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 The structure of alliance networks influences their potential for knowledge creation. Dense local clustering provides information transmission capacity in the network by fostering communication and cooperation.
 Nonredundant connections contract the distance between firms and give the network greater reach by tapping
 a wider range of knowledge resources. We propose that firms embedded in alliance networks that exhibit both
 high clustering and high reach (short average path lengths to a wide range of firms) will have greater innovative
 output than firms in networks that do not exhibit these characteristics. We find support for this proposition in
 a longitudinal study of the patent performance of 1,106 firms in 11 industry-level alliance networks.
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 Introduction
 Although research has long recognized the impor
 tance of interfirm networks in firm innovation (see
 Freeman 1991 for a review), much of this work has
 treated the network concept as a metaphor. Only
 recently have researchers begun to assess the formal
 structural properties of alliance networks and their
 impact on firm innovation. This research has focused
 on a firm's position within a broader network of
 relationships or the structure of its immediate net
 work neighborhood rather than the structure of the
 overall network. Studies have examined a firm's cen

 trality (Smith-Doerr et al. 1999), number of alliances
 (Shan et al. 1994), and local network structure (Ahuja
 2000, Baum et al. 2000). To our knowledge, empir
 ical research has not yet examined the impact of
 the structure of industry-level1 alliance networks on

 member firm innovation. In a related study, how
 ever, Uzzi and Spiro (2005) examined the network
 structure of the creative artists who made broadway

 musicals from 1945 to 1989, and concluded that the
 large-scale structure of the artists' collaboration net

 work significantly influenced their creativity, and the
 financial and artistic performance of their musicals.
 This raises the following questions: Does the structure

 of an industry-level interfirm network influence the
 rate of knowledge creation among firms in the net
 work? If so, what structural properties will enhance
 firm innovation?

 To address these questions, we examine the impact
 of two key large-scale network properties, clustering
 and reach, on the innovative output of members of
 the network. The dense connectivity of clusters cre
 ates transmission capacity in a network (Burt 2001),
 enabling large amounts of information to rapidly
 diffuse, while reach (i.e., short path lengths to a
 wide range of firms) ensures that diverse information
 sources can be tapped. We argue that networks with
 both high clustering and high reach will significantly
 enhance the creative output of member firms. We test
 this hypothesis using longitudinal data on the inno
 vative performance of a large panel of firms operating
 in 11 industry-level alliance networks.

 This research offers several important contributions
 for understanding knowledge creation in interfirm
 networks. First, we find empirical support for our
 argument that the combination of clustering and
 reach increases member firm innovation. To our
 knowledge, no other study has attempted to assess
 the effect of industry-level interfirm networks on the
 innovation performance of member firms. Although
 recent studies have examined the structure of large
 scale interfirm networks and the possible causes of
 these structures (Baum et al. 2003, Kogut and Walker

 1 An industry-level network is a specific type of whole or "large
 scale" network. Wellman (1988, p. 26) defined a whole network as
 the relationships that exist among members of a population.

 1113
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 2001), little research has examined the consequences of
 large-scale network structure in an industrial setting
 (Uzzi and Spiro 2005 is a recent exception). Second,

 while most studies of network structure have exam

 ined a single industry, our study uses longitudinal
 data on 11 industries, which strengthens the general
 izability of our findings.
 We begin by describing two key structural char

 acteristics of interfirm networks and their effect on
 information diffusion in the network. From this we

 develop a hypothesis about how the structure of inter
 firm networks will influence the innovative output
 of member firms. We test the hypothesis on a large,
 unbalanced panel of firms embedded in 11 industry
 level alliance networks.

 Large-Scale Interfirm Networks and
 Firm Knowledge Creation
 We adopt a recombinatory search perspective in
 explaining the process of innovation (Fleming 2001).
 Innovation is characterized as a problem-solving pro
 cess in which solutions to problems are discovered via
 search (Dosi 1988). Prior research suggests that search
 processes that lead to the creation of new knowl
 edge, embodied in artifacts such as patents and new
 products, most often involve the novel recombination
 of known elements of knowledge, problems, or solu
 tions (Fleming 2001, Nelson and Winter 1982) or the
 reconfiguration of the ways in which knowledge ele

 ments are linked (Henderson and Clark 1990). Crit
 ical inputs into this process include access to and
 familiarity with a variety of knowledge elements (e.g.,
 different technological components and the scien
 tific and engineering know-how embedded in them),
 novel problems and insights into their resolution,
 failed recombination efforts, and successful solutions
 (Hargadon and Fanelli 2002). Firms that have greater
 access to and understanding of these recombinatory
 resources should be advantaged in their innovation
 efforts.

 As firms form and maintain alliances with each

 other, they weave a network of direct and indirect
 relationships. As a result, firms embedded in these
 networks gain access to information and know
 how of direct partners and that of others in the
 network to which they are indirectly connected
 (Ahuja 2000, Gulati and Gargiulo 1999). The net

 work of alliance relationships constitutes a conduit
 that channels the flow of information and know
 how among firms in the network (Ahuja 2000, Owen
 Smith and Powell 2004), with each member firm
 acting as both a recipient and transmitter of infor

 mation (Ahuja 2000). The structure of these networks
 greatly influences the dynamics of information dif
 fusion within the networks. Large-sample studies

 have found that direct alliance relationships facilitate
 knowledge flows between partners (Gomes-Casseres
 et al. 2006, Mowery et al. 1996) and enhance the
 innovative performance of firms (e.g., Deeds and Hill
 1996, Stuart 2000). Research also shows that the extent
 to which a firm is indirectly connected to other firms
 in an alliance network enhances its innovativeness
 (Ahuja 2000, Owen-Smith and Powell 2004, Soh 2003).
 Given the role of direct and indirect ties as channels

 for the flow of information and know-how, we argue
 that the structure of the interfirm network will signifi
 cantly influence the recombination process. Two struc
 tural characteristics that have a particularly important
 role in diffusion are clustering and reach.

 Clustering
 Alliance networks tend to be highly clustered: Some
 groups of firms will have more links connecting them
 to each other than to the other firms in the net

 work. A firm's clustering coefficient can be calculated
 as the proportion of its partners that are themselves
 directly linked to each other. The clustering coefficient
 of the overall network is the average of this measure
 across all firms in the network. Several mechanisms

 lead to clustering in interfirm knowledge networks,
 but two of the most common are linking based on
 similarity or complementarity. Firms tend to interact

 more intensely or frequently with other firms with
 which they share some type of proximity or similarity,
 such as geography or technology (Baum et al. 2003,
 Rosenkopf and Almeida 2003). This tends to result in
 a high degree of clustering.

 Clustering increases the information transmission
 capacity of a network. First, the dense connectivity
 of individual clusters ensures that information intro

 duced into a cluster will quickly reach other firms
 in the cluster. The multiple pathways between firms
 also enhance the fidelity of the information received.
 Firms can compare the information received from
 multiple partners, helping them to identify ways in
 which it has been distorted or is incomplete. Second,
 clusters within networks are important structures for

 making information exchange meaningful and use
 ful. The internal density of a cluster can increase the
 dissemination of alternative interpretations of prob
 lems and their potential solutions, deepening the
 collective's understanding and stimulating collective
 problem solving (Powell and Smith-Doerr 1994). The
 development of a shared understanding of problems
 and solutions greatly facilitates communication and
 further learning (Brown and Duguid 1991, Powell
 et al. 1996). Third, dense clustering can make firms
 more willing and able to exchange information (Ahuja
 2000). Sociologists (e.g., Coleman 1988, Granovetter
 1992) have suggested that densely clustered networks
 give rise to trust, reciprocity norms, and a shared
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 identity, all of which lead to a high level of coop
 eration and can facilitate collaboration by provid
 ing self-enforcing informal governance mechanisms
 (Dyer and Singh 1998). In addition to stimulating
 greater transparency, trust and reciprocity exchanges
 facilitate intense interaction among personnel from
 partnered firms (Uzzi 1997), improving the transfer
 of tacit, embedded knowledge (Hansen 1999, Zander
 and Kogut 1995). Thus, clustering enables richer and
 greater amounts of information and knowledge to be
 exchanged and integrated more readily.
 When dense clusters are sparsely connected to each

 other, they become important structures for creating
 and preserving the requisite variety of knowledge in
 the broader network that enables knowledge creation.
 The internal cohesion of a cluster can cause much
 of the information and knowledge shared within
 a cluster to become homogeneous and redundant
 (Burt 1992, Granovetter 1973). The dense links pro
 vide many redundant paths to the same actors, and
 thus the same sources of information and knowledge.
 Cohesion can also lead to norms of adhering to estab
 lished standards and conventions, which can poten
 tially stifle experimentation and creativity (Uzzi and
 Spiro 2005). This limits innovation. Clusters of firms
 will, however, tend to be heterogeneous across a net
 work in the knowledge they possess and produce
 due to the different initial conditions and causes for

 each cluster to form. The diversity of knowledge dis
 tributed across clusters in the network provides the
 requisite variety for recombination.

 Clustering thus offers both local and global advan
 tages. Firms benefit from having redundant connec
 tivity among their immediate neighbors because it
 enhances the speed and likelihood of information
 access, and the depth of information interpretation.
 Firms also benefit from being embedded within a
 larger network that is clustered because the informa
 tion a firm receives from partners that are embed
 ded in other clusters is likely to be more complete
 and richly understood than information received from
 partners not embedded in clusters, and because infor
 mation received from different clusters is likely to be
 diverse, enabling a wider range of recombinatorial
 possibilities.

 Reach
 The size of a network and its average path length
 (i.e., the average number of links that separates each
 pair of firms in the network) also impacts informa
 tion diffusion and novel recombination. The more
 firms that can be reached by any path from a given
 firm, the more knowledge that firm can potentially
 access. However, the likelihood, speed, and integrity
 of knowledge transfer between two firms are directly
 related to the path length separating those two firms.

 The diffusion of information and knowledge occurs
 more rapidly and with more integrity in networks
 with short average path lengths than in networks
 with longer paths (Watts 1999). A firm that is con
 nected to a large number of firms by a short aver
 age path can reach more information, and can do so
 quickly and with less risk of information distortion
 than a firm that is connected to fewer firms or by
 longer paths. To capture this we use distance-weighted
 reach.

 A firm's distance-weighted reach is the sum of the
 reciprocal distances to every firm that is reachable
 from a given firm, i.e., J2j IM// where d/; is defined
 as the minimum distance (geodesic), d, from a focal
 firm i to partner ;, where ? # /. A network's average
 distance-weighted reach is this measure averaged across
 all firms in the network, (J2n Hj ^/d^/n, where n is
 the number of firms in the network. Other things
 being equal, a very large connected network with a
 very short average path length (e.g., a completely con
 nected network where there are many firms and every
 firm is directly connected to every other firm, or a
 star graph with many firms all connected to the same
 central "hub" firm) will have the greatest average
 distance-weighted reach. Longer path lengths, smaller
 network size, or disconnects that fragment the net
 work into multiple components all decrease average
 distance-weighted reach.

 The preceding reveals one of the key benefits of
 using distance-weighted reach: It provides a mean
 ingful measure of the overall size and connectivity
 of a network, even when that network has multiple
 components, and /or component structure is changing
 over time. It avoids the infinite path length problem
 typically associated with disconnected networks by

 measuring only the path length between connected
 pairs of nodes, and it provides a more meaningful
 measure than the simple average path length between
 connected pairs by factoring in the size of connected
 components.2

 Because forming alliances is costly and constrained,
 there appears to be a trade-off between forming dense
 clusters to facilitate rapid exchange and integration of
 knowledge, versus forging links to create short paths
 to a wider range of firms. However, recent research
 has shown that even sparse, highly clustered net
 works can have high reach if there are a few links
 creating bridges between clusters (Watts 1999, Hansen
 2002, Hargadon 1998). Bridges between clusters of
 firms provide member firms access to diverse infor

 mation that exists beyond their local cluster, enabling

 2 The authors are grateful to Steve Borgatti for pointing this out.
 They are also grateful to Mark Newman for numerous discussions
 about how to handle the infinite path length consideration in our
 networks.
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 new combinations with their existing knowledge sets,
 while preserving the information transmission advan
 tages of clusters. As Uzzi and Spiro (2005) note,
 bridges between clusters increase the likelihood that
 different ideas and routines will come into contact,
 enabling recombinations that incorporate both previ
 ous conventions and novel approaches. The combi
 nation of clustering and reach thus enables a wide
 range of information to be exchanged and integrated
 rapidly, leading to greater knowledge creation. In
 sum, we predict a multiplicative interaction between
 clustering and reach in their effect on firm knowledge
 creation. Consistent with the symmetrical nature of
 such interactions (Jaccard and Turrisi 2003), we have
 argued and expect that the effect of clustering on firm
 knowledge creation will be increasingly positive as
 reach increases, while the effect of reach on knowl
 edge creation will be increasingly positive as cluster
 ing increases.

 Hypothesis. Firms participating in alliance networks
 that combine a high degree of clustering and reach will
 exhibit more knowledge creation than firms in networks
 that do not exhibit these characteristics.

 Methods
 To test our hypothesis, we constructed a large, unbal
 anced panel of U.S. firms for the period 1990-2000.
 The panel includes all U.S. firms that were part of
 the alliance networks of 11 high-technology man
 ufacturing industries: aerospace equipment (stan
 dard industrial classifications (SICs)): 3721, 3724,
 3728, 3761, 3764, 3769; automotive bodies and parts
 (3711, 3713, 3714); chemicals (281-, 282-, 285-, 286-,
 287-, 288-, 289-); computer and office equipment
 (3571, 3572, 3575, 3577); household audiovisual equip

 ment (3651); medical equipment (3841, 3842, 3843,
 3844, 3845); petroleum refining and products (2911,
 2951, 2952, 2992, 2999); pharmaceuticals (2833, 2834,
 2835, 2836); semiconductors (3674); telecommunica
 tions equipment (366-), and measuring and control
 ling devices (382-).

 The choice of industries was particularly important
 for this study. The 11 industries selected have been
 designated as high technology in numerous Bureau
 of Labor Statistics studies (e.g., Hecker 1999).3 These
 industries provide an excellent context for our study
 for three reasons. First, knowledge creation is fun
 damental to the pursuit of competitive advantage
 in high-technology industries. Second, firms in these
 industries actively use alliances in pursuit of their

 innovation activities (Vonortas 1997). Third, because
 we use patent data for our dependent variable, it is
 important to select industries that use patents. There
 is evidence that firms in these industries actively
 patent their inventions (Levin et al. 1987).

 Alliance Networks
 We chose to measure the network structure created
 by publicly reported strategic alliances for two rea
 sons. First, there is a rich history of research on
 the importance of strategic alliances as a mechanism
 for knowledge sharing among firms (Freeman 1991,
 Gulati 1998, Powell et al. 1996). Second, alliances are
 used by a wide range of firms (both public and pri
 vate) in a wide range of industries, and are often
 used explicitly for the exchange and joint creation of
 knowledge.

 Social network research has identified three proce
 dural tactics for establishing network boundaries for
 empirical research: attributes of actors that rely on
 membership criteria, such as membership in an indus
 try; types of relations between actors, such as partici
 pation in strategic alliances; and participation in a set
 of common events (Laumann et al. 1983). Accordingly,
 we employed two rules to guide our construction of
 the 11 industry networks used in this study. First, each
 alliance included at least one firm that was a member

 of the target industry (indicated by its primary four
 digit SIC). Second, each alliance had to operate in the
 target industry, as indicated by its primary four-digit
 SIC of activity.

 Alliance data were gathered using Thomson Corp.'s
 SDC Platinum database. The SDC data have been
 used in a number of empirical studies on strategic
 alliances (e.g., Anand and Khanna 2000, Sampson
 2004). For each industry, alliances were collected that
 were announced between 1990 and 1997. We chose
 1990 as the initial year for our sample because infor

 mation on alliances formed prior to 1990 is very
 sparse in the SDC database (Anand and Khanna 2000,
 p. 300). Separate alliance networks were created for
 each industry according to the alliance's primary SIC.
 Both public and private firms were included. We use
 data on only U.S. firms because the SDC alliance data
 are much more complete for U.S. firms than for non
 U.S. firms (Phelps 2003). All alliances were aggre
 gated to the parent corporation.

 The resulting data set includes 1,106 firms involved
 in 3,663 alliances. Many of the alliances included more
 than two participating firms, so the number of dyads
 is greater, totaling 5,306. Because any type of alliance

 may provide a path for knowledge diffusion, and
 because prior studies indicate that the breadth of an
 alliance's true activity is often much greater than what
 is formally reported (Powell et al. 1996), we include
 all alliance types in our analysis. We do, however,

 3 We omitted high-tech manufacturing industries that rarely use
 alliances: special industry machinery (355), electrical industrial
 apparatus (362), search and navigation equipment (381), and pho
 tographic equipment and supplies (386).
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 control for the proportion of alliances in each net
 work formed for the explicit purpose of technology
 exchange or development.

 Alliances typically last for more than one year,
 but alliance termination dates are rarely reported.
 This required us to make an assumption about alli
 ance duration. We took a conservative approach and
 assumed that alliance relationships last for three
 years, consistent with recent empirical work on aver
 age alliance duration (Phelps 2003). Other research
 has taken a similar approach, using windows rang
 ing from one to five years (e.g., Gulati and Gargiulo
 1999, Stuart 2000). We created alliance networks
 based on three-year windows (i.e., 1990-1992,1991
 1993,... 1995-1997), resulting in six snapshots of net
 work structure for each industry, for a total of
 66 alliance network snapshots. Each network snap
 shot was constructed as an undirected binary adja
 cency matrix (Wasserman and Faust 1994).4 Multiple
 alliances between the same pair of firms in a time
 window were treated as one link. UCINET 6 was used
 to obtain measures on these networks, as described
 below (Borgatti et al. 2002).

 As we focus on publicly reported contractual alli
 ance agreements, we do not observe the numer
 ous informal collaborative arrangements that exist
 between firms in our sample. Such informal arrange
 ments often lead to the types of formal agreements
 that we observe (Powell et al. 1996, Rosenkopf et al.
 2001). Thus, our analysis represents a conservative
 test of our diffusion argument because our data
 do not include informal relationships that promote
 knowledge transfer.

 Dependent Variable: Patents
 One way that knowledge creation is instantiated is
 in the form of inventions (Schmookler 1966). Knowl
 edge embedded in artifacts such as inventions rep
 resents the "empirical knowledge" of organizations
 (Hargadon and Fanelli 2002). Inventions thus pro
 vide a trace of an organization's knowledge creation.
 Patents provide a measure of novel invention that is
 externally validated through the patent examination

 process (Griliches 1990). Patent counts have been
 shown to correlate well with new product introduc
 tions and invention counts (Basberg 1987). Trajtenberg
 (1987) concluded that patents are valid and robust
 indicators of knowledge creation. One of the chal
 lenges with using patents to measure innovation is
 that the propensity to patent may vary with indus
 try, resulting in a potential source of bias (Levin
 et al. 1987). We addressed this potential bias in three
 ways. First, we sample only high-tech manufacturing
 industries, which helps to ensure a degree of com

 monality in the industries' emphasis on innovation.
 To further capture differences in emphasis on inno
 vation, we control for industry-level R&D intensity.
 Third, to control for unobserved factors that influ
 ence the propensity to patent that are likely to be sta
 ble within industries, we control for industry fixed
 effects. The propensity to patent may also differ due
 to firm characteristics (Griliches 1990). We attempt
 to control for such sources of heterogeneity using
 covariate, Presample Patents (described below), and
 firm fixed and random effects in our estimations.

 We measure the dependent variable, Patentsit, as
 the number of successful patent applications for firm /
 in year t. We used the Delphion database to collect
 yearly patent counts for each of the firms, aggregat
 ing subsidiary patents up to the ultimate parent level.
 Granted patents were counted in their year of applica
 tion. Yearly patent counts were created for each firm
 for the period of 1993 to 2000, enabling us to assess
 different lag specifications between alliance network
 structure and patent output.

 Independent Variables

 Clustering Coefficient. To measure the clustering
 in each network for each time period, we used
 the weighted overall clustering coefficient measure
 (Borgatti et al. 2002, Newman et al. 2002):

 . 3 x (number of triangles in the graph)
 w (number of connected triples)

 where a triangle is a set of three nodes (e.g., /, ;', k),
 each of which is connected to both of the others, and a
 connected triple is a set of three nodes in which at least
 one is connected to both the others (e.g., / is connected
 to j and k, but ; and k need not be connected). This

 measure indicates the proportion of triples for which
 transitivity holds (i.e., if / is connected to j and k, then
 by transitivity, j and k are connected). The factor of
 three in the numerator ensures that the measure lies

 strictly in the range of zero and one because each tri
 angle implies three connected triples. The weighted
 overall clustering coefficient represents the percentage
 of a firm's alliance partners that are also partnered
 with each other, weighted by the number of each

 4 Each matrix reflects the alliances maintained within the network

 as of the end of the focal year. Because alliances often endure
 longer than one year, constructing adjacency matrices using only
 alliances announced in the focal year would bias the connectivity of
 the observed networks downward. Consider the initial year of the
 panel for the network variables (1992): Using only alliances formed
 in 1992 would not capture the alliance relationships formed prior
 to, yet maintained through, 1992. Data on both presample alliance
 formation and alliance duration is needed to accurately assess net

 work structure in each of the sample years. Moving three-year win
 dows more accurately reflects the structure of an alliance network
 in the annual adjacency matrices. Robinson and Stuart (2007) use a
 similar approach in assessing alliance networks in the biotechnol
 ogy industry.
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 firm's partners, averaged across all firms in the net
 work. This variable can range from zero to one, with
 larger values indicating increasing clustering. Wfhile
 network density captures the density of the entire net
 work, the clustering coefficient captures the degree to
 which the overall network contains localized pock
 ets of dense connectivity. A network can be globally
 sparse and still have a high clustering coefficient.

 Reach. To capture the reach of each network for
 each time period, we use a measure of average
 distance-weighted reach (Borgatti et al. 2002). This is
 a compound measure that takes into account both the
 number of firms that can be reached by any path from
 a given firm, and the path length it takes to reach
 them. This measure is calculated as

 Average distance weighted reach = eeWIA n j I

 where n is the number of nodes in the network, and

 d{j is defined as the minimum distance (geodesic), d,
 from a focal node i to partner j, where i ^ j. Aver
 age distance-weighted reach can range from 0-n, with
 larger values indicating higher reach.

 Clustering x Reach. We predict that the combi
 nation of clustering and reach will have a positive
 impact on member firm innovation, and thus include
 the interaction term, Clustering x Reach.

 Firm-Level Control Variables

 Presample Patents. To control for unobserved het
 erogeneity in firm patenting, we follow the presam
 ple information approach of Blundell et al. (1995) and
 calculate the variable Presample Patents as the sum of
 patents obtained by a firm in the five years prior to
 its entry into the sample.

 Betweenness Centrality. We control for the possi
 bility that firms that occupy more central positions
 in alliance networks may generate more innovations
 than more peripheral firms (e.g., Owen-Smith and
 Powell 2004, Soh 2003). We operationalize Central
 ity using Freeman's (1979) measure of "betweenness
 centrality," which captures the extent to which a
 firm is located on the shortest path (i.e., geodesic)
 between any two actors in its alliance network. For
 mally, betweenness centrality for firm i in year t is
 calculated as

 Betweenness Centralityit = ^gjk(nd/gjk'
 j<k

 where g^fa) refers to the number (n) of geodesies
 (i.e., shortest paths) linking firms ; and k that contain
 focal firm i. The term gjki^d/gjk captures the probabil
 ity that firm / is involved in the shortest path between
 ; and k. Betweenness centrality is the sum of these

 estimated probabilities over all pairs of firms (exclud
 ing the zth firm) in the network. We use normalized
 betweenness centrality (i.e., betweenness divided by
 maximum possible betweenness, expressed as a per
 centage) to make the measure comparable across time
 and industry networks.

 Local Efficiency. While studies have found that the
 extent to which a firm's partners are nonredundant
 enhances its knowledge creation (Baum et al. 2000),
 other research shows that redundant links improve
 innovation (Ahuja 2000). Although the empirical evi
 dence is mixed, controlling for the effect of local struc
 tural holes is important if we wish to demonstrate
 that the global structure of the alliance network in

 which a firm is embedded has an independent and
 significant influence on its subsequent patenting. We
 control for the influence of a firm's local network
 structure using Burt's (1992) measure of efficiency.
 Efficiency captures the extent to which a firm's part
 ners are nonredundant, indicating the presence of
 structural holes. Local efficiency for firm i in year t is
 computed as

 Local Efficiencyit =  l-E^mJj/N>' i^i>
 where piq is the proportion of z's relations invested in
 the relationship with q, m^ represents the marginal
 strength of the relationship between alter ; and alter q
 (as we use binary data, values of m^ are set to one
 if the relationship is present and zero otherwise), and

 N{ represents the number of unique alliance partners
 connected to firm i. This measure can range from
 zero to one, with higher values indicating greater
 efficiency.

 Industry (Network) Control Variables

 Network Density. We control for the overall den
 sity of the network with the variable Network Density,
 calculated for each industry network and time period.

 We do so because the rate and extent to which infor

 mation diffuses increases with density (Yamaguchi
 1994). This variable measures the ratio of existing
 links in the network to the number of possible pair

 wise combinations of firms, and may range from
 zero to one, with larger values indicating increasing
 density.

 Centralization. The extent to which a network is
 centralized can also influence its diffusion properties.
 A highly centralized network is one in which all ties
 run through one or a few nodes, thus decreasing the
 distance between any pair of nodes (Wasserman and
 Faust 1994). To control for network centralization, we
 employ Freeman's (1979) index of group betweenness
 centralization, calculated for each industry network
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 and time period. Group betweenness centralization
 for network ; in year t is

 Betweenness Centralization;i

 = 100x{?[C?(n*)-C?(n,.)]/te-l)},
 where CB(n*) is the largest realized normalized be
 tweenness centrality for the set of firms in network ;
 in year t, CB(n?) is the normalized betweenness cen
 trality for firm i (in industry network / for year f), and
 g is the number of firms. This variable is expressed as
 a percentage and can range from zero, where all firms
 have the same individual betweenness centrality, to
 100, where one firm connects all other firms.

 Industry R&D Intensity. To control for differences
 in the emphasis on and costliness of innovation
 across industries, we employ a time-varying mea
 sure of industry-level R&D intensity (R&D expendi
 tures/sales). We collected annual R&D expenditures
 and sales of firms in each industry from Compustat.

 We would have preferred to control for R&D inten
 sity at the firm level; however, nearly 42% of our
 sample firms were privately owned during some por
 tion of the sample, and R&D expenditures are not
 available for private firms. In investigating the robust
 ness of our results, we utilize a control variable (stock
 of patents obtained in the past four years) that has
 been shown to be highly correlated with annual firm
 level R&D expenses. Our results are unchanged when
 including this variable in our models.

 Proportion of Alliances for R&D, Cross-Technol
 ogy Transfer, or Licensing. Alliances that are estab
 lished for the purpose of technology exchange or
 development may be more directly related to firm
 patenting. To examine this possibility, we include a
 time-varying measure of the percentage of alliance
 agreements in each network that were established
 explicitly for the purpose of joint research and
 development, cross-technology transfer, or technology
 licensing.

 Model Specification
 The dependent variable in this study, Patents, is a
 count variable and takes on only nonnegative integer
 values. The linear regression model is inadequate
 for modeling such variables because the distribu
 tion of residuals will be heteroscedastic nonnormal.

 A Poisson regression approach is appropriate to
 model count data (Hausman et al. 1984). However,
 the Poisson distribution contains the strong assump
 tion that the mean and variance are equal. Patent
 data often exhibit overdispersion, where the vari
 ance exceeds the mean (Hausman et al. 1984). In
 the presence of overdispersion, coefficients will be

 estimated consistently, but their standard errors will
 generally be underestimated, leading to spuriously
 high levels of significance (Cameron and Trivedi
 1986). Each model that we report, when estimated
 using the Poisson specification, exhibited significant
 overdispersion.

 A commonly used alternative to the Poisson regres
 sion model is the negative binomial model. The
 negative binomial model is a generalization of the
 Poisson model and allows for overdispersion by
 incorporating an individual, unobserved effect into
 the conditional mean (Hausman et al. 1984). The
 panel data implementation of the negative binomial
 model accommodates explicit control of persistent
 individual unobserved effects through both fixed and
 random effects. In the present study, unobserved het
 erogeneity refers to the possibility that unmeasured
 (or unmeasurable) differences among observationally
 equivalent firms affects their patenting. Unobserved
 heterogeneity may also stem from unmeasured, sys
 tematic time period and industry effects. Failing to
 control for such unobserved heterogeneity, if present,
 can result in specification error (Heckman 1979).
 We employ a number of strategies to control for

 these sources of unobserved heterogeneity. First, we
 include year fixed effects to control for system
 atic period effects such as differences in macroeco
 nomic conditions that may affect all sampled firms'
 patent rates. Second, we employ individual firm
 effects to control for unobserved, temporally sta
 ble firm differences in patenting. We use both firm
 fixed and random effects in alternative estimations
 of our model. We use the Hausman et al. (1984)
 implementation of fixed effects in the context of
 a negative binomial model, which employs a con
 ditional maximum-likelihood estimation procedure.5

 5 Allison and Waterman (2002) recently criticized the Hausman
 et al. (1984) conditional negative binomial fixed-effects model as not
 being a "true" fixed-effects method in that it does not control for
 all time-invariant covariates. Allison and Waterman (2002) devel
 oped an unconditional negative binomial model that uses dummy
 variables to represent fixed effects, which effectively controls for all
 stable individual effects. This procedure has been implemented in
 Limdep 8.0. However, estimates of ? are inconsistent in negative
 binomial models when using such a dummy variable approach in
 short panels, due to the incidental parameters problem (Cameron
 and Trivedi 1998, p. 282). The number of unit-specific (e.g., firm)
 parameters (a?) increases with the sample size, while the number
 of periods (T) stays fixed, resulting in a limited number of obser
 vations to estimate a large number of parameters. Contrary to lin
 ear regression models, the maximum-likelihood estimates for a{
 and ? are not independent for negative binomial models because
 the inconsistency of the estimates of a? are transmitted into the

 maximum likelihood estimate of ?. Given that this method is a
 true fixed-effects specification, it does not allow for time-invariant
 covariates such as Presample Patents. Thus, we chose not to employ
 Allison and Waterman's (2002) unconditional estimator. We report
 the results using the Hausman et al. (1984) conditional fixed-effects

This content downloaded from 
�������������151.83.1.176 on Wed, 09 Nov 2022 09:03:57 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Schilling and Phelps: Interfirm Collaboration Networks
 1120 Management Science 53(7), pp. 1113-1126, ?2007 INFORMS

 We also use Hausman et al/s random effects spec
 ification, which assumes that overdispersion due to
 unobserved heterogeneity is randomly distributed
 across firms. Because the random effects specification
 assumes that the unobserved firm-specific effect is
 uncorrelated with the regressors, we report the results
 from both fixed and random effects as a robustness
 check.

 As an additional control for firm-level unobserved

 heterogeneity, we adopt the presample information
 approach of Blundell et al. (1995). Blundell et al.
 (1995) argued that because the main source of unob
 served heterogeneity in models of innovation lies in
 the different knowledge stocks with which firms enter
 a sample, a variable that approximates the build-up
 of firm knowledge at the time of entering the sam
 ple is a particularly good control for unobserved het
 erogeneity. The Presample Patents variable described
 above serves as a control for unobserved differences

 in firm knowledge stocks upon their entry into the
 sample. Blundell et al. (1995) showed that the use
 of a presample patent entry stock measure virtually
 eliminated persistent serial correlation in their panel
 data models. We also include industry dummies in
 our models to control for unobserved industry effects
 that are not captured by the firm effects.
 A final estimation issue concerns the appropri

 ate lag structure of the independent variables. Based
 on prior research that investigates the relationship
 between interfirm alliances and innovation (e.g.,
 Ahuja 2000, Sampson 2004, Stuart 2000), we employ
 alternative lags of our independent variables relative
 to our dependent variable. We estimate models using
 one-year, two-year, and three-year lags. We do so to
 explore the robustness of our findings across alter
 native specifications. All models were estimated with
 Limdep 8.0. The model we estimate takes the gen
 eral form provided below (aerospace is the omitted
 industry and 1992 is the omitted year). Variables are
 indexed across firms (/), industry (/'), and time (t):

 Patentsit+1(2/3)

 = f (Clustering -t, Reach;i, Clustering * Reach/f,

 R&zD Alliance %;i, R&D Intensity.t, Centralityit,

 Local Efficiencyit, Centralization^, Density.t,

 Presample_Patentsit, Automotive, Chemicals,

 Computers, Audiovisual, Medical, Petroleum,

 Pharmaceuticals, Semiconductors,

 Telecommunications, Measuring, 1993,1994,1995,

 1996,1997).

 Results
 A summary of the network size and component struc
 ture for each industry, averaged over time, is pro
 vided in Table 1. As shown, there is substantial
 variation across industries in the number of firms
 that participate in alliances. This is largely due to
 differences in industry size. The average number of
 alliances per firm within each industry exhibits much
 less variation. The next column provides the aver
 age number of firms in each network. This number
 includes firms from the industry and their partners,
 some of which are not in the target industry. The next
 column indicates the percentage of nodes in the net
 work that are connected to the single largest ("main")
 component. This number varies significantly both
 across industry and over time (not shown). While
 researchers often study only the main component, in
 our study this would have yielded misleading results.

 Whereas in some industries there is a large main com
 ponent that is relatively stable over time (e.g., phar
 maceuticals), in other industries there are multiple
 large components, and those components merge and
 split apart over time. For example, between 1996 and
 1997 in the computer industry, a large component
 broke away from the main component (see Figure 1).
 If we had focused only on the single largest compo
 nent, we would have both understated the amount of

 Table 1 Network Size and Component Structure, Averages over
 1992-2000

 Industry

 Average number Average
 of firms from number of

 industry in alliances
 alliances3 per firm

 Percent
 Average in main
 network component

 size (nodes)b (%)

 Aerospace
 Automotive
 Chemicals
 Computers and

 office equipment
 Household

 audiovisual

 equipment
 Measuring and

 controlling
 Medical equipment
 Petroleum refining

 and products
 Pharmaceuticals
 Semiconductors
 Telecommunication

 equipment

 9
 15.67
 45.17
 79.67

 22.67

 66.17
 5.3

 218.33
 58.67
 44.83

 3.05
 3.43
 2.97
 4.48

 1.5

 1.96

 1.66
 2.65

 2.54
 3.51
 6.53

 28
 53.2
 199.8
 347

 28.3

 48.33

 172.33
 24.83

 510
 204
 266.33

 46
 37
 11
 45

 10

 21

 7
 18

 64
 55
 54

 aThis number includes only those firms with the designated primary SICs;
 it does not include partners in the network that are not in those SICs.

 includes all U.S. firms in the network, including both those with the des

 ignated primary SICs and their alters, regardless of SIC.

 approach. We point out that the results we obtained from both
 fixed- and random effects specifications are highly consistent (see
 the Results section). Studies that have employed both the Hausman
 et al. (1984) negative binomial fixed-effects approach and that of
 Allison and Waterman (2002) have found very similar results (e.g.,
 Dee et al. 2005).
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 Figure 1 Network Size and Component Structure (Common Shade of
 Gray Indicates Firms in Same Component)

 Computers, 1996

 alliance activity in the industries, and overstated the
 amount of change in alliance activity over time.

 Table 2 reports the negative binomial panel re
 gression results for the three dependent variables
 (PatentsiM',PatentsitJr2; PatentsiM). Because the ran
 dom effects specification assumes that regressors and
 firm-specific effects are uncorrelated, we also pro
 vide results using firm fixed effects as a robustness
 check. Separate results are provided for three depen
 dent variables. Models 1, 2, and 3 report the results
 using a one-year lag between the independent vari
 ables and firm patenting (Patentsit+1). Models 4,5, and
 6 report the results using a two-year lag (Patentsit+2),
 and Models 7, 8, and 9 report the results using a three
 year lag (Patentsit+3). For each dependent variable, the
 first models (1, 4, and 7) include the control variables
 only, the second models add the direct effects of Clus
 tering and Reach (Models 2, 5, and 8), and the third

 model adds the interaction term, Clustering x Reach
 (Models 3, 6, and 9). To conserve space, firm, indus
 try, and time period effects, while estimated, are not
 reported.

 Our sole hypothesis predicted a positive effect of
 the interaction of Clustering and Reach on firm patent
 ing. The interaction term, Clustering x Reach, does not
 obtain statistical significance at conventional levels in
 the model specified with a one-year lag, using either
 fixed or random firm effects (Model 3). The coeffi
 cient for Clustering x Reach is positive and statistically
 significant in models using both two- and three-year
 lags (Models 6 and 9). This result holds for models
 using both fixed and random firm effects. Thus, our
 hypothesis received strong support in models using
 two- and three-year lags.6

 To better understand the meaning of the interaction
 effect, the nature of the coefficients for Clustering and
 Reach in Models 6 and 9 in Table 2 must be under
 stood. The estimated coefficients for Clustering and
 Reach in these models are simple effects rather than
 true main effects due to the significance of the interac
 tion term (Jaccard and Turrisi 2003). Consequently, the
 effect of each on Patents is conditioned on the other

 variable taking on the value of zero. For example, the
 coefficient estimate of ?0.022 for Reach in Model 6
 (Random Effects) assumes that the value of Cluster
 ing is equal to zero (thus removing the impact of the
 interaction with Reach). Thus, the negative sign on the
 coefficient for Reach cannot be interpreted as a nega
 tive (main) effect of Reach on Patents. While the effect
 of Reach is indeed negative when Clustering is zero,
 the effect becomes positive when values of Clustering
 exceed 0.267 (the range of Clustering in the data is
 0.0-0.8). Similarly, the effect of Clustering is negative
 (although not statistically significant) when Reach is
 equal to zero, but becomes positive for values of Reach
 greater than 1.224 (the range of Reach is 1.88-61.18)7
 The fact that the effects of both Clustering and Reach
 become positive when the other obtains a relatively
 small value, and increase in their positive effects with
 increases in the other, provides further support for
 our hypothesis. These mutually reinforcing effects are
 consistent with the symmetrical nature of multiplica
 tive interaction effects (Jaccard and Turrisi 2003).

 Plots of the effect of the interaction on predicted
 values of Patentst+2 and Patentst+3 reinforce this inter
 pretation. For ease of presentation and interpreta
 tion, we used the log-linear form of the negative
 binomial models in Table 2 (i.e., where the log of

 6 We also conducted a test of the hypothesis at the industry level
 rather than the firm level. In this test, we regressed the industry's
 average number of firm patents on the network- and industry-level
 variables. We obtained nearly identical results to those in Table 2.
 These results are available from the authors upon request.

 7 To calculate these effects, we used the log-linear form of the neg
 ative binomial models in Table 2 (i.e., where the log of the con
 ditional mean function is linear in the estimated parameters). We
 followed the approach for calculating interaction effects described
 by Jaccard and Turrisi (2003, p. 23).
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 Table 2 Panel Negative Binomial Regression Models with Fixed and Random Effects (N = 1,106; Obs = 3,444)

 Patents:*  Patentsit.  PatentSjt+3

 Fixed effects
 Constant

 Presample Patents
 Density
 Centralization

 Ind. R&D Intensity
 R&D Alliance %

 Efficiency
 Betweenness

 Clustering
 Reach
 Clustering x Reach

 Log Likelihood

 Random effects
 Constant

 Presample Patents
 Density
 Centralization

 Ind. R&D Intensity
 R&D Alliance %

 Efficiency
 Betweenness

 Clustering
 Reach
 Clustering x Reach

 Log likelihood

 1.136** (0.354)
 0.001** (0.000)

 -0.248 (1.154)
 -0.014 (0.008)
 2.739 (2.668)

 -0.112 (0.275)
 -0.199** (0.068)
 0.003 (0.006)

 -4,646.65

 1.118** (0.309)
 0.001** (0.000)
 1.444 (0.900)

 -0.021** (0.006)
 0.887 (2.429)
 0.014 (0.230)

 -0.342** (0.062)
 0.008 (0.005)

 0.707** (0.047)
 0.358** (0.021)

 -8,520.70

 0.582 (0.359)
 0.001** (0.000)

 -0.624 (1.358)
 -0.014 (0.008)
 2.867 (2.522)
 0.223 (0.275)

 -0.189** (0.072)
 0.003 (0.005)
 0.420** (0.136)
 0.010** (0.003)

 -4,637.32

 0.542 (0.339)
 0.001** (0.000)
 0.250 (1.092)

 -0.020** (0.007)
 1.030 (2.408)
 0.383 (0.214)

 -0.336** (0.069)
 0.007 (0.004)
 0.554** (0.106)
 0.008** (0.003)

 0.716** (0.047)
 0.360** (0.022)

 -8,509.78

 0.604 (0.360)
 0.001** (0.000)

 -0.527 (1.468)
 -0.012 (0.008)
 2.877 (2.581)
 0.222 (0.289)

 -0.190** (0.073)
 0.003 (0.005)
 0.507* (0.235)
 0.011** (0.003)

 -0.015 (0.030)
 -4,637.12

 0.541 (0.339)
 0.001** (0.000)
 0.243 (1.166)

 -0.021** (0.007)
 1.027 (2.424)
 0.384 (0.222)

 -0.336** (0.069)
 0.007 (0.005)
 0.548** (0.212)
 0.008* (0.003)
 0.001 (0.028)
 0.710** (0.048)
 0.360** (0.022)

 -8,509.78

 1.257** (0.327)
 0.001** (0.000)

 -0.411 (1.529)
 -0.018** (0.006)
 0.741 (2.366)
 0.068 (0.217)

 -0.303** (0.091)
 0.005 (0.006)

 -4,597.46

 0.984** (0.307)
 0.001** (0.000)
 0.527 (1.197)

 -0.021** (0.006)
 -0.357 (2.231)
 0.208 (0.215)

 -0.396** (0.079)
 0.003 (0.005)

 0.675** (0.047)
 0.321** (0.019)

 -8,425.33

 1.663** (0.333)
 0.001** (0.000)

 -2.220 (1.808)
 -0.016* (0.007)
 -0.088 (2.373)
 -0.131 (0.223)
 -0.321** (0.095)
 0.004 (0.007)
 0.346** (0.127)

 -0.012** (0.003)

 -4,586.78

 1.342** (0.303)
 0.001** (0.000)

 -1.872 (1.394)
 -0.020** (0.006)
 -0.818 (2.151)
 -0.017 (0.187)
 -0.436** (0.081)
 0.004 (0.005)
 0.485** (0.116)

 -0.013** (0.003)

 0.684** (0.048)
 0.328** (0.020)

 -8,407.95

 1.614** (0.324)
 0.001** (0.000)

 -2.637 (1.843)
 -0.035** (0.006)
 -0.246 (2.327)
 -0.188 (0.191)
 -0.327** (0.087)
 0.002 (0.006)

 -0.141 (0.196)
 -0.020** (0.004)
 0.081** (0.023)

 -4,577.98

 1.256** (0.290)
 0.001** (0.000)

 -2.451 (1.352)
 -0.027** (0.005)
 -0.590 (2.135)
 -0.090 (0.158)
 -0.435** (0.073)
 0.001 (0.005)

 -0.101 (0.186)
 -0.022** (0.003)
 0.082** (0.019)
 0.690** (0.480)
 0.334** (0.02)
 -8,392.95

 1.433** (0.337)
 0.001** (0.000)

 -2.012 (1.861)
 0.019** (0.007)

 -7.126** (2.478)
 -0.040 (0.248)
 -0.267** (0.097)
 -0.001 (0.009)

 -4,468.75

 0.920** (0.296)
 0.001** (0.000)

 -1.454 (1.434)
 0.016* (0.006)

 -8.029** (2.278)
 0.106 (0.220)

 -0.297** (0.087)
 -0.000 (0.008)

 0.650** (0.046)
 0.291** (0.018)

 -8,198.66

 1.859** (0.369)
 0.001** (0.000)

 -1.598 (2.509)
 0.019** (0.007)

 -6.754** (2.504)
 -0.305 (0.264)
 -0.272** (0.089)
 -0.001 (0.010)
 0.234 (0.183)

 -0.007* (0.003)

 -4,464.64

 1.333** (0.331)
 0.001** (0.000)

 -1.286 (1.618)
 0.017* (0.007)

 -7.987** (2.343)
 -0.139 (0.233)
 -0.307** (0.080)
 -0.001 (0.008)
 0.152 (0.159)

 -0.008* (0.003)

 0.652** (0.046)
 0.290** (0.018)

 8,194.98

 1.825** (0.368)
 0.001** (0.000)

 -1.674 (2.134)
 0.019* (0.007)

 -6.754** (2.504)
 -0.312 (0.304)
 -0.270** (0.088)
 -0.001 (0.010)
 -0.319 (0.279)
 -0.009* (0.004)
 0.014* (0.007)

 4,464.46

 1.214** (0.321)
 0.001** (0.000)

 -1.538 (1.654)
 0.013* (0.006)

 -8.101** (2.460)
 -0.153 (0.274)
 -0.312** (0.078)
 -0.001 (0.008)
 -0.422 (0.344)
 -0.011** (0.004)

 0.043* (0.020)
 0.652** (0.046)
 0.293** (0.018)

 -8,193.03

 Notes. All models include firm, time period, and industry effects. Standard errors are in parentheses.
 *p < 0.05, **p < 0.01 (two-tailed tests for all variables).

 the conditional mean function is linear in the esti

 mated parameters) to calculate these effects. Figure 2
 presents the interaction plot of Clustering and Reach
 to illustrate the magnitude of the interaction effect.
 The "Low Clustering" line shows the slope of the
 effect of Reach on Patents when the value of Cluster

 ing is set to one standard deviation below its mean.
 The end points of the line are calculated at one stan
 dard deviation below and above the mean of Reach.

 The "High Clustering" line represents the effect of
 Reach on Patents when the value of Clustering is set
 to one standard deviation above its mean. Consis
 tent with the results in Models 6 and 9 of Table 2,
 increases in Reach increase the positive effect of Clus
 tering on Patents. The symmetrical case of plotting low
 and high Reach lines for low and high values of Clus
 tering (not shown) provides similar results.

 To assess the magnitude of the interaction effect we
 employed the estimated marginal effects (e?X?). The

 magnitude of the interaction effect when both compo
 nent variables increase one standard deviation above

 their means for the model employing a two-year lag
 and random effects is 1.00 patents (or 2.3%). For the
 model specified with a two-year lag and employing
 firm fixed effects, this yielded an increase of 0.98
 patents (for the average firm), or 2.3%. The magni
 tude of the interaction effect is smaller in the models

 using a three-year lag. Thus, the size of the interaction
 effect in absolute terms is fairly small in our data and

 appears to realize its peak within two years. Based
 on these results, we speculate that the effect of net
 work structure as a medium of knowledge diffusion
 decays over time. While a particular structure may
 persist over time, the knowledge that diffuses through
 it has limited benefit as actors absorb and apply these
 knowledge flows to productive ends.

 The results related to the control variables also
 merit discussion. The effect of betweenness centrality
 on subsequent firm patenting failed to achieve sta
 tistical significance in any of the estimated models.
 In contrast, efficiency had a significant negative effect
 on firm patenting in all models. This result suggests
 that the presence of structural holes in a firm's ego
 network of alliance relationships has a deleterious
 effect on its inventive output. This is consistent with
 results obtained by Ahuja (2000) and Soh (2003). To
 our knowledge, our study represents the largest panel
 data investigation of this relationship.

 Among the other variables in the models, most
 were not consistent in terms of sign and significance.
 This might be due, in part, to the moderate-to-large
 correlations among the network measures (i.e., Cen
 tralization, Density, Reach, Clustering, and Clustering x
 Reach). This multicollinearity might influence the
 robustness of our main finding because parameter
 estimates are unstable to very small changes in the
 data when substantial collinearity is present, some
 times resulting in the signs on estimated coefficients
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 Figure 2 Graph of Interactions for Random Effects Models, Patent s t+2
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 to flip (known as the "wrong sign" problem) (Gujarati
 1995). To examine the influence of multicollinearity
 on our main result, we reran each of the models in
 Table 2 with Centralization removed and, alternatively,
 with Density removed (not reported here). The results
 for Reach, Clustering, and Clustering x Reach remained
 substantively unchanged across all models.

 Finally, the Presample Patents variable was positive
 and significant in all models, indicating its importance
 as a control for firm-level unobserved heterogeneity.
 Furthermore, several time period and industry dum
 mies (not reported) were consistently significant in all
 models.

 Robustness of Results
 One concern regarding our results is that we were not
 able to control for differences in firm R&D because
 nearly 42% of our sample firms were privately owned

 during some portion of the sample. Prior research has
 found that patent stock measures and annual R&D
 expenditures are highly correlated (e.g., Trajtenberg
 1990). We measured a firm's patent stock as the total
 number of patents obtained by firm i in the four years
 prior to and including year t. Due to the extremely
 high correlation between this variable and Presample
 Patents (r = 0.94), we reestimated all of our models
 using the time-varying patent stock variable in place
 of Presample Patents. As might be expected (due to the
 substantial correlation between the two variables) our
 results (not reported) did not substantively change
 from those reported in Table 2.

 For our second robustness check, we analyzed the
 data using a Poisson fixed-effects estimation proce
 dure. We did so to address the concern identified
 in Footnote 5. This approach controls for all unob
 served time-invariant sources of heterogeneity. In this
 analysis, we excluded all time-invariant variables and
 obtained qualitatively similar results (not reported) to
 those presented in Table 2.
 A third concern regarding our results is that they

 may be influenced by the presence of persistent serial
 correlation in the residuals. This could result from
 temporally stable unobserved firm effects (Greene
 1997), or from reverse causality running from firm
 invention to industry-level network structure (e.g.,
 clustering or reach), manifesting in the lagged net
 work variables. We explicitly address the first poten
 tial source of serial correlation by including firm fixed
 effects. Unreliable estimates may also result from
 unobservables that vary systematically over time. Se
 rial correlation in the errors would persist even after
 controlling for stable firm effects. We examined this
 possibility in two ways. First, we regressed our mea
 sures of clustering and reach, and their interaction on
 annual firm patent counts using a linear panel data
 model. We did so using contemporaneously measured
 firm patents and one-, two-, and three-year lags of
 firm patents. We found no significant relationship
 between firm patents and clustering, reach, or their
 interaction in any of these models. Next, we aggre
 gated firm patents to the industry level using the
 average annual patent count across firms in the indus
 try. The idea here is that as industry inventiveness
 increases, so does the likelihood that firms in such
 industries form alliance networks with high cluster
 ing and reach. We ran the same specifications as those
 using firm patents and found no significant effects.

 Discussion
 We argued that two key structural properties of large
 scale networks, clustering and reach, play impor
 tant roles in network diffusion and search. Clustering
 enables even a globally sparse network to achieve high
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 information transmission capacity through locally
 dense pockets of closely connected firms. Reach in
 creases the quantity and diversity of information
 available to firms in the network by bringing the
 information resources of more firms within rela

 tively close range. We thus argued that networks that
 have both the high information transmission capac
 ity enabled by clustering, and the high quantity and
 diversity of information provided by reach, should
 facilitate greater innovation by firms that are mem
 bers of the network. We tested this argument using
 longitudinal data on the innovative performance of
 a large panel of firms operating in 11 industry
 level alliance networks. The results indicated sup
 port for our argument: the combination of cluster
 ing and reach was associated with significantly higher
 firm patenting. The results were stronger for models
 employing a two- and three-year lag versus a one
 year lag, suggesting that firms do not quickly realize
 the innovation benefits of collaboration (Stuart 2000).
 These results were robust to a number of controls and

 model specifications.
 Our results support much of the theory developed

 in recent work on small-world networks (Cowan and
 Jonard 2003, Uzzi and Spiro 2005). Our results are
 consistent with Uzzi and Spiro's argument that the
 cohesion and connectivity of a small-world network
 enable the circulation of creative material that can
 be recombined into new creative products. Our argu
 ment that the heterogeneity of knowledge distributed
 across clusters enhances innovation is similar to Uzzi

 and Spiro's argument that the different conventions
 and styles used in different clusters are a valuable
 source of diversity in the network.8

 This research has a number of contributions. First,
 whereas previous alliance network research has exam
 ined the impact of a firm's network position or
 the structure of its immediate network neighborhood
 on firm innovation, our study is the first that we
 know of to examine the influence of the structure of

 industry-level alliance networks on firm innovation.
 The results of this study also inform the debate over
 whether innovation is enhanced by network density
 or efficiency (see Ahuja 2000): Both local density and
 global efficiency can exist simultaneously, and it is this
 combination that enhances innovation.

 Finally, our results speak to the literature on knowl
 edge spillovers. Knowledge spillovers represent an
 externality in which the knowledge produced by one
 firm can be appropriated, at little cost, by other
 firms (Jaffe 1986). Empirical evidence indicates that
 spillovers are important in explaining innovation
 and productivity growth (Griliches 1992). However,
 spillovers are not equally accessible to or appro
 priable by all firms. Prior research has shown that
 spillovers tend to be spatially bounded: Their effect
 is more pronounced for firms conducting research in
 similar technological domains (Jaffe 1986) and geo
 graphic locations (Feldman 1999). Our results add
 to this literature by suggesting that interfirm net

 works may be an important mechanism of knowledge
 spillovers, and that the specific pattern these relation
 ships exhibit can have important consequences for the
 innovativeness of networked firms.

 We do not wish to overstate our results?this study
 has a number of limitations. Our findings may be
 influenced by our assumption of average alliance
 duration. If alliances endure, on average, for more
 than three years, then the connectivity of our ob
 served networks will be biased downward. This bias

 may influence our results. Unfortunately, due to data
 limitations, we were unable to explore this possibil
 ity.9 A limitation of our theoretical focus is that we
 ignore the influence of network characteristics other
 than structure. We do not address the properties of the
 alliances themselves (e.g., strength, governance struc
 ture, scope). Different types of relationships may be
 better or worse for searching for, versus transferring,
 knowledge (Hansen 1999). In addition, different types
 of relationships will be more or less costly to main
 tain, and thus affect the efficiency of network struc
 ture for knowledge creation. We do not examine how

 8 Uzzi and Spiro's data and analysis are different from ours in some
 important ways. First, as they point out (2005, p. 470, Footnote 8),
 in a mature small-world network such as theirs, the path length
 changes little over time, behaving like a fixed effect with a con
 stant value near one. This means that that their principle finding
 is driven primarily by temporal variation in clustering. Our net

 works, by contrast, exhibit significant cross-sectional and temporal
 variation in path length and network size, leading to great vari
 ation in our measure of reach. Second, our networks are far less
 dense than their network. Their network becomes sufficiently dense
 and clustered that it leads to excessive cohesion and homogeniza
 tion of material, and a decline in creative performance. In essence,
 such a globally dense network has the advantages and disadvan
 tages we argued would exist within each cluster. To investigate this
 effect in our data, we reestimated each of our models, replacing
 our interaction term with the quadratic version of clustering (i.e.,
 clustering2). This variable was not significant in any model; thus,
 we have no evidence of a parabolic effect of clustering in our data.
 We speculate that our networks never reach a high level of den
 sity, and thus are at less risk of excessive cohesion. Finally, and
 perhaps most importantly, Uzzi and Spiro's network is composed
 of individuals, whereas our networks are composed of firms. Some
 of the dynamics that lead to deleterious effects of cohesion (for
 example, strong feelings of obligation between friends leading to

 an "assistance club" for ineffectual members of the network) are far
 more likely in the relationships between individuals than between
 firms.

 9 We did not collect alliance formation data prior to 1990 because
 SDC data prior to that time is inconsistent. We chose to end obser
 vations of patents in 2000 (implying our alliance observation ended
 in 1997) because the lag between patent application and grant
 date is two to four years (which was toward the end of our data
 collection).
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 the attributes of the firms shape the flow of knowl
 edge (see Owen-Smith and Powell 2004). We have
 also not addressed the potential impact of the nature
 of knowledge that is being accessed, transferred, and
 recombined in the network. Different characteristics

 of knowledge (e.g., tacit versus explicit, complex ver
 sus simple, etc.) can influence the knowledge creation
 and innovation process (Zander and Kogut 1995).
 Network structure may also differentially interact
 with different dimensions of knowledge. For example,
 the high density of clusters may facilitate the search
 and transfer of tacit, complex knowledge, but the rel
 atively few connections to other clusters may make
 such search and transfer problematic. These aspects of
 relationships and knowledge will likely be important
 in fully understanding the relationship between inter
 firm knowledge networks and knowledge creation,
 but are beyond the scope of our paper.

 Another limitation of our work is that the gen
 eralizability of our main result is likely to be lim
 ited to industries that make frequent use of alliances.

 Networks characterized by extreme sparsity may not
 have a sufficient degree of connectedness to observe
 clustering or meaningful reach. However, the impli
 cations of our results are not necessarily limited to
 alliance relationships. Because firms are connected
 via other relationships, the global structure of such
 relationships may influence firm innovativeness. For
 example, firms are often connected by interpersonal
 collaborative relationships among individual inven
 tors. The extent to which the global structure of these
 relationships is characterized by clustering and reach
 may have implications for the inventiveness of indi
 vidual inventors and their firms (Fleming et al. 2004).
 Furthermore, because knowledge can flow between
 firms through other mechanisms such as individual

 mobility, geographic clustering, participation in tech
 nical committees, or learning from information made
 public through patenting, it is possible that some
 of the knowledge creation advantages of a partic
 ular alliance network structure might spill over to
 other industry (or nonindustry) participants. Each of
 these limitations represents an exciting area for future
 research.

 Acknowledgments
 This research was supported by the National Science Foun
 dation under Grant SES-0234075. The authors are grateful
 for the suggestions of Juan Alcacer, Laszlo Barabasi, Joel
 Baum, Bill Greene, Anne Marie Knott, Dan Levinthal, Bill
 McKelvey, Mark Newman, Joe Porac, Lori Rosenkopf, Rob
 Salomon, Kevin Steensma, Kate Stovel, and Duncan Watts.

 References
 Ahuja, G. 2000. Collaboration networks, structural holes, and inno

 vation: A longitudinal study. Admin. Sei Quart. 45 425-455.
 Allison, P. D., R. Waterman. 2002. Fixed-effects negative binomial

 regression models. Soc. Methodology 32 247-265.

 Anand, B. N., T. Khanna. 2000. Do firms learn to create value? The
 case of alliances. Strategic Management J. 21 295-315.

 Basberg, B. L. 1987. Patents and the measurement of technological
 change: A survey of the literature. Res. Policy 16 131-141.

 Baum, J. A. C, T. Calabrese, B. S. Silverman. 2000. Don't go it alone:
 Alliance network composition and startups' performance in
 Canadian biotechnology. Strategic Management J. 21 267-294.

 Baum, J. A. C, A. V. Shipilov, T. J. Rowley. 2003. Where do small
 worlds come from? Indust. Corporate Change 12 697-725.

 Blundell, R. R., R. Griffith, J. Van Reenen. 1995. Dynamic count data
 models of technological innovation. Econom. J. 105 333-344.

 Borgatti, S. P., M. G. Everett, L. C. Freeman. 2002. Ucinet for Win
 dows: Software for social network analysis. Harvard, Analytic
 Technologies.

 Brown, J., P. Duguid. 1991. Organizational learning and communi
 ties of practice: Towards a unified view of working, learning
 and innovation. Organ. Sei 2 40-57.

 Burt, R. S. 1992. Structural Holes. Harvard University Press,
 Cambridge, MA.

 Burt, R. S. 2001. Bandwidth and echo: Trust, information, and gos
 sip in social networks. A. Casella, J. E. Rauch, eds. Networks
 and Markets: Contributions from Economics and Sociology. R?ssel
 Sage Foundation, New York, 30-74.

 Cameron, A. C, P. K. Trivedi. 1986. Econometric models based on
 count data: Comparisons and applications of some estimators
 and tests. /. Appl. Econometrics 1 29-53.

 Cameron, A. C, P. K. Trivedi. 1998. Regression Analysis of Count
 Data. Cambridge University Press, Cambridge, UK.

 Coleman, J. S. 1988. Social capital in the creation of human capital.
 Amer. J. Sociol. 94 S95-S120.

 Cowan, R., N. Jonard. 2003. The dynamics of collective invention.
 /. Econom. Behav. Organ. 52 513-532.

 Dee, T. S., D. C. Grabowski, M. A. Morrisey. 2005. Graduated driver
 licensing and teen traffic fatalities. /. Health Econom. 24 571-589.

 Deeds, D. L., C. W. L. Hill. 1996. Strategic alliances and the
 rate of new product development: An empirical study of
 entrepreneurial firms. /. Bus. Venturing 11 41-55.

 Dosi, G. 1988. Sources, procedures, and microeconomic effects of
 innovation. /. Econom. Literature 26 1120-1171.

 Dyer, J. H., H. Singh. 1998. The relational view: Cooperative strat
 egy and sources of interorganizational competitive advantage.
 Acad. Management Rev. 23 660-679.

 Feldman, M. P. 1999. The new economics of innovation, spillovers,
 and agglomeration: A review of empirical studies. Econom.
 Innovation New Tech. 8 5-25.

 Fleming, L. 2001. Recombinant uncertainty in technological search.
 Management Sei 47 117-132.

 Fleming, L., A. Juda, C. King, III. 2004. Small worlds and re
 gional innovative advantage. Harvard Business School Work
 ing Paper Series, 04-008, Harvard University, Cambridge, MA.

 Freeman, C. 1991. Networks of innovators: A synthesis of research
 issues. Res. Policy 20 499-514.

 Freeman, L. 1979. A set of measures of centrality: I. Conceptual
 clarification. Soc. Networks 1 215-239.

 Gomes-Casseres, B., J. Hagedoorn, A. Jaffe. 2006. Do alliances pro
 mote knowledge flows? /. Financial Econom. 80 5-33.

 Granovetter, M. S. 1973. The strength of weak ties. Amer. ]. Sociol.
 78 1360-1380.

 Granovetter, M. S. 1992. Problems of explanation in economic soci
 ology. N. Nohria, R. Eccles, eds. Networks and Organizations:
 Structure, Form, and Action. Harvard Business School Press,
 Boston, MA, 25-56.

 Greene, W. H. 1997. Econometric Analysis, 3rd ed. Prentice Hall,
 Upper Saddle River, NJ.

This content downloaded from 
�������������151.83.1.176 on Wed, 09 Nov 2022 09:03:57 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Schilling and Phelps: Interfirm Collaboration Networks
 1126 Management Science 53(7), pp. 1113-1126, ?2007 INFORMS

 Griliches, Z. 1990. Patent statistics as economic indicators: A survey.
 /. Econom. Literature 28 1661-1707.

 Griliches, Z. 1992. The search for R&D spillovers. Scandinavian J.
 Econom. 94(Suppl.) 29-A7.

 Gujarati, D. N. 1995. Basic Econometrics, 3rd ed. McGraw-Hill, New
 York.

 Gulati, R. 1998. Alliances and networks. Strategic Management J. 19
 293-317.

 Gulati, R., M. Gargiulo. 1999. Where do interorganizational net
 works come from? Amer. J. Sociol. 104 1439-1493.

 Hansen, M. T. 1999. The search-transfer problem: The role of weak
 ties in sharing knowledge across organization subunits. Admin.
 Sei Quart. 44 82-111.

 Hansen, M. T. 2002. Knowledge networks: Explaining effective
 knowledge sharing in multiunit companies. Organ. Sei 13
 232-250.

 Hargadon, A. B. 1998. Firms as knowledge brokers: Lessons in pur
 suing continuous innovation. California Management Rev. 40(3)
 209-227.

 Hargadon, A. B., A. Fanelli. 2002. Action and possibility: Recon
 ciling dual perspectives of knowledge in organizations. Organ.
 Sei 13 290-302.

 Hausman, ]., B. Hall, Z. Griliches. 1984. Econometric models for
 count data with an application to the patents-R&D relation
 ship. Econometrica 52 909-938.

 Hecker, D. 1999. High technology employment: A broader view.
 Monthly Labor Rev. 122(6) 18-28.

 Heckman, J. J. 1979. Sample selection bias as a specification error.
 Econometrica 47(1) 153-161.

 Henderson, R., K. Clark. 1990. Architectural innovation: The recon
 figuration of existing product technologies and the failure of
 established firms. Admin. Sei. Quart. 35 9-30.

 Jaccard, J., R. Turrisi. 2003. Interaction Effects in Multiple Regression.
 Sage, Thousand Oaks, CA.

 Jaffe, A. 1986. Technological opportunity and spillovers of R&D:
 Evidence from firms' patents, profits and market value. Amer.
 Econom. Rev. 76 984-1001.

 Kogut, B. 2000. The network as knowledge. Generative rules and
 the emergence of structure. Strategic Management J. 21 405-425.

 Kogut, B., G. Walker. 2001. The small world of Germany and the
 durability of national networks. Amer. Sociol. Rev. 66 317-335.

 Laumann, E. O, P. V. Marsden, D. Prensky. 1983. The boundary
 specification problem in network analysis. R. S. Burt, M. J.

 Minor, eds. Applied Network Analysis. Sage, Beverly Hills, CA,
 18-34.

 Levin, R., A. Klevorick, R. Nelson, S. Winter. 1987. Appropriating
 the returns from industrial research and development. Brook
 ings Papers Econom. Activity, Microeconomics 3 783-820.

 Mowery, D. C, J. E. Oxley, B. S. Silverman. 1996. Strategic alliances
 and interfirm knowledge transfer. Strategic Management J. 17
 77-91.

 Nelson, R. R., S. Winter. 1982. An Evolutionary Theory of Economic
 Change. Harvard University Press, Cambridge, MA.

 Newman, M. E. J., S. H. Strogatz, D. J. Watts. 2002. Random
 graph models of social networks. Proc. Nati. Acad. Sei USA 99
 2566-2572.

 Owen-Smith, J., W. W. Powell. 2004. Knowledge networks as chan
 nels and conduits: The effects of spillovers in the Boston
 biotechnology community. Organ. Sei 15 5-21.

 Phelps, C. 2003. Technological exploration: A longitudinal study
 of the role of recombinatory search and social capital in

 alliance networks. Unpublished dissertation, New York Uni
 versity, New York.

 Powell, W. W., L. Smith-Doerr. 1994. Networks and economic life.
 N. J. Smelser, R. Swedberg, eds. The Handbook of Economie Soci
 ology. Princeton University Press, Princeton, NJ, 368-402.

 Powell, W. W., K. W. Koput, L. Smith-Doerr. 1996. Interorganiza
 tional collaboration and the locus of innovation: Networks of

 learning in biotechnology. Admin. Sei Quart. 41 116-145.
 Robinson, D. T., T. E. Stuart. 2007. Network effects in the gov

 ernance of strategic alliances. /. Law, Econom., Organ. 23(1)
 242-273.

 Rosenkopf, L., P. Almeida. 2003. Overcoming local search through
 alliances and mobility. Management Sei 49 751-766.

 Rosenkopf, L., A. Metiu, V. P. George. 2001. From the bottom up?
 Technical committee activity and alliance formation. Admin.
 Sei Quart 46 748-772.

 Sampson, R. 2004. The cost of misaligned governance in R&D
 alliances. ]. Law, Econom., Organ. 20 484-526.

 Schmookler, J. 1966. Invention and Economic Growth. Harvard Uni
 versity Press, Cambridge, MA.

 Shan, W., G. Walker, B. Kogut. 1994. Interfirm cooperation and
 startup innovation in the biotechnology industry. Strategic

 Management J. 15 387-394.

 Smith-Doerr, L., J. Owen-Smith, K. W. Koput, W. W. Powell. 1999.
 Networks and knowledge production: Collaboration and pat
 enting in biotechnology. R. Leenders, S. Gabbay, eds. Corpo
 rate Social Capital. Kluwer Academic Publishers, Norwell, MA,
 331-350.

 Soh, P.-H. 2003. The role of networking alliances in information
 acquisition and its implication for new product performance.
 /. Bus. Venturing 18 727-744.

 Stuart, T. E. 2000. Interorganizational alliances and the performance
 of firms: A study of growth and innovation rates in a high
 technology industry. Strategic Management ]. 21 791-812.

 Trajtenberg, M. 1987. Patents, citations, and innovations: Tracing
 the links. Working Paper 2457, National Bureau of Economic
 Research, Cambridge, MA.

 Trajtenberg, M. 1990. A penny for your quotes: Patent citations and
 the value of innovations. RAND J. Econom. 21 172-187.

 Uzzi, B. 1997. Social structure and competition in interfirm net
 works: The paradox of embeddedness. Admin. Sei Quart. 42
 35-67.

 Uzzi, B., J. Spiro. 2005. Collaboration and creativity: The small
 world problem. Amer. J. Sociol. Ill 447-504.

 Vonortas, N. S. 1997. Research joint ventures in the.US. Res. Policy
 26 577-595.

 Wasserman, S., K. Faust. 1994. Social Network Analysis: Methods and
 Applications. Cambridge University Press, Cambridge, UK.

 Watts, D. J. 1999. Networks, dynamics, and the small-world phe
 nomenon. Amer. ]. Sociol. 105 493-528.

 Wellman, B. 1988. Structural analysis: From method and metaphor
 to theory and substance. B. Wellman, S. D. Berkowitz, eds.
 Social Structures: A Network Approach. Cambridge University
 Press, Cambridge, UK, 19-61.

 Yamaguchi, K. 1994. The flow of information through social net
 works: Diagonal-free measures of inefficiency and the struc
 tural determinants of inefficiency. Soc. Networks 16 57-86.

 Zander, U., B. Kogut. 1995. Knowledge and the speed of the transfer
 and imitation of organizational capabilities: An empirical test.
 Organ. Sei 6 76-92.

This content downloaded from 
�������������151.83.1.176 on Wed, 09 Nov 2022 09:03:57 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	1113
	1114
	1115
	1116
	1117
	1118
	1119
	1120
	1121
	1122
	1123
	1124
	1125
	1126

	Issue Table of Contents
	Management Science, Vol. 53, No. 7, Complex Systems (Jul., 2007), pp. i-vi, 1033-1198
	Front Matter
	Management Insights [pp. iv-vi]
	Complex Systems: A New Paradigm for the Integrative Study of Management, Physical, and Technological Systems [pp. 1033-1035]
	Cooperation in Evolving Social Networks [pp. 1036-1050]
	Bilateral Collaboration and the Emergence of Innovation Networks [pp. 1051-1067]
	Patterned Interactions in Complex Systems: Implications for Exploration [pp. 1068-1085]
	Membership Herding and Network Stability in the Open Source Community: The Ising Perspective [pp. 1086-1101]
	Call-Center Labor Cross-Training: It's a Small World after All [pp. 1102-1112]
	Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation [pp. 1113-1126]
	The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results [pp. 1127-1145]
	Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems [pp. 1146-1164]
	Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning [pp. 1165-1180]
	Emergent Properties of a New Financial Market: American Venture Capital Syndication, 1960-2005 [pp. 1181-1198]
	Back Matter



