Neutrinoless Double Beta Decay

- Neutrinoless double beta decay: general aspects
- Experimental general aspects
- GERDA experiment as an example

Double Beta Decay: is the v a Majorana particle?

We know that neutrino is:

- 1) fermion
- 2) electrically neutral

It could be a Majorana particle

3) massive

Search for 0vββ decay is the only practical way to test Dirac/Majorana nature of neutrinos

If Majorana particle exists, there are interesting implications for particle physics:

- Lepton number violation must occur: $v=v^{c} \rightarrow |\Delta L|=2$
- GUT, Leptogenesis model, See-Saw mechanism

$$(A, Z) \to (A, Z+2) + 2e^- + 2\bar{\nu}_e$$

- 2nd order process allowed in the SM
- Single β decay forbidden (energy & angular momentum)
- 11 isotopes have been experimentally observed undergoing 2vββ decay

$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu}(Q_{\beta\beta}, Z)|M_{2\nu}|^2$$

Neutrinoless Double Beta Decay in a nutshell

$$(A,Z) \to (A,Z+2) + 2e^{-1}$$

- Process forbidden in the SM
- Half-life strongly suppressed

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2\eta^2$$

Few different mechanisms may induce 0vββ

- Light Majorana neutrino exchange
- Right-handed current (V+A), SUSY, Majoron(s), etc.
 Different topology in the final state!

Experimental Subnuclear Physics

Sensitivity to the light Majorana neutrino

Limits from direct ν mass measurement or cosmology

 $\Sigma m_{\nu} < 0.17 \text{ eV} (Planck 2015)$

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$
$$\langle m_{\beta\beta} \rangle = \left| \sum_i U_{ei}^2 m_i \right|$$

Related to:

- 1) neutrino oscillation
- 2) mass hierarchy
- 3) mass scale

$0\nu\beta\beta$ searches in practice

Experimental Subnuclear Physics

$0\nu\beta\beta$ searches in practice

Measure the 2 e⁻ energy spectrum

- $2\nu\beta\beta$ signature \rightarrow Broad spectrum
- $0\nu\beta\beta$ signal signature \rightarrow Peak @ $Q_{\beta\beta}$

If no signal \rightarrow set a limit on half life

Few important aspects ...

Low energy process ($Q_{\beta\beta} \leq 5$ MeV):

- Natural radioactivity is an issue (²³⁸U, ²³²Th)
- Cosmic muons are an issue

Experimental Subnuclear Physics

Few important aspects ...

Distinguish 0v from 2v mode \rightarrow irreducible background

• Good detector energy resolution

Few available isotopes → multiply experimental efforts

Isotope	Q _{ββ} [keV]	Nat. abund. (enrich.) [%]
⁴⁸ Ca → ⁴⁸ Tl	4270	0.187 (73)
⁷⁶ Ge → ⁷⁶ Se	2039	7.8 (86)
⁸² Se → ⁸² Kr	2995	8.7 (97)
⁹⁶ Zr → ⁹⁶ Mo	3350	2.8 (57)
¹⁰⁰ Mo → ¹⁰⁰ Ru	3034	9.6 (99)
¹¹⁰ Pd → ¹¹⁰ Cd	2018	7.5
$^{116}Cd \rightarrow ^{116}Sn$	2802	7.5 (93)
¹³⁰ Te → ¹³⁰ Xe	2527	34.5 (90)
¹³⁶ Xe → ¹³⁶ Ba	2480	8.9 (80)
¹⁵⁰ Nd → ¹⁵⁰ Sm	3367	5.6 (91)

Which technology?

Watchout for the NME...

Main limitation in interpreting results & comparing among different isotopes

... but also the axial coupling constant

- g_A is know to be quenched in β and ββ decay
- An effective constant is extracted from experimental measurement
- Quenching factor ~0.8 0.5
- g_A quenched in $0\nu\beta\beta$ as much as in $2\nu\beta\beta$?

g_A appear at the 4th power in T_{1/2} calculation \rightarrow it may impact $\langle m_{\beta\beta} \rangle$ sensitivity up to x6–34

GERDA experiment as an example

Gerda @ LNGS: Background reduction

GERDA situated in LNGS underground laboratories

3800 m.w.e.

Possible backgrounds from:

External:

- **ightarrow \gamma** from Th and U chain
- neutrons
- μ from cosmic rays
 (prompt and delayed)

Internal:

- cosmogenic 60 Co (T_{1/2}=5.3 yr)
- cosmogenic 68 Ge (T_{1/2}=271 d)
- Radioactive surface contaminations

Gerda @ LNGS: Background reduction

- Graded shielding against ambient radiation
- Rigorous material selection,
- Avoid exposure above ground for enriched (86% ⁷⁶Ge) Ge detectors
- Active background suppression

The Gerda experiment for the search of 0νββ **decay in** ⁷⁶Ge Eur. Phys. J. C (2013) 73:2330 *Experimental Subnuclear Physics*

Active background reduction tools

Point-like (single-site) energy deposition inside one HP-Ge diode

Multi-site energy deposition inside HP-Ge diode (Compton scattering), or **surface** events

Anti-coincidence with the muon veto (MV)
 Anti-coincidence between detectors (cuts multi-site) (AC)
 Active veto using LAr scintillation (LAr Veto)
 Pulse shape discrimination (PSD)

Phase II GERDA spectra

Full statistics
 LAr and PSD highly effective cuts

Final background at $Q_{\beta\beta} O(10^{-3} \text{ counts/keV} \cdot \text{ kg} \cdot \text{ yr})$

Statistical Analysis

► Frequentist analysis: Best fit $N^{0v} = 0$ $T^{0v}_{1/2} > 1.8 \cdot 10^{26}$ yr @ 90% C.L. Median Sensitivity (NO Signal) $T^{0v}_{1/2} > 1.8 \cdot 10^{26}$ yr @ 90% C.L.

• upper limit on $m_{\beta\beta} < 79 - 180 \text{ meV}$

Bayesian analysis: $T^{0v}_{1/2} > 1.4 \cdot 10^{26} \text{ yr}$ @ 90% C.I. Median Sensitivity: $T^{0v}_{1/2} > 1.4 \cdot 10^{26} \text{ yr}$ @ 90% C.I.