Theorem (Bolzano) \(f: I \rightarrow \mathbb{R} \) interval.

\(x_1, x_2 \in I \) s.t. \(x_1 < x_2 \)

\(f(x_1) < 0 \)

\(f(x_2) > 0 \)

\(\Rightarrow \exists \ x \in]x_1, x_2[\) s.t.

\(f(x) = 0 \)

Corollary (Intermediate value theorem)

\(f: I \rightarrow \mathbb{R} \) continuous

\(x_1, x_2 \in I \)

\(x < x_2 \)

\(f(x_1) = \alpha \)

\(f(x_2) = \beta \)

\(\alpha < \beta \). If \(x \in]\alpha, \beta[\)

\(f(x) = 0 \)

Diagram:

- \(x_1 \), \(x_2 \), \(x \)
- \(I \)
- \(\mathbb{R} \)
Then $\exists x \text{ s.t. } f(x) = x$

Proof: $g: I \rightarrow \mathbb{R}$
\[g(x) = f(x) - x \]
\[g(x) = f(x) - x = a - x < 0 \]
\[g(x_2) = f(x_2) - x_2 > b - x > 0 \]
by Bolzano th.
\[\exists x \text{ s.t. } g(x) = 0 \]
\[0 = g(x) = f(x) - x \]
\[\iff f(x) = x \]
q.e.d.

Corollary. $f: [a, b] \rightarrow \mathbb{R}$
continuous. Then
\[f([a, b]) = [m, M] \]
where $m = \min f$ and $M = \max f$.

Exercise: \(f: [a, b] \to \mathbb{R} \)

if injective and continuous

Let \(x \in \mathbb{R}, x \neq a, b \). Then

\(f(a) < f(x) < f(b) \)

if \(f(x) \neq f(a) \) then by injectivity

\(f(x) \neq f(b) \)

\(f(a) < f(x) < f(b) \)

\[\exists x \in \mathbb{R} \text{ s.t. } f(x) = x \]

\[f'(a) = f'(b) \]
Exercise \(f : \mathbb{R} \to \mathbb{R} \) continuous.

\[
\lim_{x \to -\infty} f(x) = +\infty \\
\lim_{x \to +\infty} f(x) = +\infty
\]

Then there exists a minimum.

By contradiction there is no minimum.

For every \(n \in \mathbb{N} \)

\[\exists x_0 \in \mathbb{R} \text{ s.t. } f(x_0) < -n \]
\[\inf f(\mathbb{R}) \geq C \]

\[C \in \mathbb{R} \quad \text{then } n \in \mathbb{N} \]

\[\exists \ y_n \in f(\mathbb{R}) \ s.t. \]

\[C \leq y_n < \frac{C + 1}{n} \]

\[f(x_n) \text{ is unbounded} \]

\[\text{there is a subsequence} \]

\[x_{n_k} \to +\infty \]

\[\lim_{n \to \infty} f(x_{n_k}) = +\infty \]

\[y_{n_k} \to c \in \mathbb{R} \]

\[\inf f(\mathbb{R}) (C) = -\infty \]
\(f(x_n) < -n \)

if \((x_n) \) is unbounded

\(\exists x_{n_k} \rightarrow +\infty \) (or \(-\infty\))

\(\lim_{k \rightarrow +\infty} f(x_{n_k}) = +\infty \)

by hypothesis \(\lim_{n \rightarrow \infty} f(x_n) = +\infty \)

Finish the exercise with showing that also \((x_n) \) bounded

is a contradiction (Weierstras Th)
Exercise: \(f, g : \mathbb{R} \to \mathbb{R} \)

1. Find \(f \) and \(g \) s.t.
 - \(f \) is continuous
 - \(g \) is not continuous
 - \(g \circ f \) is continuous

2. Find \(f \) and \(g \) both not continuous, but \(g \circ f \) is continuous

Exercise: \(f(x) = 3x^3 - 8x^2 + x + 3 \)

Show that there are 3 distinct solutions of \(f(x) = 0 \) with \(x, x_1, x_2, x_3 \in \mathbb{R} \), with \(x, x_1 \in]-\infty, 0[^2 \), \(x_2 \in]0, 1[^2 \), \(x_3 \in]1 + \infty[^2 \).
\[f(0) = 3 \]
\[f(-1) = -3 - 8 - 1 + 3 = -9 \]
\[f(0) > 0 \quad f(-1) < 0 \]
\[\therefore x_1 \in]-1, 0[\]

By Intermediate Value Theorem

\[f(x_2) = 0 \]
\[f(1) = 3 - 8 + 1 + 3 = \]
\[= -1. \]

\[\exists \ x_2 \in]0, 1[\]

s.t.

\[f(x_2) = 0 \]

\[f(0) = 24 - 32 + 2 + 3 = 0 \]
\[= -8 + 2 + 3 = -3 \leq 0 \]
\[f(3) = 243 - 72 + 3 + 3 > 0 \]
\[\Rightarrow \quad x_3 \in]1, 3[\]
\[\therefore \quad p. d. \]

Exercise

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]

\[a_n \neq 0 \]

a polynomial of degree \(n \), \(n \) odd.

Show that the equation \(p(x) = 0 \) has (at least) one solution.
Suppose \(a_n > 0 \)

\[
\lim_{x \to \infty} a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 =
\]

\[
= \lim_{x \to \infty} x^n \left(a_n + a_{n-1} \frac{x}{x} + \ldots + \frac{a_0}{x^n} \right)
\]

\[
= +\infty
\]

If \(a_n < 0 \)

\[
\lim_{x \to \infty} p(x) = -\infty
\]

If \(a_n > 0 \)

\[
\lim_{x \to -\infty} p(x) = -\infty
\]

\[
a_n < 0 \quad \lim_{x \to -\infty} p(x) = +\infty
\]

If \(d_n > 0 \)

Since \(p(x) \xrightarrow[x \to \infty]{} +\infty \)

There is \(M \) s.t. \(\forall x > M \)

\[
p(x) > 1
\]
Since $p(x) \to -\infty$ as $x \to \pm \infty$,

there is K s.t.

$\forall x < K \quad p(x) < -1$

Choose x_1, according to \textcircled{a} and x_2

according to \textcircled{b}

$p(x_1) > 1 > 0$

$p(x_2) < -1 < 0$

Bolzmann distribution $\overline{\xi}$ in the interval of extremes such that $p(\overline{\xi}) = 0$
Author method: I know I can factor

\[p(x) = p_1(x) \cdot p_2(x) \cdots p_k(x) \]

due to all \(p_i \) being of degree 1 or 2.

Since \(p \) has odd degree there must be at least one \(p_i \) having degree 1.

\[p_i = (ax + b) \]

\[p(x) = (ax + b)(q(x)) \]

If \(x = -\frac{b}{a} \)

\[p(x) = 0 \cdot q(x) = 0 \]
$f: D \rightarrow \mathbb{R}$

Simplest functions are the linear ones, that
depicted by:

\[r(x) = mx + q, \]

where graphs are lines

\[x = \overline{x} \]

The line $x = \overline{x}$ is a vertical asymptote
of f if $\lim_{x \to \overline{x}} f(x) = \pm \infty$.
or \(\lim_{x \to \infty} f(x) = \pm \infty \)

If \(\lim_{x \to \infty} f(x) = \ell \in \mathbb{R} \)
we say that \(f(x) \) has the horizontal asymptote \(y = \ell \) for \(x \to \infty \).
\[
\lim_{x \to a^-} f(x) = +\infty \\
(a - \infty)
\]

\[y = mx + q\]

\[
\lim_{x \to +\infty} (f(x) - (mx + q)) = 0 \quad \ast
\]

If \[y = mx + q\] is called asymptote of \(f\) for \(x \to +\infty\).
Determine \(m \) and \(q \).

By \(\circ \)

\[
\lim_{x \to 10} \frac{f(x) - mx - q}{x} = 0
\]

\[
11
\]

\[
\lim_{x \to 10} \frac{f(x) - m}{x} = 0
\]

\[
\Rightarrow \quad m = \lim_{x \to 10} \frac{f(x)}{x}
\]

From \(\circ \)

\[
q = \lim_{x \to 10} \frac{f(x) - mx}{x - 10}
\]
f(x) = x + x^2
\[
\lim_{x \to 2} \frac{x^2 - x^2}{\sqrt{x^3 + x}} = \frac{1}{2}
\]

\[y = x + \frac{1}{2} \]

is the asymptote

\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x + \log x}{x} = \lim_{x \to +\infty} \frac{x + \log x}{x} = 1
\]

\[m = 1\]

\[q = \lim_{x \to +\infty} (x - x) = \lim_{x \to +\infty} \log x - x = \lim_{x \to +\infty} \log x = +\infty\]