Regularization and Stability

Machine Learning 2022-23
UML book chapter 13
Regularized Loss Minimization (RLM)

Key idea: jointly minimize empirical risk and a regularization function

- **Hypothesis** h: defined by a vector $\mathbf{w} = (w_1, \ldots, w_d)^T \in \mathbb{R}^d$
 - e.g., coefficients of a linear model, weights in a neural network, etc..
- **Regularization function** $R: \mathbb{R}^d \rightarrow \mathbb{R}$, function of \mathbf{w}
- **Regularized Loss Minimization (RLM)**: select h from:

 $$\text{argmin}_{\mathbf{w}} (L_s(\mathbf{w}) + R(\mathbf{w}))$$

- $L_s(\mathbf{w})$: standard loss for the considered problem
- $R(\mathbf{w})$: regularization term (measures in some way the "complexity" of the found solution)

- The regularization term balances between low empirical risk and aiming at less complex hypotheses
- It is possible to view the extra term as a "stabilizer"
Tikhonov Regularization

- Define function R using the $\|w\|^2$ norm of the weights:
 \[R(w) = \lambda \|w\|^2 = \lambda \sum_{i=1}^{d} w_i^2 \]
- Output of function R is a real positive number
- Learning Rule: $A(s) = \text{argmin}_w (L_s(w) + \lambda \|w\|^2)$

- $\|w\|^2$ measures the "complexity" of the hypothesis defined by w
- λ: controls the amount of regularization
 - It controls the trade-off between empirical error and complexity
 - Low empirical error but risk of overfitting or higher empirical error but lower complexity
Ridge Regression:

Linear Regression with squared loss + Tikhonov regularization

Linear Regression with squared loss: find \mathbf{w} that minimizes the squared loss

$$
\mathbf{w} = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2
$$

Ridge Regression: find \mathbf{w} that minimizes

$$
\mathbf{w} = \arg\min_{\mathbf{w}} \left(\lambda \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 \right)
$$

λ balances between the 2 targets

Balancing should not depend on the size of training set
Closed Form Solution

- Find optimal w: minimize loss \(\frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (\langle w, x_i \rangle - y_i)^2 \)

- Compute gradient w.r.t. w and set to 0

\[
\frac{\partial L}{\partial w} = 2\lambda w + \frac{1}{m} \sum_{i=1}^{m} (\langle w, x_i \rangle - y_i) x_i = 0 \rightarrow 2\lambda m w + \sum_{i=1}^{m} \langle w, x_i \rangle x_i = \sum_{i=1}^{m} y_i x_i
\]

- Set (as for standard least squares)

\[
A = \left(\sum_{i=1}^{m} x_i x_i^T \right) = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & x_1 & \vdots \\ \vdots & x_m & \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \\
\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}
\]

- The solution can be rewritten as*:

\[
2\lambda m I w + A w = b \rightarrow w = (2\lambda m I + A)^{-1} b
\]

differently from standard least square in this case the matrix is always invertible
Tikhonov regularization makes the learner stable w.r.t. small perturbations of the training set. This in turn leads to small bounds on generalization error.

Informally: an algorithm A is stable if a small change of the training data S (i.e., its input) will lead to a small change of its output hypothesis.

- What is a “small change of the training data”?
- What is a “small change of its output hypothesis”?

"small change of the training data" = replace one sample!
- Given $S = (z_1, ..., z_m)$ and an additional example z' (i.e., pair instance label/target) let $S^{(i)} = (z_1, ..., z_{i-1}, z', z_{i+1}, ..., z_m)$

“small change of its output hypothesis” = small change in the loss
- On-Average-Replace-One-Stable (OAROS) algorithms

Definition:
Let be $\epsilon : \mathbb{N} \rightarrow \mathbb{R}$ a monotonically decreasing function. We say that a learning algorithm A is on-average-replace-one-stable (OAROS) with rate $\epsilon (m)$ if for every distribution D:

$$\mathbb{E}_{(S,z') \sim D^{m+1}, i \sim U(m)}[l(A(S^{(i)}), z_i) - l(A(S), z_i)] \leq \epsilon(m)$$

- Draw IID from D
- Select at random which to replace
- With z' in place of z_i
- Depends on training set size
Stable Rules do not Overfit

Theorem:
If algorithm A is OAROS with rate $\epsilon(m)$ then:
$\mathbb{E}_{S \sim D} [L_D(A(S)) - L_S(A(S))] \leq \epsilon(m)$

Demonstration
1. True error: expected loss on one IID sample (from D):
 $\forall i: \mathbb{E}_S[L_D(A(S))] = \mathbb{E}_{S,z'}[l(A(S), z')] = \mathbb{E}_{S,z'}[l(A(S^{(i)}), z_i)]$
2. Training error: average error on one sample in training set:
 $\mathbb{E}_S[L_S(A(S))] = \mathbb{E}_{S,i}[l(A(S), z_i)]$
3. Combine (1)+(2) and exploit linearity of expectation and OAROS def.
 $\mathbb{E}_S[L_D(A(S)) - L_S(A(S))] = \mathbb{E}_{S,z',i}[l(A(S^{(i)}), z_i) - l(A(S), z_i)] \leq \epsilon(m)$
Definition (Lipschitzness):

Let $C \subseteq \mathbb{R}^d$. A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is ρ-Lipschitz over C if

$$\forall \mathbf{w}_1, \mathbf{w}_2 \in C, \text{ we have that } \|f(\mathbf{w}_1) - f(\mathbf{w}_2)\| \leq \rho \|\mathbf{w}_1 - \mathbf{w}_2\|$$

- Intuitively: the function cannot change too fast
- For derivable functions corresponds to bound on derivative:
 - If derivative bounded by ρ at any point \Rightarrow function is ρ-Lipschitz
Tikhonov Regularization is a Stabilizer

Theorem:
Assume the loss function is convex and ρ-Lipschitz continuous.
Then, the RLM rule with regularizer $\lambda \|w\|^2$ is OAROS with rate $\frac{2\rho^2}{\lambda m}$.
It follows that for the RLM rule:

$$\mathbb{E}_{S \sim D^m} [L_D(A(S)) - L_S(A(S))] \leq \frac{2\rho^2}{\lambda m}$$

- Tikhonov Regularization is a Stabilizer
- Larger λ leads a more stable solution (→ less overfitting)
- Larger training set also leads to more stable solution
- First step: demonstration not part of the course
- Second step: consequence of previous theorem
Fitting-Stability Trade-off (1)

\[E_S[L_D(A(S))] = E_S[L_S(A(S))] + E_S[L_D(A(S)) - L_S(A(S))] \]

- \(E_S[L_S(A(S))] \): how well A fits the training set S
- \(E_S[L_D(A(S)) - L_S(A(S))] \): measures overfitting, bounded by stability of A

In Tikhonov regularization, \(\lambda \) controls tradeoff between the 2 terms

- how do \(L_S(A(S)) \) and \(\|w\|^2 \) vary as a function of \(\lambda \)?
 - Larger \(\lambda \) leads to higher empirical risk \(L_S(A(S)) \)
- how may \(E_S[L_D(A(S)) - L_S(A(S))] \) change as a function of \(\lambda \)?
 - On the other side increasing \(\lambda \) the stability term \(E_S[L_D(A(S)) - L_S(A(S))] \) decreases
- How to set \(\lambda \)?
 - Theoretical bound in the book
Fitting-Stability Trade-off (2)

\[E_S[L_D(A(S))] = E_S[L_S(A(S))] + E_S[L_D(A(S)) - L_S(A(S))] \]

- \(E_S[L_S(A(S))] \): how well A fits the training set S
- \(E_S[L_D(A(S)) - L_S(A(S))] \): measures overfitting, bounded by stability of A

Small \(\lambda \): focus on training error
- Training error \(L_S \): small
- Difference \(L_D - L_S \): large
- Overfitting the training data

Large \(\lambda \): focus on regularization
- Training error \(L_S \): large
- Difference \(L_D - L_S \): small
- Underfitting the training data