Recommender Systems - Introduction
Machine Learning, A.Y. 2022/23, Padova

December 19th, 2022
The paradox of choice

Is it always good to have many alternatives?

24 flavors of jam

- **60%** of the customers stopped at the booth;
- On average, 2 tastes;
- **Only the 3%** of the customers purchased.

6 flavors of jam

- **40%** of the customers stopped at the booth;
- On average, 2 tastes;
- **30%** of the customers purchased.
Recommender Systems everywhere

Netflix, Amazon, Spotify, Facebook, YouTube
Between 2006 and 2009, Netflix sponsored a famous competition offering 1M$ to the team that, on the basis of a dataset with

- $\sim 480K$ users
- $\sim 18K$ movies (a.k.a. items)
- $> 100M$ ratings,

was able to **improve by at least 10%** the performance of the Netflix algorithm in predicting the missing ratings.

- R.M. Bell, Y. Koren, C. Volinsky (2007). “The BellKor solution to the Netflix Prize”

Trivia: the winning team used an **ensemble** composed by more than 100 predictors.
What is a recommender systems?

Wikipedia
A recommender system is a subclass of information filtering system that seeks to predict the preference a user would give to an item.

Handbook
Recommender Systems (RSs) are software tools and techniques that provide suggestions for items that are most likely of interest to a particular user.
General RecSys scenario

- Users data
- Items data
- Interactions
- Context (users and items)
- Recommender Systems
- Recommendation
- User (on the right)
Recommender systems’ taxonomy

RecSys

Non-personalized
- Most popular
- Highest rated

Personalized
- Content-based
- Collaborative
- Context-aware
- Hybrid

Nearest-Neighbour
Latent factor
Matrix factorization
Factorization Machines
Deep
...
Types of feedback/interaction/rating

- **Explicit feedback**
 “Reliable” but hard to collect since they require an effort by the user.

- **Implicit feedback**
 Easier to collect, but noisy.
Typically, users are arranged on the rows, and items on the columns;

- r_{ui} is the rating given by user u to item i, e.g.,
 - Explicit: $r_{ui} \in \{0, 1, \ldots, 5\}$;
 - Implicit: $r_{ui} \in \{0, 1\}$.

- 0 means no information.
Sparsity and rating distribution

- Typical rating matrix density $< 0.01\%$, e.g.,
 - Netflix rating matrix density $\approx 0.002\%$;
 - MovieLens rating matrix density $\approx 0.005\%$.

- Both users activity and items popularity usually follow a long tail distribution.
Recommendation tasks

- **Rating prediction** (explicit feedback) in which the RS aims at predicting the missing ratings in the rating matrix;

- **TOP-N item recommendation** (implicit feedback) in which the RS aims at predicting the N (previously unseen) items the user will like the most. Given a user, a recommender needs to associate a relevance score to the items. This scoring will be used to rank items and accordingly make the recommendation. Specifically, the N highest scored items are recommended to the users.
Quality indicators

- **Relevance**: recommend items that users like;
- **Coverage**: ability to recommend most of the items in a catalogue;
- **Novelty**: recommend items unknown to the user;
- **Diversity**: diversify the recommended items;
- **Serendipity**: ability of surprising the user, i.e., the ability to recommend items that users would have never been able to discover by themselves.
Items from the user’s perspective: a visual intuition
Evaluating a recommender system

- **Offline**
 - For years the only used evaluation technique;
 - Do not require the user “live”;
 - Based on benchmark datasets (training set + test set);
 - It cannot be used to evaluate the experience as a whole.

- **Online**
 - Users are directly involved in the evaluation;
 - The evaluation can be both qualitative and quantitative;
 - The overall user-experience plays a role;
 - However, users are not always consistent.
Online evaluation

- Direct user feedback
 Users directly provide a feedback about the recommendation through questionnaires or self-reports.

- A/B testing
 The recommender is tested against a baseline (usually a previous version of the system) on two set of users: a control set that uses the baseline and the variation set that uses the new system. The improvements are evaluated in terms of standard metrics or through users feedback.
Offline evaluation: how to partition a dataset

- **Alt. 1** avoids the cold-start problem, i.e., no users are unknown at testing time;
- **Alt. 2** randomly selects test ratings (can have cold-start users);
- When available, it is good practice to split training-test ratings on the basis of the timestamp.

![Diagram showing partitioning of data into training and test sets](image-url)
Offline evaluation for rating prediction

Given the predicted ratings \hat{r}_{ui}, for (u, i) in the test set (Te), then the usual evaluation metrics are:

- **MAE (Mean Absolute Error)**
 $$\text{MAE} = \frac{1}{|Te|} \sum_{(u,i) \in Te} |r_{ui} - \hat{r}_{ui}|$$

- **MSE (Mean Squared Error)**
 $$\text{MSE} = \frac{1}{|Te|} \sum_{(u,i) \in Te} (r_{ui} - \hat{r}_{ui})^2$$

- **RMSE (Root Mean Squared Error)**
 $$\text{RMSE} = \sqrt{\frac{1}{|Te|} \sum_{(u,i) \in Te} (r_{ui} - \hat{r}_{ui})^2}$$
Offline evaluation: top-N (1/3)

- **Recall**
 \[
 \text{Recall} = \frac{\text{# relevant recommended}}{\text{# relevant items}} = \frac{TP}{FN+TP}
 \]

- **Precision**
 \[
 \text{Precision} = \frac{\text{# relevant recommended}}{\text{# recommended items}} = \frac{TP}{FP+TP}
 \]

NOTE: All these metrics can be limited to the first \(k \) retrieved items to give more emphasis to the top of the list.
Offline evaluation: top-N (2/3)

- **AUC** = \(\frac{1}{N^+ N^-} \sum_i \sum_j [s(i) > s(j)] \)
 - \(N^+ = \# \) relevant items and \(N^- = N - N^+ \);
 - \(s(i) \) is the score given by the recommender to the item \(i \);
 - Computes the number of miss ordered pairs of items in the ranking;
 - Considers all the positions in the list as equally relevant;
 - Often in RecSys AUC is not the best choice.

- **AP** (Average Precision) = \(\frac{\sum_k \text{Precison@k} \cdot \text{rel}(k)}{\# \text{ relevant items}} \)
 - \(\text{rel}(k) \in \{0, 1\} \) indicates whether the \(k \)-th item is relevant or not;
 - As for precision and recall it can be truncated (AP@k);
 - mAP (mean AP) is the mean AP over all users.
Offline evaluation: top-N (3/3)

- **DCG@p** (Discounted Cumulative Gain) \(= \sum_{i=1}^{p} \frac{\text{rel}_i}{\log_2{(i+1)}}\)
 - \(\text{rel}_i\) is the graded relevance of \(i\), usually \(\in \{0, 1\}\);
 - Most useful at top ranks;
 - Utility decreases quite fast (proportionally to the rank);
 - The normalized version (nDCG) is divided by the DCG of the ideal rank.

- **MRR** (Mean Reciprocal Rank) \(= \frac{1}{|Q|} \sum_{i \in Q} \frac{1}{\text{rank}_i}\)
 - \(\text{rank}_i\) is the rank of \(i\) in the recommended ordered list;
 - \(Q\) is the set of positive test items;
 - Similarly to nDCG it is useful at top ranks;
 - It has usually higher values than both mAP and nDCG.
Offline evaluation: beyond accuracy

- **Diversity**: given a retrieved set R of m items and given a similarity measure between items sim then

 \[
 diversity = \frac{\sum_{i \in R} \sum_{j \in R, j \neq i} 1 - sim(i, j)}{m(m - 1)}
 \]

- **Novelty** = \(\frac{\text{\# relevant and unknown items}}{\text{\# recommended relevant}} \), approximately the inverse of the popularity of the retrieved items

 \[
 novelty = \frac{\sum_{i \in TP} \log_2 \left(\frac{1}{\text{popularity}(i)} \right)}{|TP|}
 \]
Non-personalized RS: most popular

- The most popular item, i.e., the one with the highest number of ratings, is k;
- User u already interacted with k;
- The most popular item after k is i that will be recommended to u;
- Note: k can be recommended if the “re-consumption” is likely in the application domain.

![Popularity Table]

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Popularity:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

Fabio Aiolli
Recommender Systems - Introduction
December 19th, 2022
Non-personalized RS: highest rated

- The highest rated item, i.e., the one with the highest average rating, is i that will be recommended to u;
- It is good practice to take into account also the number of ratings;
- Usually, a normalization factor is added to the average in order to give a bias towards popular items.

<table>
<thead>
<tr>
<th>i</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Rating avg. 3.3 2 3 1.3 3
Overview of the standard RS approaches (1/2)

- **Content Based (CB)**
 - Recommend the most similar items to the ones the user liked in the past. E.g., same genre (movies), same artist (song), etc...

- **Collaborative Filtering (CF)**
 - Recommend to a user items liked by similar users, or vice versa, items that are similar to the ones liked in the past. In particular:
 - **Item-item similarity**: two items are similar if they share many users;
 - **User-user similarity**: two users are similar if they share many ratings;
 - **Remark**: in these approaches only the interactions are used to computed similarities. No specific users' and items' characteristic are used (see CB).
Overview of the standard RS approaches (2/2)

- Hybrid approaches
 - CB > CF when there is no much history (cold-start problem);
 - CF > CB when information about user-item interactions prevail on the explicit content;
 - Hybrid approaches tend to take advantage of the strength of the different methods while mitigating their weaknesses.

- Context-aware (CARS)
 - **Assumption**: the quality of a recommendation depends on the user (and item) state;
 - Recommender uses contextual information to tune the recommendation. E.g., the mood, the weather, the time, the presence of kids, etc...
Recap

In this lesson we have seen:
- What is a recommender system;
- RSs taxonomy;
- Types of feedback;
- Rating matrix and its properties;
- Recommendation tasks;
- Evaluation;
- Non-personalized RSs.

Try this at home:
- Analysis of the sparsity and distribution of standard RS datasets, e.g., MovieLens and Netflix;
- Application of non-personalized recommenders.