CKM matrix and CP violation in SM (II)

® Origin of the Cabibbo-Kobayashi-Maskawa Matrix (CKM)
® Overview of the measurements of the CKM elements

® CP violation in the Standard Model

® Overview of the measurements
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b Quark is Special !

Processes involving b quark can be used to measure several CKM element
magnitudes

Large mass of b quark allows use of Heavy Quark Effective Theory (HQET) for
reliable theoretical calculations

= Important for interpretation of experimental measurements with B mesons

B mesons are of particular interest for study of CP violation
=«  We will discuss this in detail

Highlights of b quark
= Heavy mass: big phase space an hence variety of final states to decay to
=« Long lifetime: important for experimental techniques to identify B mesons

= BO0-BObar oscillation: a fine example of quantum entanglement, important ingredient
for CP violation

= b—>u transitions: necessary ingredient for CP violation

Experimental Subnuclear Physics 2



Summary of B properties

Particle, I(JF) Mass ( in MeV/c?) Lifetime t =1/T" (in10125s)
B%, =(bd), I(Jf)="2(0) |5279.4 0.5 1.536 £0.014 & (ct =460um)
B- = (bu), I()=Y2(0) |5279.0+0.5 1.671 £0.018 & (ct =501um)
BO. =(bs), I(J°)=0(0) 5369.6 + 2.4 1.461 £0.057 & (ct =438um)

Ay = (bud), I(F)=0(1/2*) | 5624.0 =+ 9.0 1.229 +0.080 & (ct =368um)
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B production in e+e- Collisions

R=
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B production at Upsilon resonance: B Factory

et Y (4S) e ,
symmetric B
— oo} factory
Bpi= 529408 Epeam— J-29 GeV
25 [~ VT [ & & [ & & 7 LI R B e — b
~ [ u,d
:% 20 5'3 < o
= [ 7 u,d
S B +
5150 ¢ ¢
< S '
= it
T 10 o s _
o | Pl N . _
\3 5 B '1! l\‘-+ *j 1 » .,i % h
© [ + boy % "*M-o .,.,s....._,,-u'""'u_i__t_. ]
- Y(1S) Y(2S) Y(3S) Y'(4S)
0 PRI B T | T R T I T S PRI T T T T | I PR I TR T S T N 1 S ST S T T S 1
9.44 9.46 10.00 10.02 1034 1037  10.54 10.58 10.62
Mass (GeV/Cz) o(e'e” >UAS)—>bb) 12nb »50,
— — 4 /0

o(e'e” >UM@4S)—>TOT) 3.5nb
Enough energy to barely produce 2 B mesons, nothing else!
B Mesons produced with ~ 300 MeV momentum
Moving very slowly, don’ t travel much before decay
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PEP-II Collider at SLAC (Stanford, CA)

asymmetric B
factory

Electron
Gun

SLAC/LBL/LLNL
SLAC-Based B Factory:
PEP-Il and BABAR

(1999-2008)

sitron 2
Aep ~~4/ Return Line N
. = A &

)
” Electrons (,;l-‘ \Q“%

Positron

= 2 Source
1) Positrons

PEP-II
Rings -

Positrons

Low Energy Ring
new
BABAR Detector( \

7

lectrons 9 GeV

High Energy Ring
(upgrade of existing ring)

Both Rings Housed in Current PEP Tunnel ton

PEP-II accelerator schematic and tunnel view
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KEKB collider at KEK (Tsukuba, Japan)

ikko
: 4/\ roknba | KEKB: 1999-2010
LER / . ‘\ (Belle)
3.5 GeV X now upgraded to SuperKEKB (2019- ...)
( 8.0eGeV ‘%
1\9- L

Positrons

LINAC
e 8.0 GeV
Positron e 3.5 GeV
Generator \ asymmetric B

: factory
x ‘ e 3.7 GeV

e 1.7 GeV
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B production at Z° Resonance

All types of B hadrons produced in Z = bb hadronization

o b hadron  Fraction [%]
N7 R = v & B*, BY 30.7 £ 1.0
et : BY 10.7 £ 1.1

/ 5 b baryvons 9.9+ 1.7

4 :

electro-weak O(w,)

l“(bﬁz.’a) 7% Average B momentum ~ 35 GeV
[(TOT) = (Py)y =7 (highly relativistic)

LEP/SLD Program ended in ‘95, made important contributions to b physics

Experimental Subnuclear Physics 8



B production at Hadron Colliders

ey

Integrated b-quark Cross Section for PT > PTminI

RN,

Lowest order

Flavor excitation

g b
O0OO0OO0OO0O000
b .
b
3 .
0
a
q o q

Gluon splitting

1.0E+01 |

1.0E+00

1.0E-01 1

Cross Section (ub)

1.0E-02 4

1.0E+02 =
ISAJET Isajet Total
CTEQ3L =——0=—Flavor Creation
—g—Flavor Excitation

= = Shower/Fragmentation
A DO Data
B CDF Data

o 5 16 15 2‘0 2‘5 3I0 3I5 4:0
PTmin (GeV/c)
o (bb) ~>10ub glo) . 1
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B production at Hadron Colliders

Track'ing system

,Muon system
/

_Electromagnetic calorimeter 10°
-~

10° F

c (nhb)

o G}Qt

tot

o, (E;" >s/20)

Cw

o

(E,*' > 100 GeV)

Tevatron

'LHC:
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-—h
<
-1

-
om
-2

cm S

events / sec for » = 10>

10



Summary of Past Experiments

Experiments # of b events Environment Characteristics
LEP Coll. ~ 1M Z° decays Back-to-back 45GeV b-jets
ALEPH/DELPHI/ (each exp.) (o ~ 6 nb) All' B hadrons produced
L3/0OPAL Stopped
SLD ~0.1 M Z° decays Back-to-back 45GeV b-jets
(o ~ 6 nb) All B hadrons produced
Stopped

Tevatron Coll.
CDF/DO

~several

pp collider
Vs = 1.8 TeV

triggered events
All B hadrons produced
Stopped

Experimental Subnuclear Physics
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Summary of Present Experiments

Experiments # of b events Environment Characteristics

LHC Coll. ~5-10'% events (*) pp collider triggered events
LLHCb All B hadrons produced
Running
LHC Coll. ~5-10' events (*) pp collider triggered events
CMS/ATLAS Vs =7,8, 13 TeV All B hadrons produced
Running

(*) very rough estimation

Experimental Subnuclear Physics 12



Integrated luminosity of (past) B factories

1200 ! .
- KEKB
1000 |
800 |
600 |

200 |

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1
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>1ab™!
On resonance:
Y(5S): 121 !
Y(4S): 711 b !
Y(3S): 3!
Y(2S): 25 b~
Y(1S): 6 fb!
Off reson./scan:

~100 fb!

~ 550 fb™*
On resonance:
Y (4S): 433 b
Y(3S): 30 fb?
Y(2S): 14 !
Off resonance:
~54 th™!
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Integrated luminosity of Belle II B factory

Total integrated Weekly luminosity [fb~1]

Belle Il Online luminosity

Exp: 7-26 - All runs
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Catalog of B decays

Introduction to Diagram Jargon !

Experimental Subnuclear Physics
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Spectator

Tree Diagrams

W-Exchange _
-« - €
S

wt <
5
»- > u
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Annihilation
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Penguins in B Decays !?

Ref: Preface to Shifman's 1999 book, ITEP Lectures on Particle Physics and
Field Theory, John Ellis recalls how the gluon interference diagram came to
be called a penguin diagram.

One night in spring 1977, Ellis lost a bet during a game of darts.

His penalty required that he use the word "penguin” in a journal
article. “For some time, it was not clear to me how to get the word
into this b quark paper that we were writing at the time," Ellis wrote.

"Then, one evening I stopped on my way

back to my apartment to visit some friends living in Meyrin, where I
smoked some illegal substance. Later, when I got back to my
apartment and continued working on our paper, I had a sudden flash
that the famous diagrams looked like penguins.

So we put the name into our paper, and the rest, as they say, is
history."

i 9
Experimental Subnuclear Physics 18



Typology of Tree Decay Amplitudes

Hadronic & Leptonic
current do factorize

< v f
. ~J -t
eptonic N — — <
b —~—
&~ V
vt
Semileptonic / v
(In most cases best —
way to extract IV |) - F om&} F“a(:l,pr N

* Low energy QCD: decay constant f
* Lattice QCD starts to get precise

Exclusive Decays:

* FF: Symmetries (y & HQS)

* FF: Lattice QCD, Sum Rules; ...
Inclusive Decays:

* Operator Product Expansion

No factorization in naive sense
due to gluon exchange

Hadronic

o :
Fo@fﬁfé{g{or ;’j

Theoretical developments:
e.g. QCD Factorisation approach
Not used for IVuI extraction (yet)
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Summary of b-quark Decay

s
3 3
&
b
95
Mode i¥e fQC’D fps E B
cud’ 3 1.3 052 0.038 48%
ccs’ 3 1.3 0.25 0.038 23%
cer, i} 1.0 0.52 0.038 12%
v, 1 1.0 052 0.038 12%
CTT. 1 1.0 0.13 0.038 3%
uud’ 3 1.3 1.00 0.003 0.6%
ucs’ 3 1.3 0.52 0.003 0.3%
uer, 1; 1.0 1.00 0.003 0.1%
wpw, 1 1.0 1.00 0.003 0.1%
TV, 1 1.0 0.25 0.003 <0.1%
s(d)g, s(d)y, s(d)Z°... O(10~%)

e 99% of B's — D’s

e 66(13)% of B’'s — K1(K™): flavor tagging
e 10% semi-leptonic BR: flavor tagging

e 7x107* of B's = J/¢p — ptpu~

e mean track multiplicity for single B ~ 5.5

Experimental Subnuclear Physics 20



Brief Primer of B reconstruction
at e+e- B factory

Experimental Subnuclear Physics
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PEP-II Asymmetric B-Factory at SLAC

G (e ¢ — Hadrons)(nb)

PEPII
Low Ener
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Morth Camping ]
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E 2 .
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et injector
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25 k' =] T ¥ T [ % % T [+ W o T ¥ T
L ® YIS + - v o
of i TUS) e'e” —Y(4S) - BB | = 9GeVe on3.1GeV et
I ; |1' B B~ production threshold
15 | ! -
F 2E) l = Y(4S) boost in lab frame
o oy Py Y(3S) -
I T £ =
Co ! * & Y'(4S) - By 0.55
5L : \ﬁ+ *."+ w o 't _
i + Ly ohd  term, NNCTIPY T L op AP SR
0-|||l|n|l|||||ll||| ..... | Y SR S BN N SO S SR SR ' | - 1
9.44 946 10.00 10.02 10.34 10.37 10.54 10.58 10.62

Mass (Ge\f’.ﬁ'cl)
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Snapshot of BB Event at BaBar

Inclusive Reconstruction: Look at some of decay
products carrying information about their mother

Coherent BB pair

Exclusive Reconstruction: All particles
in final state are identified

Experimental Subnuclear Physics 23



Exclusive or Inclusive ?

s Exclusive Selection

= All products in selected final states are found in the detector

= Conservation laws connect measured quantities between initial and final
states

= Advantages:

« Typically better signal to noise ratio
Kinematic constraints remove most of combinatorial background
= Disadvantages:

« Usually requires more reliance on theoretical models and theory for interpretation
of results

= Inclusive Selection
= Not all particles in final state selected
= No kinematic relation between initial and final state
= Advantage:

= Closer to transition diagram at quark level, hence typically less dependent on
theory models

= Disadvantage:

= More background because of reduced constraints
Experimental Subnuclear Physics 24



Ingredients of B Reconstruction

= Take advantage of clean environment in e'e” »Y(4S) —BB
Energy of each B meson is known in the center of mass

€100

N /25MeV

-100

S ' T o

E : Mpg = \/ E vor — Pg Energy-substituted mass

: L -

= ~ = Use measured momenta of B daughters and

- 3 energy of the beam

- . = Resolution ~2.5 MeV/c’ dominated by

- J ]-L . knowledge of beam energy

S e T I I e I Energy difference

g ) - = - E:] _; . ot =

§_ _E] "; AE = EB T Ebeam

3 1]j—'—._, 3 = Difference between total

3 - fl_,—'—'—' E reconstructed and

3 T E expected energy

3 ) - = = Dominated by detector

3 "3 E energy resolution

E e e R v Him oo Paiey w o Wi et vers e s e = Resolution depends on
5.2 5.22 524 5.26 5.28 0O 10 20 30 40 50 60 70 80 90

particles in final states
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Kinematic Variables

AE=FE,—FE,

beam

e Dominated by tracking resolution

\/ p*z e Assume n mass for tracks
ES beam B

e Momentum dependent shift

for Kn and KK
c(AE) =~ 26 MeV

o(mgs) ~ 2.6 MeV/c?
, KK
1000 | \ |
| Signal Monte Carlo 00 '.
750 | T |
’ 400 |
500 . |
| ' Side-band
250 | Side-band 200 | e
5.2 5.225 5.25 5.275 5.3 [ '
me GeV/c” AE GeV

(All distributions are normalized to the same area)
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Continuum Background Rejection

= Main source of background: continuum e’e” —»qg (q = u, d, s, ¢)

= Branching fraction of interesting B decays < 10°* Overall branchGing
= Branching fraction of D decays: = 10~ fraction < 10~

= Distinguish signal and background based on event topology
= Neural networks
= Fisher discriminant

Thrust Axis e+e_ —> qq ejrei —> Y(4A.SY) —> BE

TP, . . .
T = 2 [-p| quantity to be maximized through T | Experimental Subnuclear Physics 27




Event Topology at LEP/SLD vs. B Factories

b < non-b

- displaced vertices
- leptons
- topology

LEP/SLD

B-factories

B-events

D-events ;

Light quarks-events
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Background Fighting: Sphericity Angle

—— background —
Y4S rest frame:
e e’
Jetlike

= cosH_: Angle between the B
candidate and the rest of event

signal

Y4S rest frame:

C

IIllllllllll!lllllllllllllllllllllllllll
012
o1 I Continuum Background
0.08 —
oos . Slgnal Monte Carlo
|
L |
0.04 |- I
- |
1
I 1
0.02 - I
[ -4
o L e 1 ! 1

o 1 02 03 04 05 06 07 0B 09 1
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2" Fox-Wolfram Moment

Y(4S) — BB Decay . .
i Differences in the event topology

(Isotropic B Vs jet-like
Continuum) and Energy flow
structure 1n these events used to
construct continuum background
suppresssion tools.

0.07

itrary units
o
(=
[=2]

bb
qq continuum
;% 0.05 T .t-
()
0.04
0.03
0.02
(5
el
0.01 5
s
Pelelele
%9 0.1 03 04 05 06 07 08 09 1
N R22H2/|H2|
Experimental Subnuclear Physics H, = > |B|5)Pi(cost, ;) 30

i,j \
k-th order Fox-Wolfram momen ¢




Background Fighting: Fisher Discriminant

Optimized linear combination of energy flow into cones about candidates
Sensitive only to the rest of event
Studied and calibrated on data: B — Dz, h'h"*sideband

Validated with Monte Carlo

10 degree angles

600

400

Signal
Monte Carlo

h'h’*
Sideband

1
b
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A completely reconstructed Y(4s) event at BaBar

BO—D**r - - B> y(2S)K",

All particles accounted for
Nothing Missing !

D**—> D%t | Y(2S) - utu-
DY—Krt K’ — ntr
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Measurement of |V _ |

VCKM

\ [ 122202 p
1 0
Vs - ) 1-A% /2
/ 3 (=p-in) —-41*

423 (p-in)

1

|V, | exclusive g
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V.| from B’ —» D®lv decays

Differential measurement of B(B’—D"lv) allows for the extraction

of IVcbl through the expression: \C/Ivz:_%odu;t)gf the B and D 4-velocities
— Mg " Mp
2 2 2
dr 2 2 mB + mD* — q
—— x|V, FZmGw)  w=v,-v, =

dw / 2mym .

Form factor of B — D transition , ,
Known kinematic factor

HQET and LQCD provide calculation at zero recoil

In reality the formula is slightly more

<
complicated: L
F2 (GO = 1 w1 (w+1) {2 [1 (fw) ]
7
»w-l -171° Zero recoil
(1o 355 [0 O] |
where 1r——L
Mo F>1 for w=>1
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B’ - D®lv decays

Experimental Subnuclear Physics
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DD’ mass difference

s DY mass: 1864 MeV
= D* mass: 2010 MeV D — DO

= Fixed momentum for soft pion
= Only experimental resolution

%3 000 T~ T T {elec:0S:OnRes} % T T T T T imuon: OS:OnRes )
- H Signal + BG = Signal + BG
e ? [] Uncorrelated D*1 BG w [] Uncorrelated D*1 BG
3 I Fake lepton BG 3 I Fake lepton BG
o ] Continuum BG ~ L [0 Continuum BG
= Combinatoric D* BG £2000 Combinatoric D* BG
:&2000 — B Combinatoric = [ Combinatoric
: 3 : Y
m 84
1000 1000/~ .
0 - 0 -
140 145 150 155 160 165 140 145 150 135 160 165
Refitted m(D*)-m(DO0) (MeV) Refitted m(D*)-m(DO0) (MeV)
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Angular Variables for B’ —» DOlv selection

= Angle between D* and lepton

35
Background g

before cut &3
: cosBY cut _C
i cosBYTlp cut

S T o L

i i Yl e | K O B
-1 -0.5 0 0.5 1

= Angle between B° and the D*| system

= From kinematic quantities since B direction
not measured

22.5 cos(D*D<0 &=

20 cas D*l{>0 =
Background [

I
1l|“

cosBY 'u);cqs *1)=0

15 | u i
12.5 i L i
10 ol

N0l ’.HJLEE:E |§|_| 1 iII El‘l Y | O
-10 -5 0 5 10

7.5 ¢
S rh P P
2.5 : ]_

=]

100

before cut &3
i cosBY cut °2
i cosBYflp cut

SR TR TR DO I P s i o ToF S O HS NOT BATR A

-1 -0.5 0 0.5 1

—(mfo + mp.y — 2 EgoEpe¢)

cosfpo ¢ =

2 |PBe||Ppee

cos(g*{kg =
cos(D*)=0 -2
;cos%‘D*l{>0

|IIIIIIIIIIIIIIIIIIIIIIII

s |
e VR CORT (2 [0 (0 T OO

5 10

Y I 5 =
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Extraction of |V _ |

Measurement:

= L[] Fit D 1v M Corr. D'-1
9—_ } ]12“)'1 ]:il \1 cpP T ons g gr?ljllét 1}51&11111
Determine number of = '° [ Uncorr. D -1 - B
. = g . = ]
B9%— D* 1+ v candidates as 27s = I
function of w sl | ° .
. . _ ) b 55,000 Decays
Obtain h,,;(w)|V | distribution -
" . . 2.5
Fit differential spectrum and extrapol: -
tO W:1 (aa] n T T T | I I I I I I T | T I T | T T T
= 35 F
> 30 F W, h.aban.
—_ X r
h, D]V, =(35.5+03,, =16 ) <
and uSIHg Hashimoto et al. § 20 F PRD 71, 051502 (2005) ° :
+0.030 PRD 66, 014503 Q< PR S N TN TR U RN TR T NN SO TN W N SO A U
hy(Ww=1)=0.9197;5 (Lace) B L1 12 13 14 15
-3
|Vb ‘_(387 O3smt_17sst _13A1)X10 w
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