Sia $f : K^n \rightarrow K^m$ K-lineare. Esso è del tipo $x \rightarrow Ax$.

Posso considerare $f_A : K^n \rightarrow K^m$ con $A \in M_{m \times n}(K)$.

Inoltre sia $A = (A_1, \ldots, A_n)$ e $A_i = \xi(e_i)$ colonne di K^m.

Nota che $f_A(e_i) = A_i(r_s(e_i))$ è l'orma $A_i = f(e_i)$.

Dunque $f = f_A$ perché coincidono sulla base canonica.

Conseg.: Ogni $f : K^n \rightarrow K^m$ lineare è del tipo $x \rightarrow Ax$.

Voglio mostrare che $C = BA$.

$A = (A_1, \ldots, A_n)$,

$C = (C_1, \ldots, C_n)$.

Per mostrare che la colonna i-esima di C è la colonna i-esima di BA:

$C_i = \begin{pmatrix} c_{i1} \\ \vdots \\ c_{in} \end{pmatrix} = (g \circ f)(e_i) = g(f(e_i)) = g(A_i) = BA_i$.

$c_{i1} = (\text{riga } 1 \text{ di } B) \cdot A_i$,

$c_{1i} = (\text{riga } 2 \ldots) \cdot A_i$,

$c_{kn} = (\text{riga } n \ldots) \cdot A_i$.
Ricorda: $A(BC) = (AB)C \quad \text{prop. associativa}$
Sono f_A, f_B, f_C le applicazioni.
Essere associate ad A, B, C vuol dire $(x - A x) + (y - B y) + (z - C z) = 0$.

Il lemma è:
\[
\text{Hom}(K^n, K^m) \ni f: K^n \rightarrow K^m \quad \text{lineare}
\]
La struttura di spazio su K
\[
f, g: K^n \rightarrow K^m \quad \text{lineari}, (f + g)(v) = f(v) + g(v)
\]
\[
(df)(v) = df(v)
\]
con quale def \in su K.

Lema
\[
\alpha: \text{Hom}(K^n, K^m) \rightarrow M_{m \times n}(K) \quad \text{e lineare e amb. isomorfismo}
\]
Da verifica: $\alpha(f + g) = \alpha(f) + \alpha(g)$
\[
\alpha(\lambda f) = \lambda \alpha(f)
\]
È immediato [basta vedere $(f + g)(e_i) = f(e_i) + g(e_i) = A_i + B_i = (A + B)_i$]
\[
(d f)(e_i) = d f(e_i) = d A_i = (d A)_i
\]

. $A(BC) = AB + AC$

è equivalente a vedere $c^T f_A f_B f_C = f_A f_B + f_A f_C$
È in verifica subito!
\[
f_B, f_C: K^n \rightarrow K^m
\]
\[
\left(f_A \circ (f_B + f_C) \right)(v) = f_A \left(\left(f_B + f_C \right)(v) \right) = f_A \left(f_B(v) + f_C(v) \right)
\]
\[
= f_A \left(f_B(v) \right) + f_A \left(f_C(v) \right) = f_A \circ f_B(v) + f_A \circ f_C(v)
\]
Sia $f : V \rightarrow W$ lineare tra spazi vettoriali di dimensione finita.
Sia $V = \{v_1, \ldots, v_m\}$ base di V.
Sia $W = \{w_1, \ldots, w_m\}$ base di W.
Sia A la matrice tali A_i che riportano le coordinate del $A_i = f(v_i)$ nella base W.

Allora se $v \in V$ ha coordinate $x \in \mathbb{K}^n$.
$f(v) \in W$ ha coordinate $y \in \mathbb{K}^m$ con

$$Y = Ax$$

Per definizione di A

$$(\alpha \circ f)(v_i) = \alpha(v_i) = A_i$$

Dunque $\alpha \circ f = f \circ \alpha$ perché coincidono sui vettori di V.

Riassunto.

$A \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ del tipo $x \mapsto Ax$.
$
\text{Hom}(\mathbb{K}^n, \mathbb{K}^m) \cong \mathcal{M}_{m \times n}(\mathbb{K})
\text{iso di sp. vett. standard}
$

\text{Dimostrazione!}$

$V \xrightarrow{f} W$

$A \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$

$\text{Hom}(V, W) \xrightarrow{\text{iso}} \mathcal{M}_{m \times n}(\mathbb{K})$

$f \mapsto A$

$\text{si mappano}
\alpha(f) = A_{\alpha(f)}(f) = A$

came nel caso di sp. vett. standard.
Osservazione

\[\begin{array}{cccc}
V & \xrightarrow{f} & W & \xrightarrow{g} & Z \\
\alpha_{VW} & \downarrow & \delta_{WZ} & \downarrow & \gamma_{Z} \\
\kappa^{n} & \xrightarrow{\alpha_{VW}} & \kappa^{m} & \xrightarrow{\delta_{WZ}} & \kappa^{p}
\end{array} \]

\[\alpha_{VW}(g \circ f) = BA \]
\[\alpha_{WZ}(f \circ g) = C \]

Def. Siano \(V, V' \) basi di \(V \)

La mappa \(\alpha_{VW}(\text{id}_V) \) è una mappa di cambi di base.

\[\begin{array}{c}
\Sigma x_i \sigma_i \\
V \\
\alpha_{VW}(\text{id}_V) \\
\Sigma y_i \sigma_i'.
\end{array} \]

\[\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \]

\[A = \alpha_{VW}(\text{id}) \]

Nota: le coordinate \(x_i \) di \(v \) sono \(a \)

\[\begin{array}{c}
V \\
\alpha_{VW}(\text{id}_V) \\
B \\
C = 1_n \\
\Sigma x_i \sigma_i \\
a \end{array} \]

\[\Rightarrow BA = C = 1_n \]

\[B = A^{-1} \]
(Ripendo domani !)

\[f: V \to W \quad \text{la \ lineare} \quad \forall \alpha, \beta \in \mathbb{K} \quad \exists \gamma \in \mathbb{K} \quad f(\alpha \cdot v + \beta \cdot w) = \alpha \cdot f(v) + \beta \cdot f(w) \]

\[f^{-1}(\{w\}) \subset f^{-1}(w) \begin{cases} \text{con} \quad f(v) = w \quad \Rightarrow \quad v + \ker f \subset \ker f \\ \text{no soluzione in generale} \quad \forall \neq 0 \end{cases} \]

\[\ker f = \text{Sol} (A x = 0) \]

(Confrontato con dim di R.C.)

\[f: V \to W \quad A = \text{cara} (f) \]

\[\text{dim} \ker f = \text{cara} A \quad A = \text{cara} (f) \]

\[\text{dim} V = \text{dim} \ker f + \text{dim} \text{Im} f \]

\[m = \text{dim} K^n = \text{dim} \ker f + \text{dim} \text{Im} f \]
\[\text{dim} \ker f = n - \text{rk} \ker A = \text{rk} \ker A \]

\[\text{dim} \ker f_A = \text{dim} \ker A \leq n - \text{rk} \ker A \]

\[\text{dim} \ker (Ax = 0) = n - \text{rk} \ker A \]

\[\Rightarrow \text{rk} \ker A = \text{rk} \ker A \]

(una delle possibili dim)

\[E \text{ proiezioni in } \text{ su } \ker A \]

\[V = \mathbf{U} \oplus \mathbf{W} \rightarrow \mathbf{U} \]

\[\mathbf{K} \ker \pi = \mathbf{W} \]

\[\mathbf{K} \ker \pi' = \mathbf{U} \]

\[\mathbf{K} \ker \pi \mathbf{w} = \mathbf{W} \]

\[\mathbf{K} \ker \pi' \mathbf{w} = \mathbf{U} \]

\[\mathbf{K} \ker \pi \mathbf{w} = \mathbf{W} \]

\[\mathbf{K} \ker \pi' \mathbf{w} = \mathbf{U} \]

\[\text{Im} \pi \mathbf{w} = \mathbf{U} \]

\[\text{Im} \pi' \mathbf{w} = \mathbf{V} \]

\[\mathbf{V} \rightarrow \mathbf{V} \rightarrow \mathbf{V} \]

\[\mathbf{u} + \mathbf{w} \rightarrow \mathbf{u} \rightarrow \mathbf{w} \]

\[\mathbf{V} = \mathbf{U} \oplus \mathbf{W} \]

\[\sigma_{\mathbf{w}} \mathbf{u} \rightarrow \mathbf{V} \rightarrow \mathbf{V} \]

\[\mathbf{u} + \mathbf{w} \rightarrow \mathbf{u} \rightarrow \mathbf{w} \]

\[\mathbf{u} = \mathbf{U} \oplus \mathbf{W} \]

\[\sigma_{\mathbf{w}} \mathbf{u} \rightarrow \mathbf{V} \rightarrow \mathbf{V} \]

\[\mathbf{u} + \mathbf{w} \rightarrow \mathbf{u} \rightarrow \mathbf{w} \]

\[\sigma_{\mathbf{w}} \mathbf{u} \rightarrow \mathbf{V} \rightarrow \mathbf{V} \]

\[\mathbf{u} + \mathbf{w} \rightarrow \mathbf{u} \rightarrow \mathbf{w} \]

\[\mathbf{V} = \mathbf{U} \oplus \mathbf{W} \]

\[\sigma_{\mathbf{w}} \mathbf{u} \rightarrow \mathbf{V} \rightarrow \mathbf{V} \]

\[\mathbf{u} + \mathbf{w} \rightarrow \mathbf{u} \rightarrow \mathbf{w} \]

\[(\sigma_{\mathbf{w}})^2 = (\sigma_{\mathbf{w}})(\sigma_{\mathbf{w}}(\mathbf{u} + \mathbf{w})) = \sigma_{\mathbf{w}}(\mathbf{u} - \mathbf{w}) : \mathbf{u} + \mathbf{w} \]
\[(\sigma_u^w)^2 = \text{id} \]

\[\sigma_u^w (u + w) = u - w = \pi_u^w - \pi_w^u \]

\[\sigma_u^w = \pi_u^w - \pi_w^u = \text{id} - \pi_u^w - \pi_w^u = \text{id} - 2 \pi_w^u \]

\[E_{\mathfrak{su}(2)} \quad R^2 = \langle 0 \rangle^u \oplus \langle 1 \rangle^w \]

\[f = \pi_u^w \]

\[\alpha_{gg}(f) = ? \]

\[\alpha_{gw}(f) = ? \]

\[\alpha_{uw}(f) = ? \]

\[U = \{ u_1, u_2 \} \]