
Introduction to Python and Scikit-Learn
Machine Learning 2022-23

Slides: P. Zanuttigh
Material from: M. Huenerfauth, G. van Rossum, R.P. Muller, P. Dragone, A. Passerini

Python

 Interpreted high-level general-purpose programming language
 It is open source !
 Object Oriented programming model
 Current version is 3.9
o There are relevant changes from Python 2.x to 3.x
o For this course we'll use Python 3.x

Resources:
 Website: http://www.python.org
 Documentation: http://www.python.org/doc/

http://www.python.org/
http://www.python.org/doc/

Modules:
SciPy ecosystem

Modules:
NumPy

 Scientific computation capabilities within Python
o Similar to Matlab functionalities

 Fast array operations
 2D arrays, multi-D arrays, linear algebra, etc…

Resources:
 Downloads: http://numpy.scipy.org/
 Tutorial: http://www.scipy.org/

http://numpy.scipy.org/
http://www.scipy.org/

Modules:
scikit-learn

 Machine Learning library in Python
 Simple and efficient tools for data mining and data analysis
 Based on numpy and scipy
 Open source
 We'll use this library for the labs !!
 Documentation: http://scikit-learn.org/stable/documentation.html
 Reference Manual: http://scikit-learn.org/stable/modules/classes.html

http://scikit-learn.org/stable/documentation.html
http://scikit-learn.org/stable/modules/classes.html

scikit-learn:
What's inside

 1. Supervised learning
 1.1. Generalized Linear Models
 1.2. Linear and Quadratic Discriminant Analysis
 1.3. Kernel ridge regression
 1.4. Support Vector Machines
 1.5. Stochastic Gradient Descent
 1.6. Nearest Neighbors
 1.7. Gaussian Processes
 1.8. Cross decomposition
 1.9. Naive Bayes
 1.10. Decision Trees
 1.11. Ensemble methods
 1.12. Multiclass and multilabel algorithms
 1.13. Feature selection
 1.14. Semi-Supervised
 1.15. Isotonic regression
 1.16. Probability calibration
 1.17. Neural network models (supervised)

 2. Unsupervised learning
 2.1. Gaussian mixture models
 2.2. Manifold learning
 2.3. Clustering
 2.4. Biclustering
 2.5. Decomposing signals in components
 2.6. Covariance estimation
 2.7. Novelty and Outlier Detection
 2.8. Density Estimation
 2.9. Neural network models (unsupervised)

3. Model selection and evaluation
4. Dataset transformations
5. Dataset loading utilities
6. Computing with scikit-learn

Setup:
Your Home PC or Laptop

For your PC:
 Install Anaconda (with Python 3)
 Install scikit-learn (if not already installed by Anaconda)

• Install scikit-learn with anaconda: conda install scikit-learn
• or install with pip: pip install -U scikit-learn

• It requires: Python (>= 3.4), NumPy (>= 1.8.2), SciPy (>= 0.13.3)
• If required install the dependencies with pip or conda

 Install jupyter notebook
 With anaconda it is installed by default
 Can be launched with : jupyter notebook or jupyter-lab

Setup
Labs PCs

 Start the computer under linux
 To login you can use your DEI account
 Setup Anaconda 3 environment with Python 3:

source /nfsd/opt/anaconda352/anaconda352.sh
 Launch jupyter notebook or lab

jupyter notebook or jupyter-lab

Tutorials

Useful resources to learn the basics of Python programming:

 See the provided python_intro_labs script

 Look at http://cs231n.github.io/python-numpy-tutorial/

You can find a Jupyter notebook version of the tutorial at:
https://github.com/kuleshov/cs228-material/blob/master/tutorials/python/cs228-python-tutorial.ipynb

http://cs231n.github.io/python-numpy-tutorial/
https://github.com/kuleshov/cs228-material/blob/master/tutorials/python/cs228-python-tutorial.ipynb

How to use:
1. Python Interpreter

 Interactive interface to Python (similar to matlab command
window)

 Launch with the python command from the bash/command prompt
[python36] C:\Users\root>python

Python 3.6.2 |Anaconda custom (64-bit)| (default, Jul 20 2017, 12:30:02) [MSC
v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
>>>

 Python interpreter evaluates inputs:
>>> 3*(7+2)
27

 Python prompts with ‘>>>’.
 To exit Python: exit()

How to use:
2. Write Source and Run

 Write your source code and save in a .py file
 You can use any editor or IDE of your choice
o e.g., PyCharm or Visual Studio Code

 Anaconda also provides the spyder environment that has some debugging
tools

 Run the file:
 python filename.py

How to use:
3. Jupyter notebook / lab

 Run with : jupyter notebook or jupyter-lab
o Jupyter lab has some extra features

 Interactive environment inside the web browser
 You can run each block of code and see the output
 Can combine code and text (comments / description)
 We'll use jupyter notebooks for the lab deliveries

Basics:
Operators and Variables

Assignment uses = and comparison uses ==

For numbers: + - * / % are as expected
• Special use of + for string concatenation
• Special use of % for string formatting (as with printf in C)
• Logical operators are words (and, or, not) not symbols

The basic printing command is print

The first assignment to a variable creates it
Variable types don’t need to be declared
Python figures out the variable types on its own

Basic Datatypes

Integers
x = 3 (x is an int)
z = 5 / 2 # Answer is 2.5 in Python 3 and 2 in Python 2 !!

Floats
x = 3.456 (x is a float)

Strings
Can use “ ” or ‘ ’ to specify : “abc” ‘abc’ are the same thing

Whitespaces

 Whitespace is meaningful in Python
 especially indentation and placement of newlines

 Use a newline to end a line of code
 No braces { } to mark blocks of code in Python

 … use consistent indentation instead !
 The first line with more indentation starts a nested block
 The first line with less indentation is outside of the block

 Often a colon (:) appears at the start of a new block
 E.g., for function and class definitions

Start comments with # – the rest of line is ignored

Assignments

Binding a variable in Python means setting a name to hold
a reference to some object

Assignment creates references, not copies
Names in Python do not have an intrinsic type

• Objects have types !
• Python determines the type of the reference

automatically based on the data object assigned to it
You create a name the first time it appears on the left side

of an assignment expression: (e.g., x = 3)
A reference is deleted via garbage collection after any

names bound to it have passed out of scope

Arrays

 Handled through the numpy library
 A numpy array is a grid of values, all of the same type
 It is indexed by a tuple of non-negative integers
 The shape of an array is a tuple of integers giving the

size of the array along each dimension
Examples:
import numpy as np
a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"
print(a[0], a[1], a[2]) # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"

Sequence Types

1. Tuple
• A simple immutable ordered sequence of items
• Items can be of mixed types, including collection types

2. Strings
• Immutable
• Conceptually very much like a tuple

3. List
• Mutable ordered sequence of items of mixed types

4. (Dictionaries)
• Store a mapping between a set of keys and a set of values

Functions
Functions:
 def creates a function and assigns it a name
 return sends a result back to the caller
 Arguments are passed by assignment
 Arguments and return types are not declared

Examples:
def <name>(arg1, arg2, ..., argN):
 <statements>
 return <value>

def times(x,y):
 return x*y

Lab 0:
Your First Program in Python

Develop a simple application in the last part of the lab:

1. Load the provided .csv file with the used car data
2. Use a linear regression to estimate the car prices from the year, kilometers or

engine power
o You can make a simple 1D regression from each one of the parameters independently
o (optional) If you like to experiment try a 2D or 3D regression combining multiple cues

3. Firstly use the scipy linregress function
o Alternatively you can use the sklearn.linear_model.LinearRegression class

4. Have a look at the correlation coefficient to see which of the 3 features works better
5. (optional) try to manually implement the least square algorithm

o You should get exactly the same solution of linregress !
o If never used least squares you can do it later after the lectures on linear models

6. Plot the data and the lines representing the output of the linregress and least
square algorithms

Linear Regression
with scikit-learn

scipy.stats.linregress

 The function calculates a linear least-squares regression for two sets of measurements
 scipy.stats.linregress(x, y=None)[source]

Parameters:
 x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is

given (and y=None), then it must be a two-dimensional array where one dimension has length 2.
The two sets of measurements are then found by splitting the array along the length-2 dimension

Returns:
 slope : float slope of the regression line
 intercept : float intercept of the regression line
 rvalue : float correlation coefficient (see box, : total correlation, 0 no

correlation)
 pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is

zero, using Wald Test with t-distribution of the test statistic
 stderr : float Standard error of the estimated gradient

• Compute gradient of MSE on training set and set to 0

• Set

• The solution is:

• w[0]: intercept w[1]: slope
• The computation is done using homogeneous coordinates
• Python: 1D array and m x 1 2D array are different objects
• Inverse of a matrix: np.linalg.inv(M)

Least Squares
(optional, presented later)

Plot Data with matplotlib

Plot the data along with the fitted line using matplotlib

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', label='original data')
>>> plt.plot(x, intercept + slope*x, 'r', label='fitted line')
>>> plt.legend()
>>> plt.show()

1. Load a dataset with used car data
2. Use a linear regression to estimate the car prices from the year,

kilometers or engine power
3. Understand which of the 3 features works better and visualize your

results

For lab 0 there is no homework, it is just to get used with Python

For help ask to the instructor or to the TA

Task for Lab 0

	Slide 1
	Python
	Modules: SciPy ecosystem
	Modules: NumPy
	Modules: scikit-learn
	scikit-learn: What's inside
	Setup: Your Home PC or Laptop
	Setup Labs PCs
	Tutorials
	How to use: 1. Python Interpreter
	How to use: 2. Write Source and Run
	How to use: 3. Jupyter notebook / lab
	Basics: Operators and Variables
	Basic Datatypes
	Whitespaces
	Assignments
	Arrays
	Sequence Types
	Functions
	Lab 0: Your First Program in Python
	Linear Regression with scikit-learn
	Least Squares (optional, presented later)
	Plot Data with matplotlib
	Task for Lab 0

