CKM matrix and CP violation in SM (II)

- Origin of the Cabibbo-Kobayashi-Maskawa Matrix (CKM)
- Overview of the measurements of the CKM elements
- CP violation in the Standard Model
- Overview of the measurements

b Quark is Special !

- Processes involving b quark can be used to measure several CKM element magnitudes
- Large mass of b quark allows use of Heavy Quark Effective Theory (HQET) for reliable theoretical calculations
 - Important for interpretation of experimental measurements with B mesons
- B mesons are of particular interest for study of CP violation
 - We will discuss this in detail
- Highlights of b quark
 - Heavy mass: big phase space an hence variety of final states to decay to
 - Long lifetime: important for experimental techniques to identify B mesons
 - B0-B0bar oscillation: a fine example of quantum entanglement, important ingredient for CP violation
 - $b \rightarrow u$ transitions: necessary ingredient for CP violation

Particle, <i>I(J^P)</i>	Mass (in MeV/c ²)	Lifetime $\tau = 1/\Gamma$ (in10 ⁻¹² s)
$B_{d}^{0} = (bd) , I(J^{p}) = \frac{1}{2} (0^{-})$	5279.4 ± 0.5	1.536 ±0.014 & (cτ =460μm)
$B^{-} = (bu), I(J^{p}) = \frac{1}{2} (0^{-})$	5279.0 ± 0.5	1.671 ±0.018 & (cτ =501μm)
$B_{s}^{0} = (bs), I(J^{p}) = 0(0^{-})$	5369.6 ± 2.4	1.461 ±0.057 & (cτ =438μm)
$\Lambda_{\rm b} = ({\rm bud}), I(J^{\rm P}) = 0(1/2^+)$	5624.0 ± 9.0	1.229 ±0.080 & (cτ =368μm)

B production in e+e- Collisions

B production at Upsilon resonance: **B** Factory

B Mesons produced with ~ 300 MeV momentum Moving very slowly, don't travel much before decay

PEP-II Collider at SLAC (Stanford, CA)

PEP-II accelerator schematic and tunnel view

Experimental Subnuclear Physics

KEKB collider at KEK (Tsukuba, Japan)

KEKB: 1999-2010

now upgraded to **SuperKEKB** (2019- ...)

Experimental Subnuclear Physics

factory

B production at Z⁰ Resonance

All types of B hadrons produced in $Z \rightarrow b\overline{b}$ hadronization

$$\frac{\Gamma(b\overline{b})}{\Gamma(TOT)} \sim 17\%$$

Average B momentum ~ 35 GeV $\Rightarrow (\beta \gamma)_{B} \approx 7$ (highly relativistic)

LEP/SLD Program ended in '95, made important contributions to b physics

Experimental Subnuclear Physics

B production at Hadron Colliders

Experimental Subnuclear Physics

B production at Hadron Colliders

Summary of Past Experiments

<u>Experiments</u>	<u># of b events</u>	<u>Environment</u>	<u>Characteristics</u>
LEP Coll. ALEPH/DELPHI/ L3/OPAL	~ 1M (each exp.)	Z ⁰ decays (σ ~ 6 nb)	Back-to-back 45GeV b-jets All B hadrons produced Stopped
SLD	~0.1 M	Z ⁰ decays (σ ~ 6 nb)	Back-to-back 45GeV b-jets All B hadrons produced Stopped
ARGUS	~0.2 M	Y(4s) decays symmetric (σ ~ 1.2 nb)	B mesons produced at rest B ⁰ and B ⁺ produced Stopped
CLEO	~9 M	Y(4s) decays symmetric (σ ~ 1.2 nb)	B mesons produced at rest B ⁰ and B ⁺ produced Stopped
Belle Babar	~130 M (each exp.)	Y(4s) decays asymmetric (σ ~ 1.2 nb)	B mesons produced at rest B ⁰ and B ⁺ produced Stopped
Tevatron Coll. CDF/D0	~several	p p collider √s = 1.8 TeV	triggered events All B hadrons produced Stopped

Summary of Present Experiments

<u>Experiments</u>	<u># of b events</u>	<u>Environment</u>	<u>Characteristics</u>
BelleII	goal: 50 ab ⁻¹ ~55·10 ⁹ events	Y(4s) decays asymmetric (σ ~ 1.2 nb)	B mesons produced at rest B ⁰ and B ⁺ produced Running
LHC Coll. LHCb	~5 \cdot 10 ¹⁰ events (*)	pp collider	triggered events All B hadrons produced Running
LHC Coll. CMS/ATLAS	~5·10 ¹⁰ events (*)	pp collider √s = 7,8, 13 TeV	triggered events All B hadrons produced Running

(*) very rough estimation

Integrated luminosity of (past) B factories

Experimental Subnuclear Physics

Integrated luminosity of Belle II B factory

Catalog of B decays

Introduction to Diagram Jargon !

Experimental Subnuclear Physics

Experimental Subnuclear Physics

Experimental Subnuclear Physics

Penguins in B Decays !?

Ref: Preface to Shifman's 1999 book, ITEP Lectures on Particle Physics and Field Theory, John Ellis recalls how the gluon interference diagram came to be called a penguin diagram.

One night in spring 1977, Ellis lost a bet during a game of darts. His penalty required that he use the word "penguin" in a journal article. "For some time, it was not clear to me how to get the word into this b quark paper that we were writing at the time," Ellis wrote.

"Then, one evening I stopped on my way back to my apartment to visit some friends living in Meyrin, where I smoked some illegal substance. *Later, when I got back to my apartment and continued working on our paper, I had a sudden flash that the famous diagrams looked like penguins.*

So we put the name into our paper, and the rest, as they say, is history."

Experimental Subnuclear Physics

Typology of Tree Decay Amplitudes

Experimental Subnuclear Physics

Summary of *b***-quark Decay**

• 99% of B's \rightarrow D's

- 66(13)% of B's $\rightarrow K^+(K^-)$: flavor tagging
- 10% semi-leptonic BR: flavor tagging
- 7×10^{-4} of B's $\rightarrow J/\psi \rightarrow \mu^+\mu^-$

• mean track multiplicity for single B ~ 5.5

Experimental Subnuclear Physics

Brief Primer of B reconstruction at e+e- B factory

PEP-II Asymmetric B-Factory at SLAC

Experimental Subnuclear Physics

Snapshot of BB Event at BaBar

Exclusive or Inclusive ?

- Exclusive Selection
 - All products in selected final states are found in the detector
 - Conservation laws connect measured quantities between initial and final states
 - Advantages:
 - Typically better signal to noise ratio
 - Kinematic constraints remove most of combinatorial background
 - Disadvantages:
 - Usually requires more reliance on theoretical models and theory for interpretation of results
- Inclusive Selection
 - Not all particles in final state selected
 - No kinematic relation between initial and final state
 - Advantage:
 - Closer to transition diagram at quark level, hence typically less dependent on theory models
 - Disadvantage:
 - More background because of reduced constraints

Ingredients of B Reconstruction

- Take advantage of clean environment in $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - Energy of each B meson is known in the center of mass

Experimental Subnuclear Physics

Kinematic Variables

$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

- Dominated by tracking resolution
- Assume π mass for tracks
- Momentum dependent shift for $K\pi$ and KK

Experimental Subnuclear Physics

Continuum Background Rejection

- Main source of background: continuum $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c)
 - Branching fraction of interesting B decays $\leq 10^{-4}$
 - Branching fraction of D decays: \cong 10⁻²

Overall branching fraction $< 10^{-6}$

- Distinguish signal and background based on event topology
 - Neural networks
 - Fisher discriminant

quantity to be maximized through \vec{T}

Experimental Subnuclear Physics

Event Topology at LEP/SLD vs. B Factories

Experimental Subnuclear Physics

Background Fighting: Sphericity Angle

 cosθ_s: Angle between the B candidate and the rest of event

Experimental Subnuclear Physics

2nd Fox-Wolfram Moment

 $\Upsilon(4S) \rightarrow B\overline{B}$ Decay

 $e^+e^- \rightarrow u\overline{u}, \ d\overline{d}, s\overline{s}, c\overline{c}$ decays

Differences in the event topology (Isotropic B Vs jet-like Continuum) and Energy flow structure in these events used to construct continuum background suppresssion tools.

Background Fighting: Fisher Discriminant

- Optimized linear combination of energy flow into cones about candidates
- Sensitive only to the rest of event
- Studied and calibrated on data: $B \rightarrow D^0 \pi^-$, $h^- h'^+$ sideband
- Validated with Monte Carlo

Experimental Subnuclear Physics

A completely reconstructed Y(4s) event at BaBar

Experimental Subnuclear Physics

$$\mathbf{V}_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \mathbf{V}_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

$|V_{cb}|$ from $B^0 \rightarrow D^{(*)}lv$ decays

Differential measurement of $B(B^0 \rightarrow D^* lv)$ allows for the extraction of $|V_{cb}|$ through the expression:

$$\frac{d\Gamma}{dw} \propto \left|V_{cb}\right|^2 \mathcal{F}^2(w) \mathcal{G}(w)$$

Form factor of $B \rightarrow D^*$ transition

w = product of the B and D 4-velocities $q^2 = (p_B - p_D)^2$

$$v = v_B \cdot v_D = \frac{m_B^2 + m_{D^*}^2 - m_B^2}{2m_B m_{D^*}}$$

Known kinematic factor

HQET and LQCD provide calculation at zero recoil

In reality the formula is slightly more complicated:

$$\mathcal{F}^{2}(w)\mathcal{G}(w) = h_{A_{1}}^{2}(w)\sqrt{w-1}(w+1)^{2} \left\{ 2\left[\frac{1-2wr+r^{2}}{(1-r)^{2}}\right] \times \left(1+R_{I}(w)^{2}\frac{w-1}{w+1}\right) + \left[1+(1-R_{2}(w))\frac{w-1}{1-r}\right]^{2} \right\}$$
where $r = \frac{M_{D^{*}}}{M_{p^{0}}}$ $F \rightarrow 1 \text{ for } w \rightarrow 1$

Experimental Subnuclear Physics

$B^0 \rightarrow D^{(*)} l\nu$ decays

D^(*+-)**D**⁰ mass difference

- D⁰ mass: 1864 MeV
- D* mass: 2010 MeV

 $D^{*-} \rightarrow \overline{D}^0 \pi^-$

- Fixed momentum for soft pion
 - Only experimental resolution

Experimental Subnuclear Physics

Angular Variables for $B^0 \rightarrow D^{(*)}$ lv selection

Angle between D* and lepton

 $\cos \theta_{\mathrm{B}^{0},\mathrm{D}^{*}\ell} = \frac{-(m_{\mathrm{B}^{0}}^{2} + m_{\mathrm{D}^{*}\ell}^{2} - 2E_{\mathrm{B}^{0}}E_{\mathrm{D}^{*}\ell})}{2|\vec{p}_{\mathrm{B}^{0}}||\vec{p}_{\mathrm{D}^{*}\ell}|}$

- Angle between B⁰ and the D*l system
 - From kinematic quantities since B direction not measured

Experimental Subnuclear Physics

Extraction of $|V_{cb}|$

Events/10³/0.05

5.0

2.5

 \mathbf{O} 35 it D 1v

Fake leptons

Uncorr. D^{T} -1

55,000 Decays

X1v

D

Corr. D Continuum

Fake D

Measurement:

- Determine number of • $B^0 \rightarrow D^{*-} l^+ \nu$ candidates as function of w
- Obtain $h_{A1}(w)|V_{cb}|$ distribution •
- Fit differential spectrum and extrapola • to w=1

In RaRar.

In BaBar:

$$\frac{h_{A_1}(1)|V_{cb}| = (35.5 \pm 0.3_{stat} \pm 1.6_{syst})}{h_{A_1}(w = 1) = 0.919^{+0.030}_{-0.035}} \xrightarrow{\text{Hashimoto et al.}}_{\text{PRD 66, 014503}} \underbrace{U_{QCD}}_{\text{LQCD}} \underbrace{V_{cb}| = (38.7 \pm 0.3_{stat} \pm 1.7_{syst} \pm \frac{1.5}{1.3A_1}) \times 10^{-3}}_{W} \times 10^{-3}$$

Experimental Subnuclear Physics