Lab 3

Classification with Neural Networks

Machine Learning 2022
(F. Chiariotti, A. A. Deshpande)
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m Classify ancient cursive Japanese (Kuzushiji )writing
m Use Neural Networks (NN)



The KMNIST Dataset

Hiragana

Unicode

Samples

Sample Images

H (o)

U+304A

/7000

= (ki)

U+304D

/7000

9 (su)

U+3059

/000

2 (tsu)

U+3064

/7000

& (na)

U+306A

/7000

Hiragang

Unicode

Samples

Sample Images

i& (ha)

U+306F

/7000

£ (ma)

U+307E

/7000

* (ya)

U+3084

/7000

1 (re)

U+308C

/7000

Z (wo)

U+3092

/7000

10 classes corresponding to 10 different characters
70’000 samples (7°000 for each class)
Divided into 60’000 for training and 10’000 for testing

Recent deep learning schemes can reach an accuracy of 99%
For a simple NN expect an accuracy similar to SVM classification of LAB2
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Classification of Japanese Characters
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Not always the largest is the best, specially if training data is limited

m See the impact of batch size and learning rate

From SGD to mini-batches to standard GD
SGD with single sample batch is very unstable

m Try with smaller or larger amount of training data
Plot the estimated weights (can be difficult to see what you have learned)
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Dataset of small pictures of Japanese characters: multi-class classification
m Use Neural Networks
Try different network architectures (e.g., change number of neurons and layers)
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Timeline

mlLab 3:14/12
m Delivery deadline: 10/1



