Exercise 1. Let
\[V_k(x) = \frac{k}{3}x^3 - x, \quad x \in \mathbb{R} \text{ and } k \in \mathbb{R}. \]

(a) Draw the bifurcation diagram for \(\dot{x} = V_k(x) \).
(b) Draw the cobweb plot for the discrete dynamical system given by the iteration of the map \(V_1(x) \). Determine equilibria and their (linear) (un)stability.
(c) Draw the phase-portraits for \(\ddot{x} = -V_k'(x) \) corresponding to \(k > 0 \), \(k < 0 \) and \(k = 0 \).
(d) Linearize \(\ddot{x} = -V_k'(x) \) around \((\pm 1, 0)\). Establish the quality of these equilibria for the linearized system; say –if it makes sense– the winding direction.
(e) Establish for which values of \(v \in \mathbb{R} \) the solution of \(\ddot{x} = -V_1'(x) \) with initial datum \((1, v)\) is periodic.
(f) How many orbits of \(\ddot{x} = -V_1'(x) \) correspond to the energy value \(E = V_1(-1) \)?

Exercise 2. Let consider the vector field on \(\mathbb{R}^3 \):
\[X(x, y, z) = \begin{pmatrix} yz^2 \\
-(x-1)^2xz^2 \\
(2-x)x^2yz \end{pmatrix} \]

(a) Prove that \(F(x, y, z) = x^2 + y^2 - z^2 \) is a first integral for \(X \).
(b) Give the definition of (topological) stability and asymptotic stability. Explain why the equilibrium \((1, 0, 2)\) for \(X \) cannot be asymptotically stable.
(c) Can the dynamics corresponding to such \(X \) have a limit cycle?

Exercise 3. Give the definition of invariant set for a continuous flow \(\varphi_t : \mathbb{R}^n \rightarrow \mathbb{R}^n \). Let \(\beta \in \mathbb{R} \) be fixed. For the vector field on \(\mathbb{R}^2 \):
\[X(x, y) = \begin{pmatrix} -3x + y \\
(\beta - 3)y \end{pmatrix} \]
show that the line \(y = \beta x \) is an invariant set.

Exercise 4. Sketch a phase portrait in the plane consistent with the following information: three equilibria, one saddle and two stable nodes.