Bode Plots: Some Typical Cases

![Bode Plot Diagram]

1. **#1** 10 dB
2. **#2** -40 dB

In this case, if additional poles and zeros are placed at a distance from \(\omega_0 \)

\[\text{PM} = 90^\circ \]

The loop is stable with a large margin.

The minimum phase margin in this case can be as low as 20 dB.

The system is "formally" stable but with very small PM, the time response is lightly damped and shows persistent oscillations. => Compensation is needed.

To compensate the amplifier, we can modify the B-network in different ways:

1. **WE CAN PLACE A ZERO IN \(T \) AT \(\omega = \omega_0 \) BECAUSE B-NETWORKS ARE PASSIVE (MOST OF THE TIMES), WE HAVE ALSO AN ADDITIONAL POLE (AT HIGH FREQUENCY)**

With compensation, \(\text{PM} \leftarrow \text{PM} + 45^\circ \) after \(\text{BEFORE} \) zero effect

2. **WE CAN PLACE BOTH ZERO AND POLE AT APPROPRIATE FREQUENCIES IMPLEMENTING A LEAD-LAG COMPENSATION OR ZERO-POLE COMPENSATION**.

\[\text{PM} \text{ IS IMPROVED MORE OR LESS DEPENDING ON WHERE WE PLACE } \omega_0 \text{ AND } \omega_0. \]

Typical design choice is to have

\[\frac{\omega_p}{\omega_0} = \frac{\omega_0}{\omega_0} = 4 \quad \Rightarrow \quad \text{PM} \leftarrow \text{PM} + 60^\circ \]

After Before
To solve the problem the Opamp is internally compensated by intentionally reducing \(\omega_p^2\) (strongly).

This way phase margin can be improved to minimum 45°.

\[
\frac{\omega_c}{\omega_p} = \frac{R_2}{R_1R_2} < 1
\]

If the Opamp is unity gain stable, this configuration yields a target signal attenuation but no stability issues.

Let's analyse some Opamp configurations where there can be stability problems even when the Opamp is internally compensated, unity gain stable.

Time Differentiator

If the Opamp is ideal we know that

\[
A_n = \frac{\omega_c}{\omega_p} = -\frac{RC}{s}
\]

But what can we say when \(A_{ol}\) is:

\[
A_{ol} = \frac{A_{ol0}}{1 + \frac{s}{\omega_c}}
\]

Internally compensated, unity gain stable Opamp.

The most straightforward way to analyse the problem is
To use **direct loop inspection**

\[
T = -\frac{N_e}{V_e} = -\left(-\frac{A_0 \varphi}{1 + \frac{s}{\omega_0}} \cdot \frac{1}{s \omega C} \right) = \frac{A_0 \varphi}{1 + \frac{s}{\omega_0}} \cdot \frac{1}{1 + s \omega C}
\]

Once we have \(T\) we can discuss stability, \(A_0(s), B(s)\)

\[
|A_0| \text{dB} \quad |B| \text{dB} \quad |T| \text{dB} \quad \omega_0 \quad \omega_C \quad \omega_{EC} \quad \omega_{CR}
\]

\[
\angle T @ \omega = \omega_{CR} \approx \varphi
\]

Conclusion: The circuit needs to be compensated.

A different way of looking at this stability issues is to use Bode plots of \(A_0\) and \(1/B\), why?

Because considering frequencies where \(|T| > 1\) we see that

\[
A_T = A_{wn} = \frac{A_0}{1 + T} = \frac{A_0}{1 + B A_0} \uparrow \frac{1}{B} \quad \text{The target frequency response}
\]

\(|T| > 1\)

So it is normally easier to plot \(1/B\) instead of \(B\), as the former is specified by design.
On this type of plot, we can define:

Closing Ratio: Difference between the slope of A_{cl} and that of $1/\beta$ for $\omega < \omega_{cr}$ and

Opening Ratio: Difference between the slope of $1/\beta$ and that of A_{cl} for $\omega > \omega_{cr}$

In this case, closing ratio is $-20 - (+20) = -40$ dB/dec

and the opening ratio is $+20 - (-20) = +40$ dB/dec.

Both indicate small PM values can be expected.

Another analytical approach is to use feedback theory based on that:

Feedback topology is voltage sensing - current mixing.

So this is a trans-resistance amplifier.

The B-network is the circuit part connecting the output node (where we measure voltage) to the input node (where we mix currents). So it is resistor R.

$$Z_i = \frac{N_1}{i_1} |_{U_0 = 0} = R$$

$$Z_{o_i} = \frac{N_0}{i_2} = R$$

$$\delta = \frac{i_2}{V_o} |_{U_0 = 0} = -\frac{1}{R}$$

Nonlinear model of the input.