

CYBERSECURITY IN THE SPACE SECTOR

Carlo Sarto Head of Security Eng., Qascom S.r.l.

17 Feb. 2025 University of Padua

Template: QQA00033A v2.1*

UNCLASSIFIED - PUBLIC USE QASCOM

- Cybersecurity in the space sector
 - □ The space sector, market segments and applications
 - □ The security needs of the space industry
 - □ Security threats of space missions
 - Security standards and practices

The space sector, market segments and applications

- Space Sector definition
 - □ All the economic activities directly and indirectly related to outer space, including engineering and manufacturing of spacecrafts, satellites, space-based services and user equipment.
- Key players
 - □ Military agencies
 - □ Private companies
 - □ Research institutions
 - □ Governmental agencies: EUSPA (EU Agency for Space Programs), ESA (European Space Agency), NASA (US), Roscosmos (RU), Jaxa (JP), ISRA (IN), CNSA (CN), ASI (IT), CNES (FR), DLR (DE), ...

The value chain of the space economy refers to the various activities and processes that are involved in creating and delivering products and services related to space.

UPSTREAM

- Provision of space technologies
 - Engineering
 - Manufacturing
 - Launch
 - Science
 - R&D

DOWNSTREAM

- Use and commercialization of the products and services that result from space technologies
- Space infrastructure operations and "down-toearth" products and services that directly rely on satellite data and signals to operate and function

DERIVED / INDUCED

- Activities that are derived from space activities but are not dependent
- □ Technology transfer

Type of customers: Commercial, Civil government, Defense

Missions

- □ Satellite Communication
 - Telecommunications, television broadcasts, internet access, and more
 - COMSATCOM, GOVSATCOM, MILSATCOM
- □ Earth observation (EO)
 - Weather, Environmental monitoring, Geospatial mapping
- □ Satellite navigation
 - Galileo/GPS/GLONASS/BEIDOU (GNSS), EGNOS/IRNSS/QZSS(SBAS)
- Exploration and scientific
 - Lunar, interplanetary, deep space, astrobiology
- □ Security
- Human Spaceflight
- Commercial missions
- Planetary defence

Source: EUROCONSULT SPACE ECONOMY REPORT 2024

- Agriculture
- Critical infrastructures
- Aviation and drones
- Maritime
- Telecommunications
- Environmental monitoring
- Security and defense
- Scientific research
- Transportation
- Insurance and Finance

Galileo

- European Global Navigation Satellite System
 - 30 in-orbit spacecraft (24 in full service and 6 spares)
 - Orbital altitude: 23,222 km
- □ Services
 - Open Service (OS)
 - High Accuracy Service (HAS)
 - Public Regulated Service (PRS)
 - Search and Rescue Service (SAR)
 - Galileo Emergency Warning Satellite Service (EWSS)
 - Open Service Navigation Message Authentication (OSNMA)
 - Signal Authentication Service (SAS)
 - Timing Service (TS)
- Market applications
 - EUSPA Market Report (<u>link</u>)

The security needs of the space industry

Picture Source: Introduction to Cybersecurity for Commercial Satellite Operations, NISTIR 8270

Example of a satellite system architecture (Galileo)

GROUND SEGMENT

- □ Galileo Control Segment (GCS)
 - 2x Galileo Control Centres (GCC IT/DE) and the six globally distributed Telemetry Tracking and Control (TT&C) stations
 - A hybrid Communication Network interconnects the remote stations (ULS, GSS, and TT&C stations) with the GCC by different means of standard and special radio, wired data and voice communication links, assuring the communication between all the sites.

□ Galileo Mission Segment (GMS)

Facilities deployed in the two Galileo Control Centres (GCCs) plus a series of Mission Up-Link Stations (5x ULS) and Galileo Sensor Stations (GSS) deployed at remote sites located around the world

Generic Space Vehicle architecture (block diagram)

Souza, P. N.: CITS Lecture Notes. Slides - INPE - (2002)

- CIA (Confidentiality, Integrity, Availability) vs AIC
- Context est., security objectives, SRA (ISO 27005, EBIOS)
- Security goals/objectives and business goals need to align
 - Evaluation of a loss of CIA in terms of
 - Safety
 Financial
 Legal / Compliance
 Business / Strategy
 Reputation
- Space missions have unique security needs due to the harsh environment, long distances, and critical nature (or impact) of their operations and applications.
- Security domains
 - Cybersecurity
 - Protecting against cyberattacks
 - Securing communication links
 - Ensuring data security

- Physical Security
 - Securing ground infra. and stations
 - Protecting launch facilities
 - □ Securing supply chains

- Operational Security
 - Contingency planning and incident management
 - □ Secops
 - Personnel security

- Global Navigation Satellite System
 - □ Who are the users of the service?
 - □ How is the service used?
 - □ What is the impact of a CIA loss?

Safety
 Financial
 Legal / Compliance
 Business / Strategy
 Reputation

- How can we avoid a CIA loss?
- Why is it important to have a European GNSS system?

Security threats of space missions

CYBERSECURITY IN THE SPACE SECTOR THREAT SOURCES

- Adversarial Sources:
- □ terrorists and criminals;
- □ foreign intelligence services;
- □ subversives or political activists;
- □ computer hackers;
- □ commercial competitors;

- Insider Sources:
- □ dishonest maintenance personnel;
- □ dishonest systems personnel;
- □ disgruntled staff members;
- □ trusted business partners;
- □ inadvertent actions of staff members;
- □ rogue astronauts;

- Environmental Sources:
- natural or man-made disasters;
- □ pandemics;
- □ space weather (e.g., solar flares);
- □ space debris;

- □ infrastructure failures/power outages;
- Structural Sources:
 - □ software failures;
- □ hardware failures.

- Threat intelligence and public knowledge bases
 - MITRE ATT&CK ®: A knowledge base of adversary tactics and techniques based on real-world observations. Used as a foundation for the development of specific threat models and methodologies in the private sector, in government, and in the cybersecurity product and service community.
 - □ The <u>ESA SPACE-SHIELD</u>: An ATT&CK® like knowledge-base framework for Space Systems. It is composed by threats that are relevant for Space systems, leveraging the available and related literature.
 - SPARTA: Another instance of MITRE ATT&CK (tailored for space) that is well maintained/updated by the Aerospace Corp. (nonprofit org. founded in the '60).

CYBERSECURITY IN THE SPACE SECTOR **SECURITY THREATS**

SSEG					
Physical and Electromagnetic Damage	Weapons, Environmental damages Space-based attack	High-power	High-power Microwaves Radiofrequency Jammers		Lasers
Cybersecurity Attacks	Cryptographic Attacks Exploit vulnerabilities DoS, Malware injection Payload control,	rgraphic Attacks t vulnerabilities Malware injection ad control, Chemical Sprayers		Kinetic Kill Vehicles	Robotic Mechanisms
Process Lineage Analysis		GSEG			
USEG		Physical	Environmental or accidental damage		
Physical Security	ical Environmental or accidental damage urity Unauthorized physical access		Unauthorized physical access Deliberate damage		
Attacks	Deliberate damage	Attacks on	Modification		
Attacks on the	Modification	the network	Attacks to the working environment Supply Chain Threats		
Attacks on	Prevent personnel availability	attacks			
users	Misuse, Exfiltration of information	Attacks on	Prevent p	Prevent personnel availability Misuse, Exfiltration of information	
Logical security Attacks	Cryptographic Attacks Password, credential and session attacks Exploit vulnerabilities Drive-by-Download Process Lineage Analysis	Logical security Attacks	Cryptograp Password, Exploit vulr Drive-by-Do Process Lir	hic Attacks credential and session atta nerabilities ownload neage Analysis	acks

CYBERSECURITY IN THE SPACE SECTOR SECURITY THREATS

Data Modification

- The VIASAT cyberattack in Feb. 2022
 - □ Viasat offers mobile two-way satellite broadband telecom services (it can <u>support</u> military applications)
 - □ 23 Feb. 2022. Hackers gain access to mng services through a VPN installation in a mng center in Italy.
 - Exploitation of a misconfiguration in a VPN appliance to gain remote access to the trusted management segment of the KA-SAT network
 - Lateral movement through this trusted network to a specific network used to manage and operate the network.
 - Upload wiper malware (AcidRain) to specific modems.
 - 24 Feb. 2022. Russia invades Ukraine

Impact [1]

- Thousands of Viasat modems went offline \rightarrow loss of internet access
- Potential to threaten government or military objects
- Impacted the civilian population and civilian objects
- Impacted a major German energy company who lost remote monitoring access to over 5,800 wind turbines
- In France nearly 9,000 subscribers of a satellite internet service provider experienced an internet outage.
- In addition, around a third of 40,000 subscribers of another satellite internet service provider in Europe (Germany, France, Hungary, Greece, Italy, Poland) were affected

- Detailed information on the attack
 - An analysis of the Viasat cyber attack with the MITRE ATT&CK® framework (link)
 - Mapping to TTPs of MITRE ATT&CK framework
 - Space Cybersecurity Lessons Learned from The ViaSat Cyberattack from Nicolò Boschetti (Cornell University), Nathaniel Gordon (Johns Hopkins University) and Gregory Falco (Cornell University) (<u>link</u>)
 - AcidRain | A Modem Wiper Rains Down on Europe by SentineOne Team (<u>link</u>)

Security standards and practices

- Nowadays there is no a single "Security Standard"
- Agencies and organizations defines applicable requirements for the missions / programs (tailored)
- Standards (e.g., CCSDS) exist for some aspects (e.g., protocol, operations)
- There are several good source of guidelines and practices
- There is a strong push to evolve existing engineering standards to include safety aspects

Recommendations to Space System Operators for Improving Cybersecurity

Reference	Takeaways
BSI TR-3184 Infosec for Space Systems	 Satellite lifecycle process Reference Architecture 53 threats vs 59 security measures
SP800-53r5	Good source of control language & control cross-reference
ISO/IEC 27000 FAMILY / ISO 27002:2022	 Manageable control framework considerable overlap between its "Organisational" and "Technological" controls
US SPD-5	6 areas for SV protection
SPARTA / ATT&ACK / D3FEND / ESA SPACE-SHIELD	Validation of attack patterns & check countermeasures
NASA Best Practices Guide	 Threat Actor Capabilities / Tactics Architecture for Space Mission vs Ground Mission
NIST CSF 1.1/2.0	 Breakout of Governance as its own Function Function alignment for defensive measures
CCSDS Green/Magenta Books	 Alignment of threat models to satellite missions Mapping of threats to mission impacts CCSDS Security framework aligned to ISO 27001
AEROSPACE TOR-2021-01333-REV.A	 Satellite attack patterns aligned to defensive measures Satellite Vehicle requirements architecture (43 requirements in 7 groups)
CYBERSECURITY IN SPACE (KAVALLIERATOS)	Space Threat taxonomy chart (not quite an attack tree)
SATCOM Terminal Hacking Paper	Threat model regarding SATCOM user devices (not discussed much elsewhere)
CIS-18	Overall framework and assessment methodology

Thank you!

Carlo Sarto carlo.sarto@qascom.it

UNCLASSIFIED - PUBLIC USE QASCOM

- 1. What does "TT&C" stand for in the context of satellite operations? (single answer)
 - a) Telemetry, Tracking, and Command
 - b) Telecommands, Telemetry and Control
 - c) Threat, Tracking, and Countermeasures
 - d) Transmission, Targeting, and Control
- 2. Why is zero-day vulnerability exploitation particularly dangerous in the space sector? (multiple answer)
 - 1. Satellites are often physically inaccessible for patching.
 - 2. The long communication delays make rapid response difficult.
 - **3**. The potential impact of a successful attack is very high.
 - 4. All of the above.
- **3**. What are the main phases of a space mission life-cycle? Can you give an example of threats during the production/manufacturing phase?
- 4. What are the main segments of a generic SATCOM mission? Which of these is/are most important to protect? Why?