence have very different behaviours with multimodal distributions.

Source: [Bis06], p. 469

7.2.5 Alternative measure functions

The KL is without any doubt the main function to express a distance between probabilities, but we may use

different and more general kind of measures such as f -divergences or α-connections. In particular we can

consider the class of α-divergences defined as

Dα(p||q) = 4

1−α2

(

1−
∫

dxp(x)
1+α

2 q(x)
1−α

2

)

A different α gives different measure functions, for example:

• Helliger distance squared: D0(p||q)
• Dual KL: D−1(p||q))
• KL: D1(p||q)

In particular by using high αs the weight of p(x) is increased since its exponent has a positive sign for α ,

while the situation is the opposite with very low or negative value of α .

7.2 Distance measure in information theory 79

7.2.6 Mutual information

In the Bayesian context it’s often useful to measure how much information is shared between two random

variables X and Y . In other words, we could ask: how much information will we have on x if we observe y?

A possible way to estimate this quantity is to use the mutual information, that allows us to understand how far

away is a joint probability distribution of two PDFs from the product of the two marginalized distributions

I(X ,Y) = DKL(p(x,y)||p(x)p(y)) = ∑
y∈AY

∑
x∈AX

p(x,y) log
p(x,y)

p(x)p(y)

(∗)
≥ 0 Mutual information

where (∗) is due to the Jensen’s inequality, which in turn can be proved using the concept of convexity. This

expression measures the non linear interdependence of variables x and y, and so how much information is

shared between the two random processes. In the extreme case of two completely independent processes,

the joint probability at the numerator of the ratio in the previous formula factorizes, which means that no

mutual information is shared among the two (log1 = 0). In this case we cannot say anything about x by just

measuring y.

Mutual information can be also re-expressed as a difference between entropies:

Proposition 7.2

I(X ,Y) = H(X)−H(X |Y)
= H(Y)−H(Y |X)

= H(X)+H(Y)−H(X ,Y) (7.5)

Proof.

I(X ,Y) = ∑
x,y

p(x,y) log
p(x,y)

p(x)p(y)

= ∑
x,y

p(x,y) log
p(x|y)
p(x)

=−∑
x,y

p(x,y) log p(x)+∑
x,y

p(x,y) log p(x|y)

=−∑
x

p(x) log p(x)−
(

−∑
x,y

p(x,y) log p(x|y)
)

= H(X)−H(X |Y)

The second row follows from the symmetry, while to obtain the third row it is sufficient to apply the chain

rule. �

Since the entropy is the average information of a random process, from these expressions we can see that

mutual information can be also interpreted as the reduction in uncertainty over X after observing Y and

vice versa. The last row has instead a direct interpretation in the Eulero-Venn diagram shown in figure 7.7.

Figure 7.7: Eulero-Venn diagram for entropies and mutual information

80 Chapter 7. Entropy and Information

From the proposition above we can obtain another important result

I(X ,Y)≥ 0 → H(X)≥ H(X |Y)
which means that observing the random variable Y cannot make the entropy of X increase, because we do

learn something (or nothing) about it. This last result could be controversial, because sometimes it’s possible

to find

H(X)≤ H(X |Y = y).

However, this can happen only with single measurements, while on average learning X does convey

information about Y .

Finally, we can also introduce the concept of conditional mutual information

Definition 7.3 — Conditional mutual information. The conditional mutual information between X and

Y given z = ck is the mutual information between X and Z in the joint ensemble P(x,y|z = ck)

I(X |Y,z = ck) = H(X |z = ck)−H(X |Y,z = ck)

By averaging over z ∈ Z we obtain the conditional mutual information between X and Y given Z

I(X |Y,Z) = H(X |Z)−H(X |Y,Z)

Figure 7.8: Graphical relationship between entropies, conditional entropies and mutual information of two

random variables

S From the coding-computational point of view be aware that calculate quantities like H(X ,Y) could give
back NaN if the probabilities that we are computing are zero. A useful trick is to evaluate instead

H(X ,Y) =−∑
x

∑
y

p(x,y) log

[

p(x,y)+ ε

]

where ε could be the machine precision eps = 2−56.

Covariance vs mutual information

It is worth to remark the difference between correlation and dependence between two random variables. It

is well known that if X and Y are two independent random variables, then the covariance is zero 〈XY 〉= 0.

However, in real world problems things goes in the opposite direction. Bare in mind that only when our

process is described by a Gaussian, i.e.

N (X ,Y) ∝ exp

{

−1

2
(X ,Y)Σ−1(X ,Y)T

}

,

if the covariance is zero 〈XY 〉 = 0 then X and Y are actually independent. But this is exact only for the

Gaussian PDF, whereas it is just an approximation if our distribution has a bell-like shape, so that we can

express the real PDF as a Gaussian, plus some higher order corrections

f (X ,Y) ∝ exp

{

−1

2
(X ,Y)Σ−1(X ,Y)T +O(X3Y 3)

}

.

This means that in general it’s not true that if the covariance is zero then X and Y are independent: the

covariance only keeps track of the simplest possible interdependence between X and Y , the linear one. The

right tool to use in order to express our belief that X and Y have “something in common” is the mutual

information I(X ,Y), because it retains all the possible moments of our distribution.

7.3 Information theory version of Bayes’ rule 81

Information theoretic properties of functions of random variables

In some sense one could say that low complexity functions of random variables are resilient to noise, whereas,

high-complexity functions are easily degraded. There is a way of quantifying how much the “noise” destroys

the deterministic mapping f : x→ y, and it is through the entropy. Indeed, if our function f is bijective, i.e.

if every point x is mapped uniquely to some y and vice-versa, then H(X) = H(f (X)), i.e the entropic content

it’s preserved.

Exercise — Entropy of functions of random variables

1. Part 1. Let X be a discrete random variable taking on a finite number of values. What is the

relationship of H(X) and H(Y) if

(a) Y = 2X

(b) Y = cos(X) X ∈ [0,2π)
2. Part 2. Show that the entropy of a function of X is H(X)≥ H(f (x)) by following the steps below

and justifying each one:

(a) H(X , f (X)) = H(X)+H(f (X)|X) = H(X)
(b) H(X , f (X)) = H(f (X))+H(X | f (X))≥ H(f (X))

Solution:

1a) The function is bijective, so if we know X we completely know also Y . This means that H(X) =
H(Y).

1b) Here the situation is different, because this is not an invertible function in [0,2π]. Hence, it is

still true that H(Y |X) = 0 because X still determines Y ; however H(X |Y) it’s not zero, because

for each value y ∈ [−1,1] there are two possible values of x. So knowing Y = y tells you the set

{x : x = cos−1(y)}, but it doesn’t tell you what exactly X is.

2a) H(X , f (X)) = H(X)+H(f (X)|X) for the chain rule (7.1), and H(f (X)|X) = 0 merely for the

definition of function, so if we know X and f is deterministic then we know exactly f (X).
2b) Again the chain rule (7.1) and then H(X | f (X))≥ 0 for what we said before, where the equality

holds if f is bijective.

�

7.3 Information theory version of Bayes’ rule

Let us now reconsider the Bayes’ formula. Suppose that we have a model depending on some parameters θθθ ,

and we also have some data yyy. The Bayes’ rule tells us what is the probability distribution of parameters

given the observations

p(θθθ |yyy) = p(yyy|θθθ)p(θθθ)

p(yyy)

Now the question is: how much have we learnt about the parameters of the model θθθ having observed yyy?

This is like asking what is the distance between our posterior and the prior, and we can quantify it through

the KL divergence:

DKL

(
p(θθθ |yyy)||p(θθθ)

)
= ∑

θθθ∈Θ

p(θθθ |yyy) log
p(θθθ |yyy)
p(θθθ)

=
1

p(yyy) ∑
θθθ∈Θ

p(θθθ ,yyy) log
p(θθθ ,yyy)

p(θθθ)p(yyy)

To make this result independent of the particular dataset we have, we shall average the previous expression

over all possible realizations of the data we could measure from the process. This gives us the average

information gained about the distribution of Θ by observing the distribution of Y , and it coincides with the

mutual information between Θ and Y

I(Θ,Y) = ∑
yyy∈AY

p(yyy)DKL

(
p(θθθ |yyy)||p(θθθ)

)

Now we can use the property (7.5) to write the information theory version of the Bayes’rule

H(Θ|Y) = H(Θ)− I(Θ,Y) (7.6)

which is telling us that the learning process due to the inference acts by decreasing the entropy of the system

by an amount equal to the mutual information between the two distributions.

82 Chapter 7. Entropy and Information

Using this approach we can eventually choose the experimental design, which is represented by the

analytical form of the likelihood, in such a way to obtain the best information gain from inference. This

can be achieved by maximizing the mutual information between θθθ and yyy

p̂(yyy|θθθ) = argmin
p(yyy|θθθ)

{H(Θ|Y)}= argmax
p(yyy|θθθ)

{I(Θ,Y)}

8. Model Comparison

Lesson 13

30/04

LR

TF

Suppose we collected a bunch of data and we want to describe it with a model. Most of the times it’s not

obvious what is the model that better describes what we observe, and we may try with different plausible

proposals. What we need is therefore a method to decide which of those different models is the more

appropriate for describing our observations.

8.1 Occam’s razor

Consider the drawing on figure 8.1. In foreground there is a tree that doesn’t allow to say whether what there’s

behind is one grey box or two separate smaller boxes. Is there a way to infer what of the two alternatives is the

more probable? Occam’s razor is a principle that states that given two hypothesis which are equally capable

to describe the phenomenon, we should choose the simplest one. In this case we’re prompted to choose the

one-box hypothesis because, conscious or not, we realize that it would be a remarkable coincidence for the

two boxes to be just the same height and colour of each other. In [Mac03], p. 351, there is a quantitative

explanation of why this intuitive argument is indeed essentially correct.

Figure 8.1: How many boxes are behind the tree?

8.1.1 Model comparison and Occam’s razor

The Bayesian approach for model comparison automatically embodies Occam’s razor, quantitatively. Suppose

we want to evaluate the plausibility of two alternative theories, H1 and H2 in the light of data D. Using the

Bayes’ theorem, we relate the plausibility of the model H1 given the data, P(H1|D), to the predictions made

84 Chapter 8. Model Comparison

by the model about the data, P(D|H1), and the prior plausibility of H1, p(H1). This gives the following

probability ratio between theory H1 and theory H2:

P(H1|D)

P(H2|D)
=

P(D|H1)

P(D|H2)
· P(H1)

P(H2)
(8.1)

which represents how much H1 is favoured with respect to H2. On the right side, the first ratio allows

to insert a prior bias in favour of H1, while the second ratio expresses how well the observed data were

predicted by H1, compared to H2. The latter is also the term that embeds the Occam’s razor: if H2 is a

more complex model, it must spread its predictive probability P(D|H2) more thinly over the data space than

H1 (see figure 8.2). Thus, in the case where the data are compatible with both theories, the simpler H1 will

turn out more probable than H2.

Figure 8.2: The predictions of the models are quantified by a normalized probability distribution on the space

of possible data sets, D, which is called Evidence. Since each model has to spread his probability over D, we

have that a simpler model, capable to make a limited range of predictions, is more probable than a more

powerful one, as far as our data falls inside the region C1

8.1.2 The Evidence and the Occam’s factor

In model comparison is not advisable to choose the model that fits the data best: more complex models

can always fit the data better, so the maximum likelihood model choice would led us inevitably to

implausible, over-parametrized models, which generalize poorly.

In Bayesian approach, we always go through two levels of inference. Suppose that each model Hi is

assumed to have a vector of parameters www. Then, the two steps to follow are:

1. Model fitting. At first level of inference, we assume that one model, say Hi, is true, and we infer what

the model’s parameters www might be, given the data D. The Posterior probability of the parameters www is

p(www|D,Hi) =
P(D|www,Hi)P(www|Hi)

P(D|Hi)
. (8.2)

The normalizing constant P(D|Hi) is commonly ignored in this first stage, because it is irrelevant to

the end of inferring the posterior of www; however, it becomes important in the second stage of inference,

and we name it Evidence for Hi.

2. Model comparison. At the second level, we wish to infer which model is most plausible given the

data. Applying the Bayes’ theorem again, we can write the probability of each model as

P(Hi|D) =
P(D|Hi)P(Hi)

P(D)
. (8.3)

Notice that, assigning equal priors P(Hi) to the alternative models, models Hi are ranked by

evaluating the evidence, which naturally embodies the Occam’s razor.

Given what we said so far, in order to perform model comparison it is necessary to evaluate what the

Evidence is, i.e. we have to compute

P(D|Hi) =
∫

P(D|www,Hi)P(www|Hi)dwww. (8.4)

8.1 Occam’s razor 85

When the models we’re dealing with are very complex, evaluating this integral can become infeasible. This

notwithstanding, as the amount of data collected increases, a Gaussian approximation is expected to become

increasingly accurate in describing our posterior. Moreover, if the distribution is very peaked we can perform

a saddle-point approximation in Eq. (8.4), and write the Evidence as the product between the high of the

peak of the integrand times its width, σw|D:

P(D|Hi)≃ P(D|wwwMP,Hi)
︸ ︷︷ ︸

×P(wwwMP|Hi) σw|D
︸ ︷︷ ︸

(8.5)

Evidence≃ Best fit likelihood×Occam factor

Now suppose, for simplicity, that that the prior P(www|Hi) is uniform on some large interval σw, represent-

ing the the range of values of www that were possible a priori, according to Hi (figure 8.3). Then the Occam

factor is equal to the ratio of the accessible volume of Hi’s parameter space to the prior accessible volume

Occam factor =
σw|D
σw

(8.6)

From this expression is manifest that the Occam factor penalizes either complex models having many

parameters, each of which is free to vary over a large range σw, and models that have to be finely tuned on

the data (small σw|D), favouring models for which the required precision of the parameters is coarse.

Figure 8.3: The prior distribution (dashed line) for the parameters has width σw. The posterior distribution

(solid line) is peaked at wwwMP and has a characteristic width σw|D. The Occam factor is the ratio between the

two.

The Occam factor is therefore a measure of complexity of the model, and its logarithm represents the

amount of information we gain about the model’s parameters when the data arrive. Which model achieves the

greatest evidence is determined by a trade-off by minimizing this natural complexity measure and minimizing

the data misfit.

8.1.3 The big picture

Figure 8.4 summarizes all we said so far. We have three models H1, H2, H3, each of those has his prior

probability distribution P(w|Hi). H3 is the most powerful/complex model, having a larger σw, whereas

H1 is the simplest one. The clouds of points in the center represent the joint probability distributions of

parameters and data given the specific model, P(D,w,Hi) (N.B. they are not data points! They are simulated

data from the model.). Marginalizing this distribution with respect to the parameters, we get on the left the

probability density that each model assigns over the data space, i.e. the evidence P(D|Hi).
The horizontal dashed line represents instead the specific data set we measured, D. As the data set is

received, each prior distribution “collapses” in the corresponding posterior distribution P(w|D,Hi). In this

case the simplest model H1 is not the one selected by inference, because the data falls far away from its

data-prediction range and best-fit-likelihood term penalizes it a lot. Then, since the Occam factor σw|D/σw is

smaller for H3 than for H2, given this data set, the most probable model is H2.

86 Chapter 8. Model Comparison

Figure 8.4: A hypothesis space consisting of three exclusive models, each having one parameter www and a

one-dimensional data set D, the latter represented by the horizontal dashed line. The dots represents typical

samples from the joint distribution P(D,w,H) (they are not data points!). Figure taken from [Mac03], p.

350.

Exercise — 28.4, [Mac03]

The influence of race on the imposition of the death penalty for murder in America has been much studied.

The following three-way table classifies 326 cases in which the defendant was convicted of murder. The

three variables are the defendant’s race, the victim’s race, and whether the defendant was sentenced to

death.

Quantify the evidence for the four alternative hypothesis:

• H00: The death penalty is independent of the skin’s color of both victim (v) and defendant (m);

• H01: The death penalty depends on whether the defendant is black or white;

• H10: The death penalty depends on whether the victim is black or white;

• H11: The death penalty is influenced by both the skin’s color of the victim and the defendant.

Solution: look at the end of this chapter. �

White defendant Black defendant

Death penalty Death penalty

yes no yes no

White victim 19 132 White victim 11 52

Black victim 0 9 Black victim 6 97

8.2 Creating models, making choices and Bayesian inference

Let’s make a pause and think about the picture reported in Fig. 8.6. We can ask ourselves where is the

parameter estimation and model comparison fit in the things? At the beginning we have data, gathered in

some experiments, and models. We fit each model in the data by making use of the tools we discussed in the

parameter estimation section, and then we compare and assign preferences to the alternative models. The

last part, also fundamental, it is often forgotten in the process: we always ought to take decisions after the

model comparison phase, on whether we need more data (What measurement should I do next that provides

the best information?), or create new models. At some point maybe we can also decide that we do not need

8.2 Creating models, making choices and Bayesian inference 87

Figure 8.5: Where Bayesian inference fits into the data modelling process.

to gather more data or to change our model further. This kind of feedback is fundamental in the process.

Data is sequential, and we gather it sequentially in time. In general, orthodox statistics concentrate its effort

in data compression to represent the past, but the Bayesian approach is more like what do I believe the data

will be in the future? The Bayesian approach is: now I need to make a decision, and it is related to the

prediction I can do.

We can see in the same way what is happening here just by thinking that there are actions we can

take in the world, for which we can have only a representation, and the latter spits out some data.

Figure 8.6: Where Bayesian inference fits into

the data modelling process.

Then we wonder how our actions are related to the data

we saw, and this is the model part. Comparing models is

key to figure out how actions in the data have anything to

do with each other. We have the past, we can choose an

action, and what we will see in the future depends on the

action itself. Data is coming sequentially, and we need

to be able to understand whether we need more data, we

need to change the model or be satisfied and choose an

action and see what happens.

So, now we suppose that we are fine with the model

we ended up with: this is representing exactly a state that

we think to be the state of the world, i.e. an inferred state

of the world. Whatever the world is we cannot know it

directly, but with our state we can take actions. The π is

choosing the action to take in the world, and when it is

effectively chosen we have a way to do dynamics with the T . In fact, with this arrow we can step forward

into the future with the model and say, what do I think the next state St+1 will be? Then we run f and

declare “I think my data will be ỹi+1”. On the other side of the circle we take effectively the action through

A and the world produces an outcome yt+1. Now we compare the two. The result of this comparison is

exactly what we use to evaluate our model. If ỹi+1 and yi+1 match, then the model is good. Pay attention

to the distinction between what is physical and what is a representation, since we cannot really know what

the world is, and we can only represent it. This is a sort of Bayesian inference over time. Using a control

theory terminology, what we are trying to do is to maximize the mutual information we have with the world,

or in other words we have a policy π that optimizes the mutual information between the actions and the

observed data. We want to pick a policy π in order that it maximizes the following:

argmax
π

I(A,D) (8.7)

In a nutshell: Suppose we are hiking on a forest, all it’s fine, we are healthy and happy and at some point

we see a plant with some berries: this is our actual state St . Now we can ask our self if they are good to

eat or not; obviously we try to figure out in our mind what could happen if we eat some of those, i.e we

are try to making predictions T . At some point we decide to eat them, so we’ve taken an action A and then

88 Chapter 8. Model Comparison

our body will react is some way, accordingly if those berries were poisonous or not. Now we collect data

yi from our body, like if we have fever or headache maybe caused by the berries and we try to infer our

new health condition St+1. Here is where a collision could happen between our prediction T and what is

our actual state St+1, if we were wrong, but at the end of the day we’ve learned if such berries are good to

eat or not.

This process is called Learning i.e go trough the world, make predictions, be right and not be surprised of

that.

Notice also the difference between exploration vs exploitation: the first one is when one goes trough

something never done before in order to learn predictions that work well. The second instead is when

someone want to go into the world do well, but he don’t want to learn something more. So there is a balance

between them in the so called exploration-exploitation problem where one want to learn something and then

apply what he has learned.

From the mathematical point of view we have:

• Model State: p(st)
• Dynamics Model: T = p(st+1|at ,st)
• Observation Model: f = p(yt |st)
• Policy: at = π[p(st)] that is not really a probability but rather a decision-action.

In the simplest case when there is no policy, Fig. 8.6 is reduced to:

Figure 8.7: Dynamical System with no policy.

We can write the state estimation as

p(st |yt ,at−1) = ∑
st∈S

p(st |yt ,at−1,st−1)p(st−1)

where

p(st |yt ,at−1,st−1) =
p(yt |st)p(st |at−1,st−1)

p(yt |at−1,st−1)
=

p(yt |st)p(st |at−1,st−1)

∑st+1∈S p(yt+1|st+1)p(st+1|at ,st)

As we are going to see later on, this problem can be seen under the perspective of the information bottleneck.

The goal is to compress the past as much as possible while retaining the information relevant for predicting

the future, formally solving

p∗(st+1|at) = argmin I(A,S)
︸ ︷︷ ︸

Compression

−β I(S,Y)
︸ ︷︷ ︸

Relevance

= argmin
p(st+1|at)

F [p(st+1|at)] (8.8)

The formal solution is

p(st+1|at) =
p(st+1)

Z(at ,β)
exp

[

−β ∑
y∈D

p(yt+1|at) log
p(yt+1|at)

p(yt+1|st+1)

]

where

p(yt+1|st+1) =
1

p(st+1)
∑

a∈A
p(yt+1|at)p(st+1|at)p(at)

and

p(st+1) = ∑
a∈A

p(st+1|at)p(at)

Please notice that in the simplest case with no policy the presence of at and at−1 disappear from the previous

equations.

8.3 Language model and distance in the space of parameters 89

8.3 Language model and distance in the space of parameters

Suppose we want to build a language model, and we want to measure the distance between two languages:

English and Spanish. We need a metric in the space of models for this kind of measurements. In machine

Figure 8.8: The Morse code.

learning this is the point where a loss function comes into play, but

here we will try to use KL divergence instead.

Let’s take in to account the Morse code reported in Fig. 8.8, that

is a method used in telecommunication to encode text characters as

standardized sequences of two different signal durations, called dots

and dashes. To increase the efficiency of encoding, Morse code was

designed so that the length of each symbol is approximately inverse

to the frequency of occurrence of the character that it represents

in text of the English language (note the letter e as the most present

in the common English language). So, it was optimized for English

language, and if we look at the following probability distributions of

occurrence (Fig. 8.9) of a single letters in English p and Spanish q

respectively, we can notice that they are substantially different. How

KL works for probability models we would like to compare? Suppose we now build the Morse code for

Spanish language, for the Spanish frequencies but we still want to encode English through this. In a sense,

Figure 8.9: Probabilities of single letters A-Z in English p and in Spanish q respectively, the two distributions

are quite different.

this is not an optimal thing to do, just because the two distributions are different. The question is: How

many more bits do I need to use per letter if I was talking in English but I did Morse encoding with the

Spanish distribution? The answer is given by the KL-divergence:

DKL(p||q) =
26

∑
i=1

pi log
pi

qi

= 0.37bits/letter

DKL(q||p) =
26

∑
i=1

qi log
qi

pi

= 0.19bits/letter

This must be read like: If we want to encode an English sentence in a Morse code optimized for the Spanish

language we need to add, on average, 0.37 bits per letter. And notice again how this is not a distance: it is

more optimal to encode Spanish with an English probability model rather than the opposite. English is further

from Spanish than Spanish is further from English. If we need to define a measure we find some failures

with the KD divergence, namely it does not obey the reflexive property and the triangular inequality.

We need to make a step further, thinking about an enormously complex and high dimensional space 8.10,

where models are living. The English and Spanish models are sitting in some places p and q. There is no

way to compare projections in the tangent space i.e there is no way to compare different models with an

euclidean metric because the space it’s not euclidean at all! The thing we want to do is to measure the real

distance between the blue and red (dotted line). Space can be curve in high dimension and we need to form a

more general mathematical structure than a Euclidean vector space, by allowing the inner product to be a

function of the coordinates. Calling as ds the differential distance between objects in the space:

(ds)2 = dxxxT g(xxx)dxxx

90 Chapter 8. Model Comparison

Figure 8.10: The probability models’s space. The red empty circle is like where is the Spanish projected into

the English space?

where g(xxx) is a spatially varying metric tensor. In our case we are in the space of probability distributions

and, calling with ωωω the parameters of the distributions we find out that the infinitesimal arc length is

(ds)2 = dωωωT g(ωωω)dωωω

For example, we could be in the space of Gaussians defined by µ and σ2, so ωωω = (µ,σ2). Conjugate priors

are convenient, and this is exactly the space in which we are moving around when we update the parameters

after inference. Before going technical, to sum up, we can say that the key point is that information-theoretic

measures induce a geometry on the space of probability models (the Statistical Manifold).

We start with the KL:

DKL(p′||p) =
∫

dxxxp(xxx|ωωω) log
p(xxx|ωωω ′)
p(xxx|ωωω)

where the prime is put simply to indicate that is a different set of parameters, and expand p(xxx|ωωω) around ωωω .

We have the curve, we are in a point of the curve ωωω and we want to find which is the tangent plane passing

through the point by infinitesimally changing the parameters. We obtain:

DKL

(
p(xxx|ωωω ′)||p(xxx|ωωω)

)
=

1

2
(ωωω ′−ωωω)T G(ωωω)(ωωω ′−ωωω)+O(|ωωω ′−ωωω|3)

where G(ωωω) is the Fisher information matrix

Gαβ (ωωω) =
∫

dxxxp(xxx|ωωω)
∂ ln p(xxx|ωωω)

∂ωα
· ∂ ln p(xxx|ωωω)

∂ωβ
=−

∫

dxxx p(xxx|ωωω)
∂ 2 ln p(xxx|ωωω)

∂ωα ∂ωβ
(8.9)

This is the metric tensor for probability models.

8.3.1 Using Fisher information: the Fisher scoring algorithm

The Fisher information matrix has many uses in complexity views of probabilistic modelling. It quantifies

the “resolving” power of a measurement to determine the parameters of statistical model, as we describe in

this section. Given the data xxx ∈ R
d and the model p(xxx|ωωω), we can define

UUU(ωωω|xxx) = ∇ω ln p(xxx|ωωω) Fisher score

G(ωωω) =
〈
UUUUUUT

〉

x
=
∫

dxxx p(xxx|ωωω)UUU(ωωω|xxx)UUUT (ωωω|xxx) Expected Fisher information

Gemp(ωωω) =
〈
UUUUUUT

〉

emp
=
∫

dxxx pemp(xxx)UUU(ωωω|xxx)UUUT (ωωω|xxx)

⋆
=

1

N

N

∑
i=1

UUU(ωωω|xxxi)UUUT (ωωω|xxxi) Observed Fisher information

where in (⋆) we substituted the empirical measure

pemp(xxx) =
1

N

N

∑
i=1

δ (xxx−xxxi)

8.4 Information Geometry 91

Suppose that we want to perform a Maximum Likelihood Estimation (MLE) of our parameters. The target

function that we want to maximize with respect to ωωω is the (rescaled) log-likelihood

L(ωωω)≡ 1

N

N

∑
i=1

ln p(xxxi|ωωω) = 〈ln p(xxx|ωωω)〉emp (8.10)

To this end, let us consider the second order Taylor expansion of the latter around ωωω

L(ωωω +δωωω)≈ L(ωωω)+∇L(ωωω)δωωω +
1

2
δωωωT ∇∇L(ωωω)δωωω. (8.11)

To maximize this quantity, we shall take the gradient with respect to δωωω and compute it at the optimal point

δωωωopt . Since at the stationary point we have ∇L(ωωω +δωωωopt) = 0, we’re left with

000 = ∇L(ωωω)+∇∇L(ωωω)δωωωopt (8.12)

Once we set δωωωopt = ωωω t+1−ωωω t , we can think to maximize the target function by iteratively update our

parameters as

ωωω t+1 =ωωω t −
[
∇∇L(ωωω t)

]−1
∇L(ωωω t) (8.13)

which is called Newton’s algorithm. In our specific case, the Hessian in the previous formula is nothing but

the observed Fisher information matrix. If we also introduce a tunable learning rate η , we get the so called

Fisher’s scoring algorithm

ωωω t+1 =ωωω t +η
[
Gemp(ωωω

t)
]−1 〈∇ω ln p(xxx|ωωω)〉emp (8.14)

Substituting the expected Fisher information for the observed can help stabilize the update for high-

dimensional problems since the data may not provide enough regularization to accurately estimate the

matrix.

8.4 Information Geometry

Lesson 14

17/05

AZ

In the previous sections we pointed out the fact that the space of probability models is not a vector space, but

a non-trivial manifold in which we can define a metric tensor g(ωωω) that allows to compute the infinitesimal

arc length

(ds)2 = dωωωT g(ωωω)dωωω (8.15)

Roughly speaking, the length of a path connecting two models in the manifold is given by the integral

over the path of the metric tensor; the distance is defined as the minimum of those possible length, and the

corresponding path is called geodesic.

The statistical manifold is made of all models belonging to a specific family of distributions (for example

the family of 1d Gaussian PDFs N (µ,σ)), and hence moving from A→ B in the statistical manifold means

that we are moving in the parameters space of such distributions (for the Gaussian, it is the plane (µ,σ)).
But again, this is not an Euclidean space: the geodesic connecting two points is not like a straight line.

But why the statistical manifold is not an euclidean space? The easiest answer is that in such space there

are paths that are unfeasible. For example, think about the travel between Hawaii and South-Africa: from an

Euclidean point of view the geodetic is just the line connecting such points, but this would imply to travel

through the core of the Earth. So, if we require to stay in space of “realizable travels”, the price to pay is to

adopt a more complicated math. Here is indeed where Information Theory and General Relativity touch

each-other.

8.4.1 Riemannian Manifold

Let start first with some definitions in order to set up the theoretical framework.

Definition 8.1 A Manifold is a topological space that is locally Euclidean (i.e., around every point, there

is a neighborhood that is topologically the same as the open unit ball in R
n).

92 Chapter 8. Model Comparison

Definition 8.2 Let M be a smooth manifold. A Riemannian metric g on M is a smooth family of inner

products on the tangent spaces of M. Namely, g associates to each p ∈M a positive definite symmetric

bilinear form on TpM, i.e

gp : TpM×TpM→ R

Definition 8.3 A Riemannian Manifold is a pair (M,g) where M is a differentiable manifold and g is a

Riemannian metric on M.

How can we find the geodesics on a Riemannian Manifold? The idea is to consider all the paths

connecting two points A and B as trajectories followed by a dynamical process. Suppose to have n parameters

characterizing the model, and a submersion describing the manifold X̃ : R
n 7→M. For a given time interval

[sA,sB], we can associate the curve described by the parameters in the Euclidean space

qqq : [sA,sB] 7−→ R
n

Once we map these curves on the manifold, we can define the functional length as

l̃[q̃qq]≡
∫ sB

sA

∥
∥q̃qq′(s)

∥
∥ds, q̃qq = X̃ ◦qqq

and since
∥
∥q̃qq′(s)

∥
∥2

=
[
X̃ ′(qqq(s))qqq′(s)

]T
X̃ ′(qqq(s))qqq′(s) = qqq′(s)T g(qqq(s)) qqq′(s), g(qqq)≡ X̃ ′(q)T X̃ ′(q) ∈Mn×n

we can equivalently write

l̃[q̃qq] = l[qqq]≡
∫ sB

sA

√

qqq′(s)T g(qqq(s)) qqq′(s) ds

and the geodesic is the curve qqq(s) that maximizes this functional. It turns out that this problem is equivalent

to minimize the Energy functional

E[qqq]≡ 1

2

∫ sB

sA

qqq′(s)T g(qqq(s)) qqq′(s) ds =
∫ sB

sA

L
(
qqq(s),qqq′(s)

)
ds

where we recognized a purely kinetic Lagrangian in which the metric tensor plays the role of “the inverse of

a mass” 1/m. There’s no need of a potential term that constrains the trajectories on the manifold: all the

information about the geometry of the manifold is already encapsulated in the metric tensor.

Figure 8.11: Representation of the mapping between the time, the Euclidean space of parameters and the

statistical manifold

Again, all this construction is made possible by of conjugate priors, which allow to keep the trajectory on

the same statistical manifold. The data we collect acts like a force that pushes the dynamics from one point

to another on the manifold, and the length of the path in the model space is therefore the information content

that we’ve learnt during the measurement, i.e. the length of the geodesic.

The stationarity condition for the energy functional, δE = 0, is satisfied for those trajectories that satisfy

the Euler-Lagrange equations

δL

δqk
=

∂L

∂qk
− d

ds

∂L

∂ q̇k
= 0 where

d

ds
=

∂

∂ s
+ q̇l ∂

∂ql
+ q̈l ∂

∂ q̇l

8.4 Information Geometry 93

In the end one finds a set of ODEs that, if solved, gives all possible geodesics

q̈k + q̇iΓk
i jq̇

j = 0 (8.16)

where Γk
i j is the Christoffel symbol

Γk
i j =

1

2
gkm
(
∂igm j +∂ jgim−∂mgi j

)

8.4.2 Example: 1-D Gaussian PDF

In order to picture the abstract theory discussed above, let’s start with the paradigmatic example of the

Gaussian PDF. In this case the set of parameters is ωωω = (µ,σ)

p(x|ωωω) =
1√

2πσ2
exp

{

− (x−µ)2

2σ2

}

By changing these two parameters obviously we expect Gaussians with different shapes and positions. The

metric tensor is given by the Fisher information

gi j(ωωω) =−
∫

dxxxp(xxx|ωωω)
∂ 2 ln p(xxx|ωωω)

∂ωi∂ω j

=
1

σ2

(
1 0

0 2

)

where the indices i, j span through all possible Gaussians: ωωω i = (µi,σi) ∈ R×R
+. A nice representation of

what is going on is presented in Fig. 8.12. The upper plot is the usual data space, while the other one shows

Figure 8.12: Data space topology vs model space topology.

the hyperbolic geometry of the Poincaré upper-half plane H 2 of the models space. The red lines connecting

the three points correspond to geodesics between the different PDFs.

Using Eq. 8.15 we can write

(ds)2 =
1

σ2
(dµ2 +2dσ2)

Notice the key point here: σ is at the denominator of the infinitesimal arc length, meaning that we can have

a longer distance if we move in a vertical line from top to bottom, and indeed when σ → 0 then ds→ ∞.

The interpretation is pretty nice because when σ → 0, p(x|µ,σ)→ δ (µ) and indeed distance between delta

functions is infinite.

Finally, the analytic form of the real distance in the model space of 1-D Gaussians is obtained solving

Eq. (8.16), and it is

r(ωi,ω j) =
√

2cosh−1

(

1+
(µi−µ j)

2 +2(σi−σ j)
2

4σiσ j

)

.

94 Chapter 8. Model Comparison

Remember that in Eq. (8.9) we used the natural logarithm, so the unit measure of such distance r(ωi,ω j) is

nats; if instead we used the base-2 logarithm it would have been measured in bits. Some numerical results

are shown in Fig. 8.13.

Proposition 8.1 If δ =
∣
∣µi−µ j

∣
∣≪ σ = ε then

r ≈ δ

ε

i.e. the distance between "local" high precision data is Euclidean.

Proof.

r(ωi,ω j) = r

(

(µi,σi = ε),(µ j = µi +δ ,σ j = ε)

)

=
√

2cosh−1

(

1+
δ 2

4ε2

)

=
√

2ln

[

1+
δ 2

4ε2
+

√
(

1+
δ 2

4ε2

)2

−1

]

=
√

2ln

[

1+
δ 2

4ε2
+

δ√
2ε

√

1+
δ 2

8ε2

]

≈ δ

ε

�

The big deal of this approach is that a distributed object, like a PDF, becomes a point in the right space,

which in our case is the model space. Since there are many more techniques and tools to handle points

compared to PDFs, this idea paves the way to a lot of possible applications. The price to pay is that the space

of such points is not Euclidean anymore; indeed, as shown in Fig. 8.13, AB̂C forms a really weird isosceles

triangle in a negative curvature space. Recall that the sum of the angles of a triangle is:

• α +β + γ ≤ π if the space has negative curvature;

• α +β + γ = π if the space has null curvature (Euclidean case);

• α +β + γ ≥ π if the space has positive curvature.

Figure 8.13: Space comparison between 1-D gaussian.

Moreover this real distance r is invariant under change of coordinates, i.e. the geodesics’ shape changes if

we redefine the parameters used to describe our PDF, but it’s length doesn’t. In figure 8.14 are shown the

most used parametrizations for a Gaussian.

Obviously all things said up to now can be easily generalized with multidimensional PDF, just everything

becomes more cumbersome. For example, if we want to study 2-D Gaussians, by the fact that it’s described

by 5 parameters ωωω = (µx,µy,σx,σxy,σy), we need a 5-dim statistical manifold. So if we follow a 5-D

geodesic in model space and we project it in a 2-D data space, we end up with figures like the one on the left

of figure 8.15. In the case of 3-D Gaussian PDFs instead we get figures like the one on the right.

8.4 Information Geometry 95

Figure 8.14: Geodesic’s shape for different parametrizations.

Figure 8.15: Level curves for 2-D and 3-D Gaussians.

8.4.3 Connection with Inference

Now that we’ve seen all the technicalities behind information geometry, we shall concentrate on the meaning

of that in terms of inference. Up to now we’ve seen what it’s called parametric inference approach, i.e. we

select a parametric probability distribution p(xxx|ωωω), the likelihood, and, given the data, all what we have to

do is to find ωωωest . This is much easier compared to the non-parametric approach, where we don’t even make

any assumption on the PDF underneath the data, but it’s quite limited. Sometimes an approach that lays in

the middle of the two is desirable.

For example, think about what happens if we have a non-Gaussian, multi-modal PDF. A good idea in

this case can be to approximate the PDF by means of a mixture of Gaussians p(xxx|ωωω), hence following an

hybrid approach based on information geometry called statistical manifold density estimation. Here we

can estimate p(xxx) (the real probability density of the data present in the world) with a q(xxx) that comes from

our model defined as

q(xxx) =
∫

dωωω p(xxx|ωωω)π̂(ω). (8.17)

Here π̂(ωωω) is a PDF on the statistical manifold that is expected to be an estimate of the true π(ωωω) out

there in the world. We proceed in such a way with the hope that the estimate of π̂(ωωω) in the manifold is an

easier task compared to the direct estimation of p(xxx).

Figure 8.16: Different approaches to inference

96 Chapter 8. Model Comparison

This method of using a Gaussian basis in order to approximate any arbitrarily complex p(x) with q(x) is

also called Gaussian Mixture Model (GMM). In the discrete case we have

pK(xxx) =
K

∑
k=1

N (xxx|µµµk,ΣΣΣk)πk where N (xxx|µµµk,ΣΣΣk) = |2πΣΣΣk|−
1
2 exp

{

−1

2
(xxx−µk)

TΣΣΣ−1
k (xxx−µk)

}

then, if we take the continuum limit, we obtain the so called cGMM

p(xxx) = lim
K→∞

lim
det{ΣΣΣk}→0

pK(xxx) =
∫

dωωωN (xxx|ωωω)π(ωωω)

where

(µµµk,ΣΣΣk) =ωωω ∈ M = R
d×Sym+(d,R) and dωωω =

√

det |g(ωωω)|
n

∏
i=1

dωi

This means that a finite sample on the cGMM manifold recovers the discrete GMM

π(ωωω) =
K

∑
k=1

πk

δ (ωωω−ωωωk)
√

det |g(ωωωk)|

In a nutshell: In the same way Fourier Transform is the main tool to rewrite any signal f (x) in terms of

periodic functions, cGMM can express any PDF p(x) in terms of Gaussians.

f (xxx) =
∫ ∞

−∞
dkkk u(xxx|kkk)a(kkk) ⇔ p(xxx) =

∫

dωωωN (xxx|ωωω)π(ωωω)

Summing up, we’ve seen that there is a strong and deep connection between probability and geometry

that could be visualize as follows

Figure 8.17: Relationship between probability and geometry.

This interpretation opens the doors on how we could tackle the problem of clustering. In general,

clustering in unsupervised learning is a challenging problem, because although there are different algorithms

on the market, all of them have some weaknesses. Information geometry can really help us in such task, and

the main idea behind is that we don’t want anymore to find the right cluster shapes in our data space (A), but

rather we aim to find a manifold where data are uniform (C) or, and this is indeed the smartest choice, to find

cluster shapes on a manifold (B).

8.5 Exercise solutions

8.5.1 Exercise 28.4 [Mac03]

For the sake of notation, let us map all the possible occurrences for the death penalty d, the victim v and the

defendant m using binary variables: 0 if white and 1 if black.

Then, we can label each entry of the table above as

Figure 8.19 shows the probabilistic graphical models (PGM) for the four hypothesis, whereas figure 8.20

represents a schematic way of thinking to the various problems. Let us consider each case separately.

8.5 Exercise solutions 97

Figure 8.18: Clustering on Manifold.

m
White defendant

0

Black defendant

1

Death penalty Death penalty

d yes

1

no

0

yes

1

no

0

White victim

0
19 132

White victim

0
11 52

v Black victim

1
0 9

Black victim

1
6 97

Figure 8.19: Probabilistic graphical models (PGM) for the four hypothesis

H00

In the simplest hypothesis the probability for the defendant to be sentenced to death is not affected by any

racial prejudice. In this case, the model will have just one parameter, b, which represents the probability of

death. The problem it therefore perfectly equivalent to the tossing of a coin having a bias b, as we represented

in figure 8.20, a). The data for this model is made of the number of people sentenced to death and the total

number of people

n1 =
1

∑
v=0

1

∑
m=0

n1vm = 19+0+11+6 = 36

N =
1

∑
d=0

1

∑
v=0

1

∑
m=0

ndvm = 326

98 Chapter 8. Model Comparison

Figure 8.20: Schematic representation of the different problems. The meaning of the labels in the nodes is:

m = defendant, v = victim, w = white, b = black, d = dead, a = alive

The posterior distribution for the bias is

p(b|n1,N;H00) =
p(n1|b,N;H00)p(b|H00)

p(n1|H00)
,

where the likelihood is a binomial distribution and for the prior we can choose a Beta distribution with

parameters α and β . From the coin tossing problem we know that the evidence takes the analytical form

p(n1|H00) =

(
N

n1

)
B(α +n1,β +N−n1)

B(α,β)

H01

In this second model we assume that the death penalty’s occurrence depends whether the defendant, m, is

black or white. Now things start to become a little bit tricky, and we have identify what is the question of

the problem. The PGM of figure 8.19 reads: for each trial, what is the probability of death given that the

defendant is black/white? A key observation is that the probability for a black person to be sentenced to

death is independent of the probability that a white person is sentenced to death: even if there was a bias, the

two processes are still independent from each other. This time it’s like having two coins, the first with bias

bm
0 and the second with bias bm

1 , and seeing how many heads and tails we get by tossing the former nm
0 times

(the number of white defendant) and the latter nm
1 (the number of black defendant), as we depicted in figure

8.20, b). The model is therefore described by two parameters, namely the two biases.

The data for this problem are:

nm
0 =

1

∑
d=0

1

∑
v=0

ndv0 = 19+132+0+9 = 160 White defendant

nm
1 =

1

∑
d=0

1

∑
v=0

ndv1 = 11+52+6+97 = 166 Black defendant

nm
10 =

1

∑
v=0

n1v0 = 19+0 = 19 Sentenced to death, white defendant

nm
11 =

1

∑
v=0

n1v1 = 11+6 = 17 Sentenced to death, black defendant

The likelihood for the problem is

p(nm
10,n

m
11|nm

0 ,n
m
1 ,b

m
0 ,b

m
1 ;H01) =

1

∏
j=0

p(nm
1 j|nm

j ,b
m
j) = Binom(nm

10|nm
0 ,b

m
0)×Binom(nm

11|nm
1 ,b

m
1)

and if we choose the same Beta conjugate prior with parameters α and β for both the parameters, we end up

with an evidence

p(nm
10,n

m
11,n

m
0 ,n

m
1 |H01) =

(
nm

0

nm
10

)

B(α +nm
10,β +nm

0 −nm
10)

B(α,β)
×
(

nm
1

nm
11

)

B(α +nm
11,β +nm

1 −nm
11)

B(α,β)

8.5 Exercise solutions 99

H01

The very same argument of the previous case holds, but this time the probabilistic dependence is between the

sentence of death and the skin’s color of the victim (see figure 8.20, c)). The data for the model are:

nv
0 =

1

∑
d=0

1

∑
m=0

nd0m = 19+132+11+52 = 214 White victim

nv
1 =

1

∑
d=0

1

∑
m=0

nd1m = 0+9+6+97 = 112 Black victim

nv
10 =

1

∑
m=0

n10m = 19+11 = 30 Sentenced to death, white victim

nv
11 =

1

∑
m=0

n11m = 0+6 = 6 Sentenced to death, black victim

and we can jump directly to the evidence of the model:

p(nv
10,n

v
11,n

v
0,n

v
1|H10) =

(
nv

0

nv
10

)

B(α +nv
10,β +nv

0−nv
10)

B(α,β)
×
(

nv
1

nv
11

)

B(α +nv
11,β +nv

1−nv
11)

B(α,β)

H11

Although the last case is the most complicated one, the resolution at this point is quite straightforward. From

the PGM of figure 8.19, the death sentence is influenced by the skin’s color of both victim and defendant, but

these two occurrences are independent from each other. Hence, we have take into account both graphs a) and

b) of figure 8.20, and factorize the various probabilities. Eventually we get the evidence

p(nm
10,n

v
10,n

m
11,n

v
11,n

m
0 ,n

v
0,n

m
1 ,n

v
1|H11) =

(
nm

0

nm
10

)

B(α +nm
10,β +nm

0 −nm
10)

B(α,β)
×
(

nm
1

nm
11

)

B(α +nm
11,β +nm

1 −nm
11)

B(α,β)

×
(

nv
0

nv
10

)

B(α +nv
10,β +nv

0−nv
10)

B(α,β)
×
(

nv
1

nv
11

)

B(α +nv
11,β +nv

1−nv
11)

B(α,β)

Results

At this point we can evaluate the various evidences and see which is the best. We do it by considering both a

uniform prior for the parameters α = β = 1 and a Jeffrey’s prior α = β = 1/2. Table 8.1 shows the results

of the exercise.

Evidence

Prior H00 H01 H10 H11

Uniform 97.5 % 1.2 % 1.3 % ≈ 0 %

Jeffrey 97.15 % 1.20 % 1.65 % ≈ 0 %

Table 8.1: Evidence computed for each model

S From the coding-computational point of view it’s convenient to use the identity p = elog p when we
calculate probabilities. For example, evaluating the binomial factor when n≫ 1 is an heavy task,
and using logarithms can really improve the accuracy of our results. So the best way to calculate the
binomial factor is

(
n

k

)

=
n!

(n− k)!k!
= exp

[
ln(n!)− ln(n− k)!− ln(k!)

]

= exp
[
ln(Γ(n+1))− ln(Γ(n− k+1))− ln(Γ(k+1))

]

9. Communications channel

Lesson 15

21/05

FC

GC

In the following section we’re going to depict a parallelism between information theory and data analysis.

Information theory is pretty much about the study of communications channel, where data coming from

a source get compressed, encoded, sent through a channel and then, once arriving at destination, they are

decoded and decompressed to give the final output (see figure 9.1). The concern of information theory is to

retrieve from the output as much information as possible about the input.

We will show that data analysis can be seen, in a way, as a communication channel that tries to reproduce

the data coming from the world by encoding only the important features in a generative model. However,

while in information theory the input data can be whatever, in data analysis it matters a lot what kind of

information we decide to retain in the compression phase of the communication channel. Here is where the

concept of relevance comes in play.

To get started, let us justify this parallelism using an exercise taken from [Mac03].

Exercise — The data-processing theorem

The data processing theorem states that data processing can only destroy information. Prove this theorem

by considering an ensemble (W,D,R) in which w is the state of the world, d is data gathered, and r is

the processed data, so that these three variables form a Markov chain

w→ d→ r

that is, the probability P(w,d,r) can be written as

P(w,d,r) = P(r|d)P(d|w)P(w). (9.1)

Show that the average information that R conveys about W , I(W,R), is less than or equal to the average

information that D conveys about W , I(D,W). This theorem is as much a caution about our definition of

information as it is a caution about data processing!

Solution:

For any joint ensemble (X ,Y,Z) the following chain rule for mutual information holds.

I(X ;Z)+ I(X ;Y |Z) = I(X ;Y,Z) = I(X ;Y)+ I(X ;Z|Y)

In this case w and r are independent given d so I(W ;R|D) = 0; the previous equation becomes

I(W ;R)+ I(W ;D|R) = I(W ;D,R) = I(W ;D)+ I(W ;R|D)

102 Chapter 9. Communications channel

so finally we have

I(W ;R)− I(W ;D) =−I(W ;D|R)≤ 0

�

This theorem shows that, within the thinking of information theory, we unavoidably destroy information

when we process data. But how does this relates to the fact that when we analyze data we feel like gaining

information? This is what the last sentence of the exercise is about: when we process data we are sifting

it with respect to some choice we’ve made about what is relevant in the data, and we get rid of all the

other information we’re not interested in. Information theory is a way of thinking about how to represent

probabilities, not a tool that magically pulls out what we need to know about the data.

9.1 Communications channels and information transmission

Communications channels are the way in which we can transmit information.

In order to describe a channel we can define some common elements. We start with a source, where the

information is created, which sends data in a random way. This randomness can look weird, because when we

Figure 9.1: Communications channel

communicate with someone we don’t have the impression that

the other person says letters at random. This notwithstanding,

each letter of the alphabet has its own probability to be present

in a word and in a sentence, so in a sense we’re allowed to put

a probability distribution P(s) over the source. The data then

goes through a compressor that eliminates redundancies, and

an encoder that produces the channel input. The two concepts

are separate: the compressor produces an output based on the

structure of the source (for example it uses the information

about the frequency of the letters in the alphabet), while the

encoder wonders how the noise of the channel can be, and

encodes the data in such a way that the receiver will be able to

figure out all the content that was coming through the channel.

We can therefore see how the compressor-decompressor part

of the communication channel is concerned about the structure of the source, whereas the encoder-decoder

part has to do with the structure of the noise acting on the channel.

When we say structure, we always have in mind a probability distribution. So, in a communications

channel we have one probability distribution of the source, P(s), one for the noise, P(n), and one for the

receiver, P(y), and whole goal of communication is to infer P(s) by observing P(y). This interpretation

allows to use all the tools of Bayesian inference introduced before, and in particular to design in the optimal

way the structure of our communications channel.

Definition 9.1 — The optimal decoder. The optimal decoder for a channel code is the one that mini-

mizes the probability of a block error. It decodes an output y as the input s that has maximum posterior

probability.

P(s|y) = P(y|s)P(s)
∑s′ P(y|s′)P(s′)

9.1.1 Communication models

Communications channels can be described using models that allow to calculate how each information piece

is transmitted, by associating to each element a probability to correctly transmit the data or to corrupt it

during the process. By calling x the input and y the output is possible to define some channel examples.

� Example 9.1 — Binary symmetric channels. Binary symmetric channels describe communication

processes in which data can assume only the values 0 and 1. In an ideal, noiseless channel, every time the

source sends 0 then the receiver gets 0, and the same with 1. If noise comes into play, however, it happens

with probability f that the bit gets flipped, and therefore there are four conditional probabilities between x

and y

• p(y = 0|x = 0) = 1− f

• p(y = 1|x = 0) = f

9.2 Binary classifiers as Binary Asymmetric Channels 103

• p(y = 0|x = 1) = f

• p(y = 1|x = 1) = 1− f

In particular, the probability to corrupt the message is identical for each starting input value. �

Using Bayesian tools it is also possible to estimate how much information the output conveys about the

input through the mutual information

I(X ;Y) = H(Y)−H(Y |X) = H(X)−H(X |Y) where H(Y |X) = H(f ,1− f)

if we have a binary channel then H(f ,1− f) = H2(f), which is called binary entropy. The amount of

information shared between the two distributions allows to evaluate how noisy is the channel.

� Example 9.2 — Z channel. The main difference between the binary symmetric channel and a Z channel

is that the message "0" is always correctly transmitted, while "1" can be corrupted.

• p(y = 0|x = 0) = 1

• p(y = 1|x = 0) = 0

• p(y = 0|x = 1) = f

• p(y = 1|x = 1) = 1− f

�

9.2 Binary classifiers as Binary Asymmetric Channels

We can think binary classifiers, such as Support Vector Machines, Random Forests or Boosting as communi-

cations channels between the data and the labels that are assigned to them.

Figure 9.2: Binary classifier seen as a binary asymmetric channel

If X is the source and Y is the receiver, we can write the communications model as

P(X) =

(
f

1− f

)

, P(Y) =

(
(1− ε1) f + ε0(1− f)
ε1 f +(1− ε0)(1− f)

)

P(Y |X) =

(
1− ε1 ε0

ε1 1− ε0

)

, P(X |Y) = P(Y |X)P(X)

P(Y)
=





(1−ε1) f

(1−ε1) f+ε0(1− f)
ε1 f

ε1 f+(1−ε0)(1− f)

ε0(1− f)
(1−ε1) f+ε0(1− f)

(1−ε0)(1− f)
ε1 f+(1−ε0)(1− f)





All we have to do in order to compute the posterior probability is to find some estimators for {ε0,ε1, f}. In

the training phase of our ML model we have at disposal the true label for the input data, so we can compare

them with the predictions of our model and compute the number of true positives TP, of true negative TN,

and the number of false positives FP and false negatives FN. Using these quantities we can define the binary

confusion matrix as

Cbin =

(
T P FP

FN T N

)

(9.2)

Using the entries of this matrix we can compute







N+ = T P+FN

N− = FP+T N

N = N++N−

104 Chapter 9. Communications channel

and infer the probabilities involved in the model as

P̂(X) =

(
N+
N

N−
N

)

, P̂(Y) =

(
T P+FP

N

FN+T N
N

)

, P̂(Y |X) =

(
T P
N+

FP
N−

FN
N+

T N
N−

)

Finally, some plausible estimators for the parameters are






ε̂0 =
FP
N−

= FPR

ε̂1 =
FN
N+

= FNR

f̂ = N+
N

Figure 9.3: The Relative Operative Characteristic (ROC) curve for three different type of binary classifiers

From the definition of C many different accuracy metrics for binary classifiers have been defined such

as the sensitivity or true positive rate (TPR): T PR = T P
N+

= T P
T P+FN

= 1−FNR or the specificity (TNR):

T NR = T N
N−

= T N
T N+FP

= 1−FPR. Some of them can also be quite deceiving, such as accuracy ACC= T P+T N
N

since it does not take into account any eventual inter-class imbalance, that could lead to excellent accuracy if

the dominant class is classified correctly also if the other one is completely mistaken. Given this arbitrariness

on the choice of the metrics, it is way better to talk directly about the confusion matrix instead.

9.2.1 Evaluating Binary Classifiers

In the previous paragraph we saw how to write the posterior distribution of the input of a binary classifier

given the output, provided some estimate of the biases obtained from the confusion matrix. Now we want to

make precise statements about how to estimate ε̂0 and ε̂1 by means of Bayesian inference.

From a probabilistic point of view, an asymmetric binary classifier can be seen as a sequence of two

tosses made with three coins {X ,Y+,Y−}. We toss the first coin X , having a bias f , and we look at the result.

If we get head, then we flip the coin Y+, which has a bias ε0. If instead we get a tail, then we flip the coin Y−,

that has a bias ε1.

Figure 9.4: Coin tossing sequence as a binary classifier

The data we have are the entries of the confusion matrix. The Likelihood of the problem is the product

of two binomial distributions

p(FP,FN|ε0,ε1,N+,N) =

(
N−N+

FP

)

εFP
0 (1− ε0)

N−N+−FP×
(

N+

FN

)

εFN
1 (1− ε1)

N+−FN Likelihood

9.3 Relevance 105

while, assuming ε0 and ε1 to be independent, we can choose for the parameters a beta prior

p(ε0,ε1|α,β ,δ ,γ) = Beta(ε0|α,β)×Beta(ε1|δ ,γ) =
εα−1

0 (1− ε0)
β−1

B(α,β)
× εδ−1

1 (1− ε1)
γ−1

B(δ ,γ)
Prior

The posterior distribution can be easily determined by updating the parameters of the beta prior with the

observations we made:

p(ε0,ε1|FP,FN,N+,N) = Beta(ε0|α +FP,β +N−N+−FP)×Beta(ε1|δ +FN,γ +N+−FN)

=
εα−1+FP

0 (1− ε0)
β−1+N−N+−FP

B(α +FP,β +N−N+−FP)
× εδ−1+FN

1 (1− ε1)
γ−1+N+−FN

B(δ +FN,γ +N+−FN)
Posterior

The maximum of the posterior gives the following MAP estimators

ε̂0 =
FP+α−1

N−N++α +β −2

ε̂1 =
FP+δ −1

N++δ + γ−2

and notice that in the case of a uniform prior (α = β = δ = γ = 1) we would get the MLE estimators we

wrote above.

9.3 Relevance

As we mentioned above, the reliability of a communication channel can be quantified as the mutual

information between the input X and the output Y , I(X ,Y). This quantity though, is also related to the

probability distribution of the input, PX , so if we want to characterize our communications channel we should

get rid of this dependence. This requirement leads straightforwardly to the concept of capacity.

Definition 9.2 — The capacity of a channel. The capacity of a communication channel Q is:

C(Q) = max
PX

I(X ,Y)

In a way, this is like if we engineer the input probability distribution in such a way to convey as much

information as possible by keeping the channel configuration fixed. The distributions (there can be more than

one) PX that achieve the maximum C(Q) are called optimal input distributions P∗
X . These distributions P∗

X

for the source make X and Y to be the most interdependent as possible, and lead the encoding to compensate

the noise of the channel at its best. In figure 9.5 we plot the probability of bit error pb versus the rate of

information conveyed by code R.

Figure 9.5: Portion of the R, pb plane to be proved achievable (1, 2) and not achievable (3).

We can see that the capacity of the channel C is a sort of threshold for the rate R. For R < C we can

have a perfect reconstruction of the source (1), meaning that we can always find a P∗
X that allows a perfect

communication. The region (3) is the opposite, meaning that there is no possibility to reconstruct the signal,

while (2) is something in between, namely we have limited possibilities to reconstruct the source.

106 Chapter 9. Communications channel

Exercise What is the capacity of the binary symmetric channel for general f ?

Solution:

By symmetry, the optimal input distribution is {p0 = 0.5; p1 = 0.5}; then the capacity C is

C = I(X ;Y) = H(Y)−H(Y |X) = H2(0.5)−H2(f) = 1−H2(f)

Without invoking symmetry, we can do this by computing the mutual information in the general case

where the input ensemble is {p0; p1}:

C = I(X ;Y) = H(Y)−H(Y |X) = H2

(
p0 f + p1(1− f)

)
−H2(f)

that is indeed maximized for p0 = p1 = 0.5. �

9.3.1 Relevance in information theory and data analysis

We have already described an existing parallelism between communications channel and the data analysis

procedure. Data comes from the world, the source, and get compressed to retain only the relevant features.

These information are then encoded in a model (e.g. the parameters of a Gaussian) capable to generate

samples that are expected to resemble the data we collected. In this sense, there’s a deep analogy between

data analysis and pure information theory, as intended by information engineers. What is different in these

two pictures is the relevance, i.e. what is deemed to be important to retain in the compression part.

For engineers that design a communications channel, what is relevant is reconstruction, namely the

capability to recover the information being sent from the source to the receiver. This is a very neutral view:

it doesn’t matter what kind of data we have in input, the communications channel must be able to give an

output that resembles as much as possible the original input. In the context of data analysis it is different.

Definition 9.3 — Relevance. Relevance is about detecting differences in observations y in the Data

space, D , as required by a particular task.

This can be seen as the level of consistency between the data content and a specific task requirements. Then,

relevance is not necessarily a property of the data itself, it is related to whether data was deemed to be

valuable to be acquired as it was compatible with the user’s interest. For example, we may not be interested

in reconstructing exactly the input but, e.g. considering a classification task, what matters is just being able

to assign a label from a certain set: this allows a massive compression of the original data set.

Therefore, the same data set may be useful for different tasks by merely changing the relevance set L ,

and the mapping L : D 7→L . Then relevance it is strictly bound to the distance metrics d(y,y′) in the data

space, that depends on the level of compression we are performing on data.

In a nutshell: Again, never confuse the real world with our representation. The world is just out there,

our representation instead is a map from the world respect to what we care about. This means that

representations are made with a purpose, based on what we think it’s relevant. For example, if we want

to study countries inside the EU, we should use a political map, while if we are hiking we should use a

topography map. The world is the same but its representation has changed.

� Example 9.3 — Models and relevance: Electromagnetism. The model and the relevance will depend

on the task we want to undertake: for designing an antenna an engineer doesn’t need to know QED! Maybe

even the Maxwell equations will be too fundamental for this particular task, and it would be better to

start from a good electrical engineering book. He will be using QED in an ontological way, but not in an

epistemological one, because he doesn’t need to know it. �

� Example 9.4 — Choosing the relevance of triangles. Consider a problem in which, given a two

dimensional input image, we want to spot all the triangles and classify them as equilateral, isosceles, right or

scalene. The setup is the following:

• Computer vision part: given the image y we have to build a vertex detector f−1 that maps the data

space D into the model space M . Since each triangle has three vertex, to identify it 6 numbers are

needed. This means that we have a 6-D model space: dim(M) = 6;

• Classification part: starting from a point in the model space, xxx ∈M = R
6, we want to assign it a

label. Our relevance set L , that is what we want to infer from data, is whether a triangle is equilateral,

9.3 Relevance 107

isosceles, right or scalene, for a total of 4 labels: |L |= 4.

For this kind of relevance set we do not actually care about rotations, position in the plane and scale:

we need less information than knowing the 6 vertices coordinates. All that matters for this task is just two

degrees of freedom: given the relation α +β + γ = π , knowing two angles is all we need to undertake the

desired classification task! The symmetries of the problem (rotational, translational and scale invariance)

allow to shrink the 6-D model space into a 2-D model relevance space: dim(Mr) = 2. This corresponds to

consider a sub-manifold of angles (α , β), Mr, in the space of models M . The complementary sub-spaces

form the 4-D invariance group: the Lie group, sim(2), comprehending the translational, rotational and scale

invariant degrees of freedom. �

Figure 9.6: Left) Mapping from data space, model space, model relevance space and relevance space.

Right) Sub-manifold Mr of the model space M .

The scheme above (left) is called commutative diagram. We could obviously write L : D →L as

L◦ f = L̃◦π ⇒ L = L̃◦π ◦ f−1

but in real world things don’t commute, meaning that f is not bijective. So we have to open up the

commutative diagram introducing a function, ∆, that keeps track of the differences between data and the data

given by the compressed model (we are doing data analysis, not functional analysis!).

Figure 9.7: Real world non-commutative diagram.

9.3.2 Information bottleneck

We can read figure 9.8 under the light of the triangles’ example. Starting from the data space Y , which now

can be thought as been made of sets of 6 coordinates vertices, we compress it in a generative model, S, that

encompasses all the relevant features we care, namely the two angles. From this representation it’s easy to

put a label on each triangle representing whether it is equilateral, isosceles, right or scalene.

In doing this we had to get rid of many redundant information which had no meaning for our task: we

are far from the idea of integral reconstruction of the original data. To formally express this idea we can

modify the optimization problem we saw for the communications channel in the following way

p∗(s|y) = argmax
p(s|y)

Relevance
︷ ︸︸ ︷

I(S,L) −λ

Compression
︷ ︸︸ ︷

I(Y,S)
︸ ︷︷ ︸

=F [p(s|y)]

(9.3)

108 Chapter 9. Communications channel

Figure 9.8: Relation between data, compressed representation and labels

In practice, we have set up a communication channel between the data we have (Y) and what is relevant for

us (L). This means that this is not the usual communication channel used in engineering, but rather a data

analysis version of it. Thanks to Eq. (9.3) it is possible to find the best compromise between the relevance

contribution I(S,L), which strives to retain as much information as possible, and the compression term,

-I(Y,S), which instead would throw away everything. The λ parameter is a Lagrange multiplier that controls

the trade-off between the two.

9.4 Machine learning

Lesson 16

24/05

AM

LR

What is the connection between physics and machine learning? In physics we put the emphasis on the model:

it has to capture the relevant information of the data and it must be able to make predictions in agreement

with observations.

In ML, instead, there is no model supposed to describe the data we observe: nobody talks about a model

of cats or dogs when doing image classification. The focus is rather on the data and what is relevant in it. To

catch what is important in the data it is useful to exploit some features (usually, vectors encoding important

details). The connections between the two approaches can be established by identifying the model in physics

with the features space in ML.

Figure 9.9: Schematic representation of the different approaches of physics and machine learning

Here we assume everyone who gets to study those topics has already a background knowledge about

what machine learning is, what is the biological inspiration of those techniques and which are the frameworks

is which ML can be applied. This allows us to put more emphasis into the important relations that are

established between this methods and the Bayesian inference introduced in the previous chapters. In

particular, one may say that the unsupervised ML framework is the one corresponding to the "engineering

information theory" communication, for which it is required to perform a reconstruction of the original data

(i.e. cluster together words without previous knowledge of the message: xxx 7→ xxx′) while the supervised ML

framework focuses on relevance (map features xxxs to a smaller, information-compressed space of labels cccs).

9.4.1 Statistics versus machine learning

While looking at the statistical modeling philosophies, two different paradigms arise. The first, which is more

physics-based, is the "orthodox" point of view: the algorithms compose a "white box" (i.e., a computing

9.4 Machine learning 109

structure which can be observed in detail and provides interpretability) which is able to link in a rigorous

manner inputs and outputs. This extremely rational vision relies on critical decision making. On the other

hand, instead of putting the emphasis on how things are done we could focus on how good the result is. This

shifts the sight from the modelling unit to the outcomes and check methods. As a result, in the "machine

learning" paradigm inputs and outputs are linked by a non-investigable black box which aims to highlight

cool explanatory features and organized structures (such as decision trees) to allow the user to gain decision

power on the quality of the results. This moves the attention from the abstract model to the observable

performances, by using a methodological technique rather than the rigorous one of the other approach.

Hence, while trying to connect the concepts of models and ML one may keep in mind that the latter

is data-driven and focuses on prediction, while the former relies on different assumptions and aims to

explanation, i.e. to find the data themselves. Those are both the targets and also the reliability metrics for

those approaches.

Science ML

Model→ Data Data→ Features

However, it is of paramount importance to recall that the arrows above can be simply inverted by the

means of Bayes’ theorem: in fact, the theorem acts as an arrow-swapper in the form p(xxx|yyy) = f (p(xxx|yyy))
which allows to always find an inverse way to move from one space to the other, while exploiting probability.

Hence, the concept of causality itself seems to lose clarity: one may start assuming the data are fixed and

create a theorem or model ad hoc to describe them; on the other hand, if we know there is a particular theory

behind a phenomenon we are more likely to recognize data according to it. This is a cyclic process with no

real starting point nor end point, and the truth of what it describes has to be considered within the suitable

boundaries.

One of the drawbacks of big ML architectures such as deep learning is the lack of interpretability: take

as an example the filters of a convolutional neural network. They can be trained to recognize a particular

label, but looking at their shape it arguably impossible for the human brain to connect the filtered image to

its theoretical interpretation. In general, we must recall that neural networks are not biology-based but only

biology-inspired, and the working of NNs cannot fully reproduce the one of our brains. We could say that

human brains are an evolutionary solution to the statistical constraints of inference from experience.

So our algorithms don’t work as our brain and indeed it’s one of the most difficult concept to drop as soon as

possible in order to develop good AI algorithms, because no one really knows as brain works. In the same

fashion, birds are a solution to an engineering problem with physical constraints; the Wright brothers in

developing the airplane understood the physical problem and then found an appropriate engineering solution

different from birds even if they were inspired by the birds.

Consider the following example: we build a generative model starting from a neural network which is

able to perform the traditional classification between two categories of images (e.g., rabbits and tigers). In

particular, the network learns the existence of a set of mid-level features such as the geometry of an animal,

its texture, the shape of its tooth, etc. With a prior knowledge given by the training over the true labels,

the generative model could be able to produce new fake images, composing the subject in accordance to

some internal probabilities. As a result, we could see in the output pictures of creatures we have never

seen before, yet our brain successfully manages to interpret and classify them. In some way is like the

generative model helps us to "dream" new subjects. This is a level of understatement that overcomes greatly

the simple label distinction.

9.4.2 Labels

When working with supervised learning techniques we must be attentive to the way we set the labels.

In general, we can organize labels in a "generative way" (like the one on the left in figure 9.10) or a

"discriminative way" (on the right).

The former method is eventually more robust than the other, since it better characterizes the classes

which the labels belong to. The discrimination model can be affected by biases determined by different

experience, knowledge and background. As a result, while performing discrimination even human being

could come up with different results.

But where do labels come from? Suitable labels must respect two fundamental characteristics: they must

refer to something which can be detected (either via experimental apparatuses or by means of human senses)

and must be useful to know about the world. Hence, before the actual ML implementation of supervised

learning and usage of those labelled data, there is a whole processing of labelling information which is not

110 Chapter 9. Communications channel

Figure 9.10: Labelling techniques

independent of the context of creation. Moreover, while applying label we are trying to compress in just

one word a whole set of features by trying to preserve the maximum amount of relevance. Since this results

obviously in the waste of much information, labels are just a superficial transfer of intelligence to the ML

algorithm.

What said above results in some great differences while trying to bring a ML framework back to a

human-like behaviour. The most critical points are probably the fact that machine interpretations and abstract

concepts are not commonly 100% compatible, which results in a lack of explanation and explainability.

Moreover, the results of ML can be hard to transfer to the real world. This means that while using those

techniques a certain care is required also in the "connection" between the input/output doors of the machinery

and the real world outside.

Figure 9.11: Scheme of ML from the origin to outcomes

Figure 9.12: The ML point of view of hu-

man labelling

We could eventually paraphrase what said above in terms of

machine learning structures: as figure 9.11 shows, the labels

generation and pre-processing can be attributed to a combi-

nation of reinforcement learning and unsupervised learning.

In fact, the blue box could be modelled by the environment

outside communicating with an agent inside the world which

learns by his own actions in terms of the reward he receives

by the outside after performing them. Hence, the human is

schematizes as a system with two devices: a sensorial, phys-

ical one which acquires data and a mental, computational one,

which processes information. This scheme is reported in figure

9.12: while focusing of the last, "mental" sector of the process,

we notice it can be written as a logical unit with both an input

a back-propagating output. It is quite straightforward to rec-

ognize the similarities with a ML classifier, which takes data

in input as well but returns its answers in the form of labels.

This point of view allows to simplify the model, since the

whole reinforcement learning + supervised learning chain can

be turned into a supervised learning + supervised learning one

by simply understanding that the labelling procedure Y 7→ L

9.4 Machine learning 111

that a machine learning algorithm has to perform is similar to the one X 7→ L performed by our brain. Thus,

the role of ML is closer to understand which is the transformation X 7→ Y that models data, so to have the

same labels (see Fig. 9.13).

Figure 9.13: ML Label Interpretation.

Even though this simplistic schema does not make justice to the complexity of human kind, it is still a

more reliable model than the simple, deterministic "prepared-data-to-label" ML. In fact, the latter does not

take into consideration the whole background of labels generation for training data, which can eventually be

thought as a training session itself on a whole different database w.r.t. the one the new labels have to refer

to, and this can lead to big trouble. Take this limits into account while evaluating the performances of your

network.

9.4.3 The relationship of machine learning to Bayesian inference

Figure 9.14:

We are now making a comparison between the supervised learning framework in Machine Learning and

Bayesian Inference.

Now consider a classification problem: referring to Fig 9.14 , we have a label space L and a feature space

F , that may or may not coincide with data space D , depending on which information in relevant for the task

we are undertaking. Focusing on the ML training phase, each true label l ∈L is represented by a vector

y ∈F , which is a element of the training set. The training phase aims to assign to each y its own l′ label in

the assigned label space L ′. Errors in the classification can be generated in the regions of F where there is

an overlap of features representing different l ∈L , leading to the assignation of the wrong l′.
We can visualize this process more formally by the probabilistic graphical model in Fig. 9.15, in which we

think supervised learning as a deterministic optimization problem.

The diagonal line represents p(y|l), whereas the top line returns p(l′|y). The dashed line encodes J, that

is the cost function that compares l and l′. The whole loop represents the process of training and evaluating

the results. Then the learning optimization problem is reframed as finding the optimal classifier

L̃ = argmin
L̃

J(l,L̃ (yl))

The cost function J is usually chosen with a view to mathematical convenience for the Stochastic Gradient

Descent optimization process more than an effective description of the problem: a common choice is the

112 Chapter 9. Communications channel

Figure 9.15: Probabilistic graphical model of supervised learning training and test procedures

mean squared error, i.e. the l2 distance between the actual label l and the forecast one l′ = L̃ (yi):

J =
N

∑
i=1

|li− L̃ (yi)|2

This symmetric cost function is usually not fit for real-life problems: being 5 minutes early or 5 minutes late

can lead to completely different results (e.g. if we have to take a train!), that are not taken into account by

this J. After having obtained the optimal classifier we exploit it to predict the label l′ on data we have not

used till this moment: this test phase will be evaluated through the confusion matrix Q.

What the ML perspective hides is how these labels have been generated: we take for granted the process

from which we obtain the true labelling l from the data x ∈ D , but we actually don’t have x but just its

representation y with its own l associated.

That’s why the Bayesian perspective is much more conscious, it takes into account in p(l|y) this

uncertainty in the labels associated to the y we got. So we can built the corresponding probabilistic diagram

with the following equations

p(l|y) = p(y|l)p(l)

p(y)
Classifier

p(y) = ∑
l∈L

p(y|l)p(l) Evidence

p(l′|l) = ∑
y∈Y

p(l′|y)p(y|l) Confusion matrix

where p(y|l) and p(l) are both estimated from the training.

It is not possible to get rid of the uncertainty due to this overlap by changing the algorithm, it is intrinsic

to data. Also, it has to be taken into account that there’s no optimal a priori algorithm, but it depends on

the considered task: this is expressed in the No free-lunch theorem, that express the concept of inductive

bias i.e our algorithm will fail in some processes and succeed in others. In the Bayesian process, there is

no training nor testing, that are substituted by conditional density estimation, and then no cost function J,

since it is not needed: the Bayesian probability theory will lead straight to the confusion matrix p(l′|l)! In

conclusion we can say that the Bayesian way of supervised-learning can be seen as a conditional density

estimation.

9.5 Predictive information

Lesson 18

31/05

FC

TF

We will discuss all the concepts in the wake of the paper [BNT01]. The notion of predictive information (Ipred)

has a large importance in understanding how much we can learn about future from the past. Starting from

the assumption that non-predictive information is useless, a natural expression for predictive information is

given by the mutual information between the past and the future themselves.

In order to understand better the meaning of this new quantity, we can introduce an example using the

Ising model for a 1D spin lattice, associated to the Hamiltonian

H =−J ∑
〈i, j〉

SiS j−B∑
i

Si

9.5 Predictive information 113

Figure 9.16: Conditional density estimation in Bayesian Inference

In which J represents the interaction strength, while B the external field. In particular we are interested in

studying the entropy of "words" built as a sequence of N consecutive spins as a function of N itself.

The entropy, as one could guess, increases with the size of the words, since larger sequences contains

more spins and so more possible states are available. The key question is: what happen if we remove this

trivial extensive behaviour of the entropy? Can we find something which is intrinsic in the problem, that in

some sense is able to measure the complexity underneath the data? If we start looking at the sub-extensive

part of the entropy, S1 ≡ S/N, we can see how there is a deeper dependence on the "word" size associated

to the interaction strength. In figure 9.17 we can see on the left the total entropy as a function of the word

length, whereas on the right there is the same plot for S1. Three different couplings, J, between spins have

been chosen, and for each of those we have a different scenario:

• If we have just one fixed parameter J, S1 is flat. This means that making the chain longer is useless,

we can learn J immediately.

• With short-range interactions, S1 has a logarithmic growth, meaning that making the spin chains longer

actually allows to learn more about the interaction.

• With long-range decaying interactions, we get a power law response meaning a significant increase of

S1 with N. This is the hint that there is something really complicated happening in the system.

Figure 9.17: 1. Entropy as a function of the word length for spin chains with different interactions. The lines

start form S(N) = log2, since the correlation length is much smaller than the chain length. 2. Subextensive

part of the entropy as a function of the word length.

This kind of correlation structures can be found in many other cases, such as in text that can only be

understood if we can link together words as we read it. This explains why we need a measure of complexity

that can allow us to distinguish between random structures and relevant ones. Quoting the paper (p. 2411):

"An essential difficulty in quantifying complexity is to distinguish complexity from randomness."

In fact, as humans, we decide what is relevant merely on the base of the problem we attempting to solve;

randomness is then just what we deem to be negligible because we think that it doesn’t matter.

Tipically, a very trivial measure of complexity can be achieved using correlations, for example studying

the covariance matrix of the data if we can neglect moments of order higher than 2 and perform a Gaussian

approximation. In a more general framework, mutual information is a better answer, since it allows to

114 Chapter 9. Communications channel

compare any probability without any kind of approximation (see "Correlation vs mutual information"

paragraph). In ML, for instance, there are some measure of complexity like VC-dim, but what we’re

exploring is something more fundamental based on information theory.

9.5.1 Mutual information between the Past and the Future

In this paragraph we will try to address the following questions: What is the mutual information between the

past and the future? If I know all the past, how much future can I predict? Imagine that we observe a stream

of data x(t) over a time interval −T < t < 0; let all of these past data be denoted by the shorthand xpast . We

are interested in saying something about the future, so we want to know about the data x(t) that will be

observed in the time interval 0 < t < T ′; let these future data be called x f uture. In the absence of any other

knowledge, futures are drawn from the probability distribution P (x f uture), while observations of particular

past data xpast tell us that futures will be drawn from the conditional distribution P(x f uture|xpast). The greater

concentration of the conditional distribution can be quantified by the fact that it has smaller entropy than

the prior distribution, and this reduction in entropy is Shannon’s definition of the information that the past

provides about the future. We can write the average of this predictive information as

Ipred(T,T
′) =

〈

log

[
P(xxx f uture|xxxpast)P(xxxpast)

P(xxx f uture)P(xxxpast)

]〉

= 〈logP(x f uture,xpast)〉−〈logP(xxx f uture)〉−〈logP(xpast)〉

Figure 9.18: Past and future.

All this description can be mapped to the nomenclature involving entropies. In particular, the first term

accounts for the joint entropy of past and future, the second for the entropy of the future, and the third for the

past:

Ipred(T,T
′) = S(T)+S(T ′)−S(T +T ′)

that recalls the formula of the mutual information we are used to deal with. If there is no information between

the T and T ′ windows the predictive information is zero.

We know two general facts about the behaviour of S1(T):
1. The corrections to extensive behavior are positive: S1(T)≥ 0.

2. State that the entropy is extensive is equivalent to say

lim
T→∞

S(T)

T
= S0

But if the previous limit is true, then

lim
T→∞

S1(T)

T
= 0

Let’s now take the following limit, where we keep fixed how much we go back in the past but we look for

T ′→ ∞ in the future

Ipred(T) = lim
T
′→∞

Ipred(T,T
′) = S1(T)

And this is exactly the best we can do about looking as far as we can in the future, namely the definition of

predictive information in the paper. The prediction of the future is all passing through this information. If

we have been observing a time series for a (long) time T , then the total amount of data we have collected

is measured by the entropy S0T , and at large T this is given approximately by S0(T). But the predictive

information that we have gathered cannot grow linearly with time, even if we are making predictions about

a future which stretches out to infinity. There is only so much predictive information in the total information.

9.5 Predictive information 115

As a result, of the total information we have taken in by observing xpast , only a vanishing fraction is of

relevance to the prediction; this is what the Law of diminishing returns state.

lim
T→∞

predictive information

total information
= lim

T→∞

Ipred(T)

S(T)
→ 0

Looking at this limit it is straightforward to see that we can go back in the past collecting data as much as we

want, but the predictive information becomes a smaller and smaller fraction of the total information. Most of

what we observe is irrelevant to the problem of predicting the future. Furthermore, relevance is key for

using information theory just like quantifying ignorance via the prior is the key to Bayesian inference.

We should also remember that sorting a set of data does not lead to an increase in information, if done in

a deterministic way, it will only make the search for useful insights in the data, i.e what is relevance, way

harder.

Consider the case where time is measured in discrete steps, so that we have seen N time points

x1,x2, . . . ,xN . How much have we learned about the underlying pattern in these data? The more we

know, the more effectively we can predict the next data point xN+1 and hence the fewer bits we will need to

describe the deviation of this data point from our prediction: our accumulated knowledge about the time

series is measured by the degree to which we can compress the description of new observations. On

average, the length of the code word required to describe the point xN+1, given that we have seen the previous

N points, is given by:

ℓ(N) =−〈logP(xN+1| x1,x2, . . . ,xN
︸ ︷︷ ︸

observed time series

)〉

measured in bits, where the average is done over everything, namely the joint distribution of all the N +1

points. It is easy to see that

ℓ(N) = S(N +1)−S(N)∼ ∂S(N)

∂N

As we observe for longer times, we learn more and this word length decreases. From this definition we can

define a learning curve Λ(N), that can be seen as an error rate measuring this improvement, defined as

Λ(N)≡ l(N)− lim
N→∞

l(N) = S(N +1)−S(N)−S0

= S1(N +1)−S1(N)≈ ∂S1(N)

∂N
=

∂ Ipred(N)

∂N

This idea actually reflects the question: "how well we can predict the future, given the number of samples

that we’ve seen in the past?".

The mathematical way to figure out what is going on inside the communication channel without leaving

information theory run amok, but considering the relevance as part of the problem. We are not just doing the

compression step but we need to preserve the relevance, otherwise the solution is very easy: simply forget

everything. On the other hand compression is necessary because we don’t have an unlimited amount of

memory to store everything. Indeed this is the optimization problem we have already encountered:

p∗(st+1|at) = argmin
p(st+1|at)

Compression
︷ ︸︸ ︷

I(A,S) −β

Relevance
︷ ︸︸ ︷

I(S,Y)
︸ ︷︷ ︸

F [p(st+1|at)]

9.5.2 Determine Ipred for a Markov Process

The joint distribution of the N data points as a product is

P(x1,x2, . . . ,xN) = P(xN |xN−1, . . . ,x1) . . .P(x2|x1)P(x1)

but due to the properties of a Markov process, we can write

P(xn|{x1≤i≤n−1}) = P(xn|xn−1)

hence the predictive information reduces to

Ipred =

〈

log

[
P(xn|xn−1)

P(xn)

]〉

116 Chapter 9. Communications channel

This seems to be great because we don’t have to look many step behind in the past, but notice that in reality

we’ve compressed the past in a potentially long state vector, with lot of dimensions and propagated trough

time. A useful example comes from Newtonian mechanics. If we have a discrete set of measurements

xt ,xt+1, . . . of a trajectory, we know that it’s not enough to describe the dynamics, and we need also momenta.

So instead to handle the full continuum trajectory x(t) we introduce momenta that, given the position where

we are, allow us predict the future position. So in practice we don’t need all the time steps behind, i.e. the

full Markov Chain, but we need the full vector states of the Markov Chain.

We are left with two possibilities: or we have a large memory, namely we can remember all the steps

xt ,xt+1, . . . or we have a system with a lot of states. Consequently the states of a system is the memory

encoded into the relevance.

10. Non parametric models

Lesson 19

04/06

LR

GC

So far we’ve mainly talked about parametric models. Given our data, we select one or more models

depending on parameters www, and for each of those we use Bayesian inference to determine the posterior

distribution of such parameters. Eventually, we compare all these models through their evidence and we

retain the best one. The complexity of the model is thus represented by the set of parameters, no matter what

the number of data samples is.

Sometimes, though, the process underneath our data can be such complicated that it becomes difficult

even to guess some model to describe it. In these cases non parametric models allow to fit and generalize

our observations without any particular assumptions on the process that originated it. Intuitively, if we have

a large number of data we could feel justified in increasing the number of parameters more and more, an

eventually send it to infinity. These are indeed data-driven methods conceptually more similar to machine

learning rather than physics. One can argue that using a huge number of parameters (or an infinite number!)

can lead to the problem of overfitting, and indeed generalization is a key concern of ML. However, formulate

our problem in terms of Bayesian inference allow us to handle generalization issues from the beginning,

because the prior we assign to the model is a natural regularizer.

The road map for this chapter is the following: we firstly introduce the Gaussian process and how to

use it to make predictions, then we’ll spend some time on the intuition behind the Gaussian process and

the concept of kernel and Green’s functions; eventually, we introduce a more advanced application of this

concept, namely how to generalize the Gaussian process from the Euclidean space to manifolds.

10.1 Gaussian process

10.1.1 Nonlinear regression: parametric approach

Suppose we are given a set of data {xxx(n),yn}N
n=1, where XXXN ≡ {xxx(n)}N

n=1 is the set of D dimensional input

vectors and yyyN ≡ {yn}N
n=1 is the corresponding set of target values, which we’ll assume to be real values

in the following discussion. Our goal is to infer a nonlinear function f (xxx) parametrized by parameters

www = {wk}K
k=1 that is assumed to describe the data XXXN , i.e.

yyyN = f (XXXN)+ηηη (10.1)

where ηηη is our noise; in practice y’s are noisy versions of some function acting on xxx.

The inference of f (xxx) is described by the posterior probability distribution

P(f (xxx)|yyyN ,XXXN) =
P(yyyN | f (xxx),XXXN)P(f (xxx))

P(yyyN |XXXN)
(10.2)

where the first term on the right-hand side, P(yyyN | f (xxx),XXXN), is the probability of the target values given the

function f (xxx), which in the case of regression problems is often assumed a separable Gaussian distribution;

and the second term, P(f (xxx)), is the prior distribution of functions assumed by the model.

118 Chapter 10. Non parametric models

Once we choose a set of basis functions {φk(xxx)}K
k=1, we can think to decompose f as a linear combination

of these functions.

f (xxx;www) =
K

∑
k=1

wk φk(xxx) (10.3)

We can choose whatever orthogonal basis, such as Hermite or Laguerre polynomials, spherical harmonics

and so on. For example, if we take radial basis functions centered at fixed points {ccck}K
k=1,

φk(xxx) = exp

[

− (xxx−ccck)
2

2r2

]

(10.4)

then f (xxx,www) is a nonlinear function of the input xxx.

In a nutshell: Here, once the basis is fixed the complexity of the function f is somehow measured by the

number of parameters, K, that we put into our model. In principle one has to be careful in increasing the

number of parameters, because a too powerful model is very likely to overfit the data. In general, one can

set an upper bound on the generalization error

Generalization error≤
√

Complexity measure

N
(10.5)

and hence the assumption of non parametric models is that the complexity grows sub-linearly with the

number of data (e.g. Nβ , β < 1), giving a finite generalization error. This is the reason why we can think

to play with an infinite representation of our model without incurring in overfitting problems.

Now, since f is a deterministic function of www, then the inference problem is actually on the parameters.

The corresponding posterior reads

P(www|yyyN ,XXXN) =
P(yyyN |www,XXXN)P(www)

P(yyyN |XXXN)
(10.6)

Having obtained the posterior for www, predictions are then made by marginalizing over the parameters:

P(yyyN+1|yyyN ,XXXN+1) =
∫

dDwww P(yyyN+1|www,xxx(N+1))P(www|yyyN ,XXXN) (10.7)

10.1.2 From parametric models to Gaussian processes

Let us consider the same setup we used before: N input data in a D dimensional space, XXXN , the corresponding

observed outputs yyyN and a set of K basis functions φk. We then introduce the N×K matrix obtained by

evaluating each basis function on each of the input vectors

Rnk ≡ φk(xxx
(n)) (10.8)

and also the vector fff N as the vector of values of f (xxx) at the N points,

fn ≡∑
k

Rnkwk. (10.9)

If the prior distribution of www is a multivariate normal with zero mean,

P(www) = N
(
www;000,σ2

w1
)
,

then fff , being a linear function of www, is also Gaussian distributed with mean zero. The covariance matrix of fff

is

GGG =
〈

fff fff T
〉
=
〈
RRRwwwwwwTRRRT

〉
=RRR

〈
wwwwwwT

〉
RRRT = σ2

w RRRRRRT , (10.10)

so the prior distribution of fff is

P(fff) = N (fff ;000,GGG) = N (fff ;000,σ2
w RRRRRRT). (10.11)

The matrix GGG is called Gram’s matrix, and we will return on it later on. Equation 10.11 is the defining

property of what is called Gaussian process.

10.1 Gaussian process 119

Definition 10.1 — Gaussian process. The probability distribution of a function f (xxx) is a Gaussian

process if for any finite selection of points xxx(1),xxx(2), . . . ,xxx(N), the density P(f (xxx(1)), f (xxx(2)), . . . , f (xxx(N)))
is a Gaussian.

What about the target values? The yyyN vector we measure doesn’t have infinite precision, and we therefore

assume it to differ by additive Gaussian noise of variance σ2
ν (measurement variance) from the corresponding

function value fff N :

yn = f (xxx(n);www)+σν ε, ε ∼N (0,1) (10.12)

Then yyy also has a Gaussian prior distribution,

P(yyy) = N (yyy;000,CCC)

where we introduced the covariance matrix

CCC =GGG+σ2
ν 1 = σ2

w RRRRRRT +σ2
ν 1.

In particular, the (i, j) entry of CCC is

Ci j = σ2
w ∑

k

φk(xxx
(i))φk(xxx

(j))+δi jσ
2
ν .

Notice that this is a N×N matrix, meaning that increasing the number of basis functions we use to define f

doesn’t affect the dimensionality of the problem.

S Pay attention to not be deceived by the name “Gaussian process”. We’re not assuming that out input
data are normally distributed; the Gaussian uncertainty is on the y-axis, namely on the fitting function f
and on the output data y.

� Example 10.1 Let us consider the one-dimensional case with the radial basis function defined in (10.4).

Then, instead of considering a finite number of basis functions, we see what happens if we take the limit

K → ∞. To do that, we multiply and divide the above equation for ∆K, being the distance between two

consecutive means of the basis functions in the x-axis, and we assume that σ2
w/∆K → const. as K → ∞.

This is reasonable, since as the number of weights increase they also get closer, and consequently their

uncertainty must become smaller. This way the sum above becomes an integral, and the covariance matrix

can be computed as

Ci j ∝

∫

dk φk(x
(i))φk(x

(j))+δi jσ
2
ν

=
∫

dk exp

[

− (x(i)− k)2

2r2

]

exp

[

− (x(j)− k)2

2r2

]

+δi jσ
2
ν

=
√

πr2 exp

[

− (x(i)− x(j))2

4r2

]

+δi jσ
2
ν

�

The example above shows a quite remarkable result. Instead of specifying the prior distribution on

functions in terms of basis functions and priors on parameters, the limit K→ ∞ allows to summarize the

prior of the output data through a covariance matrix CCC given by

Ci j = k(xxx(i),xxx(j))+σ2
ν δi j (10.13)

where k is a sort of covariance function called kernel. Evaluating the kernel on the data gives what we

anticipated to be the Gram’s matrix

Gi j = k(xxx(i),xxx(j)).

The covariance matrix of the prior is therefore given by the Gram’s matrix plus a diagonal matrix that

quantifies the uncertainty on the data. This additional term turns out to be actually quite important, since

prevents the covariance to be singular and hence allows to invert it. Notice that at this stage there’s no need

anymore to talk about a set of basis functions: once we choose the kernel function the problem is fully

specified.

In conclusion, the prior probability of the N target values yyy in the data set is:

P(yyy) = N (yyy;000,CCC) =
1

Z
e−

1
2 yyyTCCC−1yyy (10.14)

120 Chapter 10. Non parametric models

10.1.3 Using a given Gaussian process model in regression

Now that we’ve seen how the prior of a Gaussian process looks like, we wonder how can we make predictions

from it. In other words, we want to infer the value of the data yN+1 given that we observed yyyN .1 The joint

density P(yN+1,yyyN) is a Gaussian, so the conditional distribution

P(yN+1|yyyN) =
P(yN+1,yyyN)

P(yyyN)
(10.15)

is also a Gaussian. If we indicate as CCCN+1 the covariance matrix of the vector yyyN+1 ≡ (y1, . . . ,yN+1)
T , then

we can write it as The posterior distribution (10.15) is given by

P(yN+1|yyyN) ∝ exp

[

−1

2
[yyyN yN+1]CCC

−1
N+1

[
yyyN

yN+1

]]

. (10.16)

Instead of inverting CCCN+1, we can write the inverse in terms of CCCN and CCC−1
N as

CCC−1
N+1 =

[
MMM mmm

mmmT m

]

where

m =
(
κ−kkkTCCC−1

N kkk
)−1

mmm =−m CCC−1
N kkk

MMM =CCC−1
N +

1

m
mmmmmmT .

When we substitute these matrices into Eq. (10.16) we find

P(yN+1|yyyN) =
1

Z
exp

[

− (yN+1− ŷN+1)
2

2σ̂2
N+1

]

(10.17)

where

ŷN+1 = kkkTCCC−1
N yyyN = kkkT (GGGN +σ2

ν 1)−1yyyN (10.18)

σ̂2
N+1 = κ−kkkTCCC−1

N kkk = σ2
f −kkkT (GGGN +σ2

ν 1)−1kkk. (10.19)

These last two quantities are what we were looking for: they describe the expected value of the prediction

yN+1 and the uncertainty associated. The expression for the variance has actually a nice interpretation.

κ is not just the kernel function evaluated in the point we want to make the prediction, but it’s also the

corresponding diagonal entry of the covariance matrix. This means that κ represents also the variance that

the prior assigns to the predicted value before seen the data. The formula above is telling us that when we

stick the data into the problem, then we are shrinking the spread of possible values that our predictions can

take. This idea is sketched in figure 10.1.

Here below we report a simple implementation in R of a Gaussian process with an RBF kernel. The

data consists on ten samples following a sinusoidal signal to which we added some Gaussian noise, and we

assigned to each sample an uncertainty equal to the width we set for the noise. In this case we don’t just

make a single prediction, but many at one time.

1for the sake of simplicity we restrict the discussion to just one prediction, but it is straightforward to extend the method for many

predicted points at one time.

10.1 Gaussian process 121

Figure 10.1: In the Gaussian process we assign a Gaussian uncertainty to the output values, y, and we update

it with the knowledge coming from the data

library(matlib)

library(tidyverse)

library(plot.matrix)

library(mvtnorm)

Generating data set

n_obs <- 10

x.obs <- seq(0, 5, length.out = n_obs)

y.obs <- sin(x.obs) + rnorm(n_obs , mean = 0, sd = 0.3)

y.sigma <- 0.3 # Uncertainty assumed on the measurements y.obs

obs_df <- tibble(x=x.obs , y=y.obs)

Defining RBF kernel

rbf <- function(x1, x2, r, A){

A*exp(-0.5 * (x1 - x2)^2/r^2)

}

Prior distribution

C_N <- outer(x.obs , x.obs , rbf , 1, 1) + diag(y.sigma , n_obs , n_obs)

C_N.inv <- inv(C_N)

y.prior <- rmvnorm(5, sigma=C_N.inv)

cols <- c("dodgerblue", "firebrick1", "darkorchid1", "chartreuse3", "gold")

plot(x.obs , y.prior[1 ,], type="l", lwd=3, col=cols[1],

main="Samples␣from␣prior␣distribution",

xlab="x", ylab="y", ylim=c(-4,4))

for (i in 2:5){

lines(x.obs , y.prior[i,], lwd=3, col=cols[i])

}

Posterior distribution

n_pred <- 50 # Number of predictions

x.pred <- seq(-1, 7, length.out = n_pred)

k <- outer(x.obs , x.pred , rbf , 1, 1)

k.T <- outer(x.pred , x.obs , rbf , 1, 1)

kappa <- outer(x.pred , x.pred , rbf , 1, 1)

mu.pred <- k.T %*% C_N.inv %*% y.obs # Mean of predictions

cov.pred <- kappa - (k.T %*% C_N.inv %*% k) # Covariance matrix of predictions

sigma <- sapply(diag(cov.pred), sqrt) # Standard deviation of predictions

pred_df <- tibble(x = x.pred , y = mu.pred)

Plotting results

ggplot(pred_df , aes(x=x, y=y)) +

geom_ribbon(aes(x=x, ymin=(y - 2*sigma), ymax=(y + 2*sigma), fill="95%␣CL"),

alpha=0.5) +

geom_ribbon(aes(x=x, ymin=(y - sigma), ymax=(y + sigma), fill="68%␣CL"),

alpha=0.5) +

geom_line(aes(x=x, y=y, colour="Mean"), lwd=2) +

geom_point(data = obs_df, aes(x=x.obs , y=y.obs , colour="Observations"),

size=3) +

geom_errorbar(data = obs_df, aes(ymin = (y.obs - y.sigma),

ymax = (y.obs + y.sigma)), col="red", width=0.1) +

scale_fill_manual(name="", values=c("95%␣CL" = "cornflowerblue",

122 Chapter 10. Non parametric models

"68%␣CL" = "dodgerblue")) +

scale_colour_manual(name="", values=c("Mean" = "darkblue",

"Observations" = "red")) +

ggtitle("RBM␣Gaussian␣process␣predictions") +

theme_minimal ()

Figure 10.2: Results of the Gaussian process from the script above

10.2 The intuition behind Gaussian process and kernels

In the previous section we saw that what characterize a Gaussian process is the kernel. As we are going to

see later on, the choice of the correct kernel is crucial for advanced tasks such as clustering in a manifold, so

it’s worth to build some intuition on it. In general, we can interpret the kernel as an infinite matrix operating

on some Hilbert space of functions, H . Most of the properties of the kernel have indeed their matrices

counterpart:

Property Kernels Matrices

Hermitian (symmetric) k∗(x,x′) = k(x′,x) AAAT =AAA

Positive−definite
∫

f ∗(x)k(x,x′)g(x′) dxdx′ ≥ 0 ∀ f ,g ∈H xxxTAAAyyy≥ 0

Eigenfunctions
∫

k(x,x′)φi(x
′)dx′ = λiφi(x) AAAvvvi = λivvvi

Mercer representation k(x,x′) = ∑
∞
i=1 λiφi(x)φ

∗(x′) AAA = ∑
N
i=1 λivvvivvv

T
i

Kernels are widely used in many applications, such as Support Vector Machines (SVM) in machine learning.

Here, kernels are used to map data into an infinite dimensional Hilbert space where points become linearly

separable (kernel trick) and one can perform the classification task, eventually returning into the original

data space.

10.2.1 Gram’s matrix and covariance matrix

We saw before that evaluating the kernel on the input data gives the Gram’s matrix, which is almost the

covariance matrix of the prior distribution (Eq. 10.14). Although the knowledge of the kernel function is

sufficient to accomplish the non parametric interpolation, for the sake of intuition it can be useful to express

the Gram’s matrix in terms of the basis functions. Let’s go back for a moment to the case in which we

have K basis functions ΦΦΦ = {φk}K
k=1. Then, the set of basis functions induces a non-linear map from the D

dimensional data space to a K dimensional Hilbert space, H , given by

ΦΦΦ : R
D ∋ xxx(i) 7→ rrr(i) =

(

φ1(xxx
(i)), . . . ,φK(xxx

(i))
)T

∈H .

10.3 Diffusion on a manifold 123

The entries of the Gram’s matrix are then obtained as the dot product of the transformed samples in the

feature space

Gi j(xxx
(i),xxx(j)) =

〈

ΦΦΦ(xxx(i)),ΦΦΦ(xxx(j))
〉

=
[
RRRRRRT

]

i j
, where Rik ≡ φk(xxx

(i))

In the expression above, RRR is a N×K matrix, and overall GGG is a N×N matrix, where recall that N is the

number of data samples. A similar relation occurs when we want to compute the sample covariance matrix

of our transformed data set:

Cov(RRR) =
1

N

N

∑
i=1

(rrr(i)−µµµr)(rrr
(i)−µµµr)

T =
RRRT

c RRRc

N

where RRRc indicates the centered data set; notice that in this way the covariance is a K×K matrix. This means

that when we take the Gaussian process limit K→ ∞ the Gram’s matrix keeps the same shape, whereas the

covariance matrix becomes infinite! Interestingly, though, it can be shown that the two matrices share the

same positive eigenvalues. The K→ ∞ limit therefore acts to the covariance matrix by adding a huge null

space.

S From the computational point of view, the N×N structure of the Gram’s matrix can be a weakness
of the Gaussian process. In fact, the number of operations needed to invert such a matrix scales
as O(N3) (better performances can be achieved if the matrix is sparse), making the algorithm quite
computationally demanding for large number of data points.

10.2.2 Kernel as a local average

The fancy computer scientists’ way of seeing a Gaussian process is to picture each data point in a graph and

link them together with edges weighted by the kernel’s value between each two nodes (see figure 10.3). We

therefore say that the kernel imposes a geometry over the data points.

Figure 10.3: The kernel induces a graph on data

Computers scientist would say that the kernel induces a graph on data, that is to say that the kernel finds

a reasonable way to connect the new data for averaging. Indeed the interpretation that we can give to Eq.

10.18 - 10.19, is to estimate the function f at the interpolation point xN+1 (yN+1 in the notation above) using

a linear combination of the observations yyy(xxx) to form a weighted local average, where the weights are given

by the kernel. Figure 10.3 could help visualize how the graph (left) corresponds to the matrix CCCN+1 used

before (right).

10.3 Diffusion on a manifold

We haven’t talked about the choice of the kernel yet. How to get the proper kernel for a specific Gaussian

process? Let us consider again the diffusion process without any external potential. The diffusion equation

in H = R
d is

∂t p = D ∇2 p

which is solved by the Green’s function

G(xxx,xxx′;τ) =
1

(4πDτ)
d
2

exp

(

−‖xxx−xxx′‖2

4Dτ

)

.

124 Chapter 10. Non parametric models

This is actually identical (up to a normalization factor) to the radial basis function kernel we saw before

k(xxx,xxx′;r) = exp

[

−‖xxx−xxx′‖2

2r2

]

This is not merely a coincidence. In a very informal way we can say that the Laplacian operator has a sort of

local averaging property (originating the mean value property of the harmonic functions, which are solutions

of the Laplace equation ∇2 f = 0). As we saw before, this is also the kind of behaviour we would like a

kernel to exhibit, so we can make the educated guess that the kernel function is given by the solution of

the diffusion equation in a certain Hilbert space H .

10.3.1 How to infer a generic kernel

We can generalize this point of view for data belonging to a manifold embedded in an higher dimension

input space, considering y = f (xxx), xxx ∈M . In fact, finding a kernel for a Gaussian process is just a fancy way

of performing a local average in M using as weights its geodesic distance. The Green’s function can be

obtained by solving the diffusion equation on M , and it will give us the kernel function for the Gaussian

process.

If M has a metric tensor g, denoting

∆g =
1
√

|g|
∂i

(
√

|gi j|∂ j f
)

the Laplace-Beltrami operator, then the Green’s function G(xxx,xxx′;τ) will be retrieved solving the following

diffusion equation on a manifold

(
∂t −∆g

)
G(xxx,xxx′;τ) = δ (xxx−xxx′)

having set the initial condition

G(xxx,xxx′;τ = 0) = δ (xxx−xxx′) (10.20)

From this G(xxx,xxx′;τ) we can easily define the kernel as

k(xxx,xxx′|σ2
f ,τ) = σ2

f

G(xxx,xxx′;τ)
√

G(xxx,xxx′;τ) ·G(xxx,xxx′;τ)

⋆
= σ2

f

G(xxx−xxx′;τ)

G(0;τ)
(⋆isotropic, homogeneous case)

In this way we don’t have to guess the kernel: we can properly derive it just knowing the structure of the

input space M .

� Example 10.2 — Data on a spherical surface S2. Let’s consider for example a data set that belongs

to the spherical surface S2 embedded in R
3. The Laplace-Beltrami operator reduces to the Laplacian in

spherical coordinates

∆S2 =
1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2 θ

∂ 2

∂φ 2

The diffusion equation can be solved isolating the spatial and time dependencies, where the spatial equation

reduces to the eigenvalues problem for ∆S2 :

∆S2Pl(cosγ) = l(l +1)Pl(cosγ)

in which we denote with Pl(cosγ) the Legendre polynomial of degree l and

cosγ = cos
(
φ −φ ′

)
· sinθ sinθ ′+ cosθ + cosθ ′

The resulting Green’s function is

Gt(θ ,φ ;θ ′,φ ′) =
1

4π

∞

∑
l=0

(2l +1) · exp−l(l+1)τ Pl(cosγ)

from which the Legendre kernel can be obtained (remember that σ2
f is the functional variance of the prior)

k(θ ,φ ;θ ′,φ ′|σ2
f , t) = σ2

f

∑
∞
l=0(2l +1) · exp−l(l+1)τ Pl(cosγ)

∑
∞
l=0(2l +1)exp−l(l+1)τ

10.4 Dirichlet process 125

This set of basis functions can be interpreted as the RBF kernel bent on the surface on the sphere: the

RBF-generated kernel constitutes a local average in an Euclidean space, whereas the Legendre kernel

implements local averaging with respect to the geodesics on the sphere. The spatial bandwidth of prior τ is

the only free-parameter left and it regulates the spread of the average range: this determine the complexity of

the function that we can represent with this kernel. This fact can be visualized in Fig. 10.4: if τ is sufficiently

small we can represent high-complexity functions (possibly leading to overfitting), whereas when τ increases

we average over wider and wider regions, until reaching a constant function over the sphere surface.

Figure 10.4: (a) The angular correlation function as a function of geodesic distance γ on the unit sphere

(b) Examples of functions on the sphere randomly drawn from the Gaussian process for various values of τ
[DB18]

�

In a nutshell: We briefly summarize the entire workflow in using GPR (gaussian process regression).

There could be situations in which the model that describes our data is too complex and we are not able to

describe it in terms of few fundamental parameters. In those cases we can use a ML "inspired" way to

proceed, where the number of parameters could be in principle arbitrary large, under the assumption that

the complexity grows sub-linearly with the number of parameters. By the fact that we want to perform a

non linear regression with a function that we actually don’t know, we can instead consider its expansion in

terms of some basis, like the RBF one. Since it turns out that the Gram’s matrix is all we need, instead

of specifying the basis we can equivalently make the choice on the kernel. However, it’s not clear yet

which kernel we should use in our problem, so up to now we have just shifted the problem from guessing

the non linear regression function to the guess of the kernel. Then we have seen that the solution of the

usual diffusion equation, i.e. the associated Green’s function, has the same form of the RBF kernel. This

suggests that the input space M , where our data naturally live and which can be described by a metric

tensor g, induces an opportune diffusion equation on the manifold M through the Laplace-Beltrami

operator ∆g. Then, the Green’s solution of the corresponding diffusion equation on the manifold can be

used to calculate the kernel that we should use. The only thing left to the user in the algorithm is τ , which

determines the complexity of the function that we want to represent with this kernel.

10.4 Dirichlet process

Lesson 20

07/06

AM

AZ

Given a bunch of data, we can estimate the probability density function by arranging them into bins of an

histogram. But how sure are we about the solution we found? After all the bin size is an arbitrary choice we

made that influences pretty much the result. There is an underlying problem in here about estimating the

"probability of a probability".

10.4.1 The Dirichlet distribution

Let us consider an example: we have inferred a discrete PDF in the form P = {pi}i where i = 1, . . . ,K and

thus we are able to calculate the entropy H =−∑i pi log(pi). However, the values {pi}i ≡ ppp have not been

126 Chapter 10. Non parametric models

directly measured: we have an estimate of their values according to the data we observed (for example by

the maximum likelihood estimator, i.e. the number of counts per bin in a spectrum divided by total counts).

Let us consider the case in which K = 3: out of 20 observations we get bin outcomes (7,3,10), which leads

to estimate probabilities ppp = (7/20,3/20,1/2) with ∑i pi = 1. From here, we could estimate the entropy.

It is absolutely fair to assume that if we run the experiment again, the outcomes in the bins will be

different and so will be the entropy (but the amount of information the environment gave us is the same).

Hence, we want to be able to figure out from the data the probabilities of the probabilities ppp (and consequently

of H), i.e. perform Bayesian inference of the PDF. In order to do so, it will be helpful to exploit the function

below:

Definition 10.2 — Dirichlet distribution and simplex. The Dirichlet distribution of order K (where

K ≥ 2) is a parametric distribution of params ααα = (α1, . . . ,αK), αi ≥ 0 ∀i which as form:

Dir (P = ppp|ααα) =
1

B(ααα)

K

∏
i=1

p
αi−1
i (10.21)

where B(ααα) is the multivariate beta function of the so called concentration parameters ααα . Of course,

the values pi must be suitable candidates for probabilities, i.e. they must respect:

K

∑
i=1

pi = 1 and pi ≥ 0 ∀i ∈ {1, . . . ,K} (10.22)

The requirements above define the so-called "simplex", which represents the simplest possible K−1-

dimensional polytope in any given space. Familiar examples are the 2-simplex (triangle) and the 3-simplex

(tetrahedron). In higher dimension, the simplex is a generalization of those concepts. One may also

notice that its definition is the same of an hyper-sphere with the use of the L1 norm instead of the L2 one.

Figure 10.5: Example of Dirichlet distribu-

tion over the simplex

Therefore, the simplex constitutes the domain of the Dirichlet

distribution, which is a parametric function over it. Let us con-

sider again the previous example: for K = 3 the K−1 simplex

is a triangle, whose three sides are the axes of p1, p2 and p3,

respectively. Each internal point of the triangle represents a

tuple (p1, p2,p3) by opportune projection over the axes. Figure

10.5 reports the Dirichlet distribution for the case K = 3 for

different ααα parameters: we can notice that if those are all the

same (upper plots) the distribution is symmetric for p and the

most probable values are pi = 1/3 ∀i. We can also observe that

the bigger αi are, the more concentrated the distribution will

be. While having different αi finally, the distribution narrows

over different regions of the simplex. The goal of Bayesian

inference is to update ααα according to the data.

Why is this distribution so important? Suppose that we

are given K boxes (or bins), each one having associated a

probability pk. Then we have N objects that are arranged

inside those boxes according to the probability vector ppp =
{pk}K

k=1. The probability distribution of the vector of number

of occurrences nnn = {nk}K
k=1 is given by multinomial distribution (i.e. we are dealing with K mutually

exclusive possible outcomes which occur with probabilities ppp):

Mult(nnn|ppp) = N!
K

∏
k=1

p
nk

k

nk!
(10.23)

It can be proven that the Dirichlet distribution is the conjugate prior of a multinomial likelihood. We

can therefore treat the probabilities ppp as the parameters of a multinomial distribution and then use Bayesian

inference to get the posterior distribution associated. Thus, for the problem of estimating the probability of

bins it is sufficient to set a Dirichlet prior, perform the experiment and update the ααα concentration parameters

exploiting the update rule:

αi→ α ′i = αi +ni =⇒ ααα →α ′α ′α ′ =ααα +nnn (10.24)

10.4 Dirichlet process 127

where ni is the number of counts for the i−th bin. This allows to decrease dramatically the computational

time of the evidence (integration over the simplex).

Now, in the previous paragraphs we learned how to increase our knowledge about the probabilities ppp by

exploiting our data so to have in the end a whole PDF for ppp from which extract the statistical quantities of

our interest. However, it becomes crucial the choice of the parameters ααα for the prior, since we do not want

it to dominate the likelihood (otherwise we would not learn from the experiment outcomes). It is common

practice to adopt the so-called "symmetric Dirichlet distribution" as prior, for which at the very beginning

αk = α̃ ∀k (as a consequence all probabilities are initially equal). There are several possible choices of α̃:

• α̃ = 0: maximum likelihood estimator;

• α̃ = 1: Laplace’s rule;

• α̃ = 1/2: Jeffreys’ prior;

• α̃ = K−1: Schurmann-Grassberger estimator;

The value of α̃ simply sets how peaked the prior will be around the central point of the simplex.

So our bayesian inference of a probability distribution becomes

Dir(ppp|α ′α
′

α
′
) =

Mult(nnn|ppp)Dir(ppp|ααα)

DirMult(nnn|ααα)

and the predictive posterior is

DirMult(n′n′n′|α ′α ′α ′) =
∫

K-simplex
dppp Mult(n′n′n′|ppp)Dir(ppp|α ′α ′α ′)

10.4.2 Paper discussion about PDFs of probabilities

The paper [IB02] deals with further problems in estimating quantities while dealing with uncertainty on

probabilities. In particular, it emphasizes the enormous impact that the choice of the prior has on the

final results. Generally speaking, we start from a prior assumption on ppp (the Dirichlet prior) and a set of

observations nnn to produce our posterior P(ppp) (I). Then, we perform other operations on the posterior to get

the quantities of interest (e.g., the entropy S) (II). To put into perspective:

nnn
I→ P(ppp)

II→ S

It looks like there is no problem in this: we express our ignorance about the probabilities ppp in the prior, get

the posterior and compute the entropy. But looking at the whole process (I+II) we notice that we are getting

the entropy by starting from a prior which does not express our ignorance about the entropy itself, and this

could lead to some wrong conclusions.

Let us give an example: we are given a ball of size R in D-dimensions and we know that it contains a set

of N sample points, XXX . We could face two different problems:

1. If the problem we face is "estimate the probability of finding a sample at location xxx", to express

maximum level of ignorance in the prior we choose p1(xxx) = 1/V (R).
2. On the other hand, if the problem is instead "estimate the probability of finding a sample at distance

r ≤ R from the origin", we select a different prior, i.e. p2(r) = 1/R.

Both p1 and p2 are uniform distributions, but in different domains and with different assumptions. However,

it is known that because of the so-called "phase space effect", the volume of an hyper-sphere of dimension

D≫ 1 concentrates itself on the surface. As a result, if we express our ignorance as for the first problem and

set p1 as the prior, this will dramatically change our point of view about the second problem: in fact, for

high dimension if we assume that the samples are uniformly distributed in the volume, then we know they

will be not uniformly distributed on the radial dimensions, but there will be a much higher probability of

finding them at r ≃ R. So making assumptions on something which is not our final target could really shift

the focus and misinterpret our ignorance a lot.

Let us move back to the processes I and II above: the paper reports a very interesting example in which

an encoding exercise is studied where we are dealing with K = 1000 bins. In this scenario, can be shown

that making innocent, ignorant assumption on the distribution of probabilities (by fixing a value of α̃ in

a symmetric Dirichlet prior) actually leads to a prior for the entropy S which is all but uniform! On the

contrary, it is indeed very peaked and very dependent on the value of α̃ we have chosen, at the point that

setting a value of α̃ leads to setting the value of S almost uniquely, regardless of how many samples nnn we

have for the inference. Of course, this is a huge disaster, since we are not exploiting our data at all to enlarge

128 Chapter 10. Non parametric models

our knowledge on the posterior. These examples are huge warnings about using quantities we have inferred

for further calculations (it is not the same to infer a posterior PDF or a statistical quantity such as mutual

information or entropy).

If our final target is the estimation of the entropy S (or the mutual information) of N samples in K bins,

as in the example above, then the issues we faced can be solved by using the Nemenman-Shafee-Bialek

(NSB) approach: since, as we saw, fixing a value of α̃ leads to a strong condition on the final S estimation,

their idea is to define a better prior distribution for α̃ which makes use of the Jacobean of the expectation

value of entropy 〈S〉nnn=0,α̃ ≡ µ0 (α̃) to have a prior for the entropy which is approximately uniform and equal

to 1/ log(K).
Then, by performing a change of variables the probability of S can be written as the integral of a narrow

function over µ0 which is computation friendly and leads to an estimations of S given the observations nnn that

is not strongly dependent on the choice of α̃ anymore.

10.4.3 The Dirichlet process

Lesson 21

11/06

GC

The Dirichlet process is based on the idea that, given a binning problem, either the number and structure of

bins and how to partition data are unknown. How does data determine the “binning” structure? It will be

given by both the types of bins and the data assignments: the combination of this two factors will constitute

our model. The Dirichlet process represents a non-parametric Bayesian approach to make data assignment.

In order to have a more straightforward explanation we start describing the Chinese restaurant process

(CRP) example, which is nothing but a simplified version of the Dirichlet process where some variables are

marginalized out, recasting the problem to a clustering one. We have data that are coming in and we have to

divided them in partitions; then the analogy will be the following:

Data xxx−→ Customers

Clusters−→ Tables

Parameters θk −→ Dishes

In each table there are many different dishes so that the customers on that table can try what they prefer

from that selection. The choice of a customer to sit at a given table will be related both on the dishes on that

table and on the number of people already sat there. If we consider a random assignment of old or new bin,

the conditional probabilities of sitting at table k at which at time t are already sat nk(t) people on a total of Nt

or to sit at a new table are the following:

p(table k|nk(t)) =
nk

Nt −1+α

p(new table|nk(t)) =
α

Nt −1+α

in which α ∈ [0,+∞) is the concentration parameter of the symmetric Dirichlet distribution. α expresses the

probability that if the customer shows up, a new table is created or, in our case, express the probability that a

new data create a completely new bin (that is quite anomalous!). In order to understand what is the role of α
in the process we can consider the two extreme cases:

• if α = 0 none new tables are created, so our representation will never grow. This corresponds to a

massive compression in which data are all the same according to the model and all is classified in just

one bin;

• if α → ∞, then the probability to go in any previous existing table is zero: each customer has his own

table and we are not performing any compression, i.e we will crate more and more bins.

Intermediate values of α regulate the two opposite compression behaviours, and from here we understand

that α in a way controls the complexity of the model.

Notice that data can grow unconditionally, and for this reason we talk about “non-parametric model”: our

representation is not finite before we see the data, it grows with the data without any limit. Our histogram

is here treated as a clustering model: before clustering there is, for sure, more information, but the data

processing effect is to retain only the relevant part of it.

Why should customers join one or the other table? In the formulation above we just considered a random

assignment of old or new bin. We can now build a more detailed model that takes into consideration the

10.4 Dirichlet process 129

likelihood of the table choice

p(table k|nk(t)) =
nk ·F(xxx|θk)

Nt −1+α

p(new table|nk(t)) =
α ·G(θ |xxx)
Nt −1+α

Here F(xxx|θk) is the likelihood function of the customers xxx in the case in which the parameters of the

model (dishes) are already set. If the bin/table is new we have a completely different approach: G(θ |xxx)
expresses the prior probability of inferring the model parameter θ by the piece of data xxx. Notice that the bins’

structure is determined by the choice of F(x|θk) and G(θ |xxx).
In many clustering algorithms, such as K-means, we need to specify the number of clusters beforehand:

this means we should know a-priori the complexity of the process that produced the data! In the Dirichlet

processes, instead, the number of bins is inferred and not set.

Here, we compromise between a non-parametric approach, where we allow the number of bins to grow to

infinity, (K→ ∞), and a parametric approach, where instead we fix the complexity of the model to a certain

constant value (K =C).

� Example 10.3 — Gaussian mixture model. An example can be made from the Gaussian Mixture Model

that we’ve seen in the chapter about information geometry. Here we attempt to recognize clusters on a

manifold, where each cluster (i.e. the multidimensional counterpart of a bin) is represented by a multivariate

Gaussian. For K clusters we can write

p(xxx) =
K

∑
k=1

N (xxx|µµµk,ΣΣΣk) ·πk(µµµk,ΣΣΣk)

The Dirichlet process is the non-parametric approach for determine the binning structure. Instead of

fixing a-priori some finite K, we include in the problem a probability density p(K|xxx). �

Recalling Fig. 8.16, we therefore have

p(xxx) =
∫

F(xxx|θθθ)π(θθθ) dθθθ (10.25)

where choosing F(xxx|θk) as the parametric likelihood makes G(θ |xxx) to be a kind of posterior for a single data

point; in addition we couple it to a non-parametric combinatorial engine, represented by the prior π(θ), that

can be given by the Dirichlet process or its marginalized version, the chinese restaurant process.

Statistical manifold

We can study this hybrid parametric-non parametric model with an information geometry approach:

• we partition the data we have and form local models π0(θ): this encoding phase goes from the

data space to the manifold of local models M that we know, because we’ve selected our parametric

likelihood function F(xxx|θk), that induces M .

• Once we have π0 we can perform operations on it, like filtering and smoothing and Fourier analysis.

• After applying whatever operation/regularization we like, we reach a global representation π̂(θ)
and from this set of local models we decode the density estimate p(xxx) =

∫
dwwwp(x|θ)π(θ) in the data

space

• Finally we can perform simulations and generate synthetic data, compatible with the structure of our

dataset.

In a nutshell: We have a parametric set of models but we don’t know how complicated they are in their

space; however we know the manifold and we are learning π0 over the manifold, with the hope to achieve

the global representation π̂(θ).

130 Chapter 10. Non parametric models

Figure 10.6: Information geometry approach to the parametric/non parametric composition approach

Beware the notation: www−→ θθθ

11. Appendix

11.1 Notes on Markov Chains

Definition 11.1 A finite Markov chain with state space Ω and transition matrix T is a sequence of random

variables {Xi} on Ω such that:

P(Xt = x1|Xt−1 = x2,Xt−2 = x3, . . .) = P(Xt = x1|Xt−1 = x2) = T (x2,x1) (11.1)

Because of this independence property and the discreteness of the state space, we can completely describe

the Markov chain by means of the |Ω| × |Ω| transition matrix T ; for this reason a Markov chain can be

identify by its transition matrix.

Definition 11.2 An irreducible Markov chain is one where ∀x,y ∈Ω, ∃ n ∈ N : T n(x,y)> 0

This means that we can get from any state to any other state with positive probability given the right number

of iterations of the chain.

Definition 11.3 An aperiodic Markov chain is one for which ∃ n ∈ N : ∀n′ ≥ n T n
′
(x,x)> 0 ∀x ∈Ω

This means that we can return to a state with positive probability given the enough iterations of the chain.

Proposition 11.1 If a Markov chain is irreducible and aperiodic than it’s ergodic.***

Definition 11.4 Define the spectral radius of a linear operator T as:

R(T) = sup
λ∈σ(T)

|λ | (11.2)

where obviously σ(T) is the spectrum of T .

Theorem 11.2 (Perron-Frobenius). Let T be a linear transformation from a finite dimensional vector

space V →V . If T is irreducible, aperiodic and contains all real entries, then R(T) = σ is an eigenvalue

with a positive eigenvector, and if µ 6= σ is an eigenvalue, then |µ|< σ .

Definition 11.5 A transition matrix T is stochastic if its entries are all non negative and

∑
y ∈ Ω

T (x,y) = 1 ∀x ∈Ω (11.3)

132 Chapter 11. Appendix

Proposition 11.3 If λ is an eigenvalue of a stochastic matrix then |λ | ≤ 1. Further, any stochastic matrix

has an eigenvalue λ = 1.

Proposition 11.4 An irreducible, aperiodic Markov chain T has a unique stationary distribution π with

π(x)> 0 ∀x ∈Ω

Proof. Since the transition matrix is irreducible and aperiodic, we can apply Perron-Frobenius to see that

T must have a positive, dominant eigenvalue and associated unique positive left eigenvector, π . Since the

matrix has largest eigenvalue 1 and a stationary distribution must be an eigenvector with eigenvalue 1, this

shows uniqueness. �

This is a very general result and is less restrictive than requiring a detailed balance condition - however

detailed balance is very easy to check and so when only existence of the stationary distribution must be

established, it is still a very useful tool. To summarize the situation, the detailed balance equations are

sufficient for stationarity but not necessary.

Definition 11.6 A Markov chain is reversible if it has a stationary distribution π(x) and has a reversible

bi-variate joint distribution:

P(Xn = x | Xn−1 = y) = P(Xn = y | Xn−1 = x), ∀x,y ∈Ω,n≥ 0 (11.4)

Definition 11.7 Let λ1 be the leading eigenvalue of the reversible transition matrix T and σ(T) be its

spectrum. Define the spectral gap as:

γ := sup
λ∈σ(T), λ 6=λ1

1−|λ1| (11.5)

where we can define trel =
1
γ .

In order to study convergence between probability distributions we need a suited norm.

Definition 11.8 The total variation distance between two discrete probability distributions is:

‖π−µ‖TV = ∑
x ∈ Ω

|π(x)−µ(x)| (11.6)

Definition 11.9 The maximal distance d(t) between T and π at time t is:

d(t) = max
x∈Ω

∥
∥T t(x, ·)−π

∥
∥

TV
(11.7)

Definition 11.10 The mixing time is defined as:

tmix(ε) = min
d(t) ≤ ε

t (11.8)

Mixing is the property of a Markov chain converging to its stationary distribution.

Theorem 11.5 If T is an irreducible, aperiodic, reversible Markov chain and πmin = minx ∈ Ω π(x), then:

(trel−1) log

(
1

2ε

)

≤ tmix(ε) ≤ log

(
1

επmin

)

trel (11.9)

Notice that the spectral gap is often not the best tool by which to prove mixing results, and probabilistic

techniques such as the Markov inequality can give tighter bounds. However the relationship between the

spectral gap and mixing is of intrinsic interest.

Kernel Theory

When Ω is discrete, the kernel is a transition matrix with elements P(Xn = y | Xn−1 = x), this because we are

in a finite space and there is a matrix representation. When Ω is continuous, the kernel is also the conditional

density in fact:

11.2 Notes on functional analysis 133

Definition 11.11 A transition kernel is a function P(x,A), such that, for every x it is a probability measure

in the second argument:

P(x,A) = P(Xt ∈ A|Xt−1 = x) =
∫

A
P(x,x)dx (11.10)

It can be seen as the conditional probability of moving from x into a point in the set A.

In particular when Ω is continuous the kernel is interpreted as an operator on the space of integrable functions

Ph(x) =
∫

A
h(y)P(x,dy) (11.11)

and more in general

Pπ(B) =
∫

A
π(dx)P(x,B) ∀A ∈Ω (11.12)

where π(x) is a probability distribution.

In MCMC we want to study the behaviour of a sequence of draws x1→ x2→ . . . where we move around

according to a transition kernel. So here the invariant density is known (perhaps up to a constant multiple)

it’s π , the target density from which samples are desired, but the transition kernel is not known. To generate

samples from π the MCMC methods find and utilize a transition kernel P(x,dy), whose n-th iterate converges

to π for large n. The problem then is to find an appropriate P(x,dy).
Suppose that the transition kernel, for some function p(x,y) is expressed as:

P(x,dy) = p(x,y)dy+ r(x)δx(dy) (11.13)

where:

• p(x,x) = 0

• δx = 1
{

x ∈ dy
}

• r(x) = 1− ∫ p(x,y)dy is the probability that the chain remains at x.

The candidate-generating density is denoted as q(x,y) where
∫

q(x,y)dy = 1. If it happens that q(x,y) itself

satisfies the reversibility condition ∀x,y ∈Ω than our search is over; but most likely it will not. We might

find that for some x,y
π(x)q(x,y)> π(y)q(y,x) (11.14)

In this case the process moves from x to y too often. A convenient way to correct this is to reduce the

number of moves from x to y introducing a probability α(x,y)< 1 that the move is made. Consider again

the equation above, we should define α(y,x) to be as large as possible and since it is a probability, its upper

limit is 1; but now the probability to move α(x,y) is determined by the reversibility condition

π(x)q(x,y)α(x,y) = π(y)q(y,x)α(y,x) = π(y)q(y,x) (11.15)

and so we find that

α(x,y) =
π(y)q(y,x)

π(x)q(x,y)
(11.16)

and we end up with

α(x,y) = min

{
π(y)q(y,x)

π(x)q(x,y)
,1

}

(11.17)

To complete the definition of the transition kernel for the Metropolis-Hastings chain, we must consider the

probability r(x) defined as before where we have to substitute p(x,y) = q(x,y)α(x,y); then we obtain

PMH(x,dy) = q(x,y)α(x,y)dy+

[

1−
∫

q(x,y)α(x,y)dy

]

δx(dy) (11.18)

References

https://eml.berkeley.edu/reprints/misc/understanding.pdf

https://people.cs.umass.edu/~luke/mcmcmixing.pdf

https://www.ssc.wisc.edu/~nwilliam/Econ810_files/mcmc2.pdf

11.2 Notes on functional analysis

134 Chapter 11. Appendix

Definition 11.12 — Hilbert-Schmidt operator.

Definition 11.13 — Weyl’s perturbation theorem.

Bibliography

[AKS14] C. Albert, H. R. Künsch, and A. Scheidegger. “A simulated annealing approach to approximate

Bayes computations”. In: Statistics and Computing 25.6 (Sept. 2014), pp. 1217–1232. ISSN: 1573-

1375. DOI: 10.1007/s11222-014-9507-8. URL: http://dx.doi.org/10.1007/s11222-

014-9507-8 (cit. on p. 40).

[BNT01] W. Bialek, I. Nemenman, and M. Tishby. “Predictability, complexity, and learning.” In: (2001)

(cit. on p. 112).

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).

Berlin, Heidelberg: Springer-Verlag, 2006. ISBN: 0387310738 (cit. on pp. 70, 71, 78).

[Bre08] G. L. Bretthorst. “Nonuniform sampling: Bandwidth and aliasing”. In: Concepts in Magnetic

Resonance Part A 32A.6 (2008), pp. 417–435. DOI: https://doi.org/10.1002/cmr.a.

20125. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cmr.a.20125.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cmr.a.20125 (cit. on

p. 66).

[DB18] K. Doctor and J. Byers. “Optimal Sampling of BRDF’s of Varying Complexity”. In: July 2018,

pp. 4123–4126. DOI: 10.1109/IGARSS.2018.8518762 (cit. on p. 125).

[GC11] M. Girolami and B. Calderhead. “Riemann manifold Langevin and Hamiltonian Monte Carlo

methods”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.2

(2011), pp. 123–214. DOI: https://doi.org/10.1111/j.1467-9868.2010.00765.x.

eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.

2010.00765.x. URL: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-9868.2010.00765.x (cit. on pp. 31, 35).

[HST01] H. Haario, E. Saksman, and J. Tamminen. “An adaptive Metropolis algorithm”. In: Bernoulli 7.2

(2001), pp. 223–242. DOI: bj/1080222083. URL: https://doi.org/ (cit. on p. 17).

[IB02] F. S. Ilya Nemenman and W. Bialek. “Entropy and Inference, Revisited”. In: (2002) (cit. on

p. 127).

[Jay89] E. T. Jaynes. “Clearing up Mysteries — The Original Goal”. In: Maximum Entropy and Bayesian

Methods: Cambridge, England, 1988. Ed. by J. Skilling. Dordrecht: Springer Netherlands,

1989, pp. 1–27. ISBN: 978-94-015-7860-8. DOI: 10.1007/978-94-015-7860-8_1. URL:

https://doi.org/10.1007/978-94-015-7860-8_1 (cit. on p. 63).

[Mac02] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. USA: Cambridge

University Press, 2002. ISBN: 0521642981 (cit. on p. 64).

[Mac03] D. J. C. MacKay. “Information Theory, Inference, and Learning Algorithms”. In: (2003). URL:

http://www.inference.phy.cam.ac.uk/mackay/itila/ (cit. on pp. 83, 86, 96, 101).

136 BIBLIOGRAPHY

[PSM19] G. Papamakarios, D. C. Sterratt, and I. Murray. Sequential Neural Likelihood: Fast Likelihood-

free Inference with Autoregressive Flows. 2019. arXiv: 1805.07226 [stat.ML] (cit. on p. 55).

[Vih12] M. Vihola. “Robust adaptive Metropolis algorithm with coerced acceptance rate”. In: Statistics

and Computing 22.2 (2012). URL: https://doi.org/10.1007/s11222-011-9269-5

(cit. on p. 19).

	I Carlo Albert
	Basics Principles
	Bayesian Statistics
	The setup
	Step 1: Prior
	Step 2: Calibration
	Step 3: Probabilistic predictions

	Monte Carlo methods
	General building blocks of samplers

	Metropolis algorithms
	Markov Chain Monte Carlo
	From global to local sampling
	The problem of correlations

	Metropolis algorithm
	Metropolis algorithm tuning
	Haario algorithm
	Vihola algorithm
	EMCEE sampler

	Gibbs Sampling

	Hamiltonian Monte Carlo
	Basic Concepts
	Advanced Hamiltonian Monte Carlo
	Example: Stochastic differential equation (SDE) model
	Riemann Manifold Hamiltonian Monte Carlo

	Approximate Bayesian Computation
	Basic concepts
	Summary statistics: basic idea

	Tolerance: the SABC algorithm
	Adaptive schedule
	SABC tunable parameters

	Summary statistics
	The exponential family
	Phases and phase transitions in inference problems

	ML-approaches to Bayesian Inference
	Introduction
	The variational Bayes method
	ML alternatives to ABC - I
	ML alternatives to ABC - II

	II Jeff Byers
	The Bayesian approach
	On the Bayesian interpretation
	Physics as Encoding, Decoding and Bottlenecks
	The Bayes' Theorem
	What is probability?
	From sets to space of models
	Parameters estimation: Gull's problem solution
	Parameters estimation: Bretthrost' spectral analysis

	Conjugate priors
	Discrete distributions: solving the Coin Tossing problem
	Continuous distributions: Gaussian-shaped likelihood
	Predictive posteriors

	Entropy and Information
	Learning by diffusing: the information potential
	Distance measure in information theory
	Self-information or Information Potential
	Decomposition of the Entropy
	Joint entropy and conditional entropy
	Kullback-Leibler Divergence or Relative Entropy
	Alternative measure functions
	Mutual information

	Information theory version of Bayes' rule

	Model Comparison
	Occam's razor
	Model comparison and Occam's razor
	The Evidence and the Occam's factor
	The big picture

	Creating models, making choices and Bayesian inference
	Language model and distance in the space of parameters
	Using Fisher information: the Fisher scoring algorithm

	Information Geometry
	Riemannian Manifold
	Example: 1-D Gaussian PDF
	Connection with Inference

	Exercise solutions
	Exercise 28.4 MacKay2003

	Communications channel
	Communications channels and information transmission
	Communication models

	Binary classifiers as Binary Asymmetric Channels
	Evaluating Binary Classifiers

	Relevance
	Relevance in information theory and data analysis
	Information bottleneck

	Machine learning
	Statistics versus machine learning
	Labels
	The relationship of machine learning to Bayesian inference

	Predictive information
	Mutual information between the Past and the Future
	Determine Ipred for a Markov Process

	Non parametric models
	Gaussian process
	Nonlinear regression: parametric approach
	From parametric models to Gaussian processes
	Using a given Gaussian process model in regression

	The intuition behind Gaussian process and kernels
	Gram's matrix and covariance matrix
	Kernel as a local average

	Diffusion on a manifold
	How to infer a generic kernel

	Dirichlet process
	The Dirichlet distribution
	Paper discussion about PDFs of probabilities
	The Dirichlet process

	Appendix
	Notes on Markov Chains
	Notes on functional analysis

