1. Multi-stage Amplifier Topologies

\[x_5 \rightarrow [A_1] \rightarrow A_2 \rightarrow \cdots \rightarrow [A_n] \rightarrow x_0 \]

- Feedback arrangements are basically:
 - Local Feedback
 - Global Feedback

Local Feedback

To simplify we assume \(A_1 = A_2 = \cdots = A_n = A_{OL} \) and \(B_1 = B_2 = \cdots = B_n = B_L \)

Global Feedback

Under the above assumptions, global feedback is more difficult to stabilize even when

\[A_{OL} = \frac{A_{CLMB}}{1 + \frac{s}{\omega_p}} \]

is a single pole dynamic system

Local feedback, in the same conditions, has no stability issues.
Sensitivity of the closed loop gain:

\[A_{FL} = \frac{A_{ol}}{(1 + P_l A_{ol})^N} \quad \text{for local feedback} \]

\[A_{FG} = \frac{A_{N}}{1 + P_g A_{N}} \quad \text{for global feedback} \]

For a fair comparison, we need to assume that \(A_{FG} = A_{FL} \Rightarrow \)

\[(1 + P_l A_{ol})^N = 1 + P_g A_{N} \]

Sensitivity is defined as

\[S_A = \frac{\partial A}{\partial A} \cdot \frac{A}{A_F} \]

we could also consider

\[S_B = \frac{\partial A}{\partial B} \cdot \frac{B}{A_F} = - \frac{A_{ol}^2}{(1 + P_{ol} A_{ol})^2} \cdot \frac{B}{A_{ol}} (1 + P_{ol} A_{ol}) = - \frac{A_{ol} B}{1 + A_{ol} B} \]

\[A_F = \frac{A_{ol}}{1 + P_{ol} A_{ol}} \]

\[S_B^n = 1 \quad \text{any time } A_{ol} B \gg 1 \quad \text{(the typical case)} \]

Any error or tolerance or drift that modifies \(B \), modifies \(A_F \) by the same amount (only the sign is opposite).

Therefore: \(B \)-networks must be implemented with very stable components, with low tolerance.

Let's go back to \(S_{AF} \)

\[S_{AFl} = N \cdot \frac{A_{ol}^N}{(1 + P_l A_{ol})^{N-1}} \cdot \frac{1 + P_l A_{ol} - P_l A_{ol}^2}{(1 + P_l A_{ol})^2} \cdot \frac{A_{ol}}{A_{FL}} = N \cdot \frac{A_{ol}^N}{(1 + P_l A_{ol})^{N-1}} \cdot \frac{(1 + P_l A_{ol})^N}{A_{ol}^N} \]

\[= N \cdot \frac{1}{1 + P_l A_{ol}} \]
\[S_{AG} = \frac{N A_a^{n+1} (1 + B_g A_a^n) - N B_c A_a^{n+1}}{(1 + B_g A_a^n)^2} \cdot \frac{A_a (1 + B_g A_a^n)}{A_a^n} \]
\[= \frac{N A_a^{n+1} + N B_c A_a^{n+1} - N B_c A_a^{n+1}}{(1 + B_g A_a^n) A_a^{n+1}} = \frac{N}{1 + B_g A_a^n} = \left(\frac{N}{1 + B_g A_a^n} \right)^n \]

\[S_{A_E} = \left(S_{A_{fl}} \right)^N \cdot \frac{1}{N^{n-1}} \ll S_{A_E} \]
\[< 1 \quad < 1 \]

Global Feedback is Very Advantageous (in terms of sensitivity, it is less advantageous in terms of stability)

Because there's no clear winner, both solutions are used, often at the same time.

Block Diagrams of Feedback Amplifiers

(relationship between feedback theory and control system theory)

From this circuit, we can immediately derive a block diagram where loading effects and scale factors are taken into account.

\[x_s = k_s u_s \]
\[u_i = \frac{n_i}{n_i + r_i} \]
\[A_i = \frac{a_i}{a_i + r_i} \]
\[u_0 = \frac{a_0}{a_0 + r_0} \]
\[A_c = a_i A_0 a_o \]

Equivalent Circuit of a voltage amplifier with feedback
It is then possible to interconnect block diagrams to treat complex amplifier organizations such as:

- Cascade organization
- Nested loop organization
- Intertwined loop organization

But care must be taken to account for loading effects.

1. **Cascade**

2. **Nested Loop**

3. **Intertwined**

1. Cascade

These must be calculated considering the loading effects.

2. Nested Loop

We need to take into account loading effects here.

3. Intertwined

We need to take loading effects into account.
In general terms, the bandwidth widening property holds but care must be taken before applying such property to any amplifier.

Consider this example:

$$R_s$$

![Circuit diagram]

Single pole raised at

$$\omega_p = \frac{1}{RC}$$

which obviously does not depend on $$T$$ or $$1+T = 1+A$$

The reason the pole does not depend on $$T$$ is that it is placed outside the feedback loop. Actually, the pole is located inside $$\mu_s$$.

Let's consider another example:

$$R_s$$

![Circuit diagram]

Again, the pole does not depend on $$T$$

Indeed, $$C_s$$ "sees" the same resistance $$R_s + R_G$$ no matter the value of $$T$$.

Using feedback theory, we can calculate $$A$$ and $$\beta$$ exactly. Therefore, we can also find $$T = 3a_R$$.

Once we have $$T$$, we can use Nyquist theorem and
Discuss the amplifier stability.

But we can also shape the B-network to enhance the amplifier's stability margins (phase margin and/or gain margin).

This is caused by compensation of an amplifier. This will be the object of next lessons.

Example

CE amplifier with self-bias

\[
\begin{align*}
\text{Small signal equivalent circuit at mid-band} \\
\text{1. Find } A_0 &= \frac{V_o}{V_i} \text{, } R_{in} \text{ and } R_{out} \\
\text{2. Discuss the pole location} \\
\text{3. Draw the amplifier block diagram.}
\end{align*}
\]