CKM matrix and CP violation in SM (I)

® Origin of the Cabibbo-Kobayashi-Maskawa Matrix (CKM)
® Overview of the measurements of the CKM elements

® CP violation in the Standard Model

® Overview of the measurements
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Standard Model

SU(2), x U(1)y

Weak Isospin (symbol L because
only the LEFT states are involved )

Z N\

Weak Hypercharge :

(LEFT and RIGHT states )

I I, Q Y
doublet L Vv A 1/ 0 |
C
er %. -2 -1 -1
: Idem for the
Leptons | singlet R eg” O 0 =1 -2 other families
Up /2 /2 2/3 e
doublet L dL 1/, 1 -1/3 3
singlet R u, O 0 2/3 4/3
quarks |[singlet R dg O 0 -1/3 -2/3
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Mass of the Quarks in the Standard Model

= For each generation we have one left-handed SU(2) doublet, and two right-

handed singlets
hypercharge Q-T;

) SU(3) triplet _
ol _ U} ,-é ~ 4/_ 3 1 T_ (31 Eigenstates of
QL - DI ( *\‘-’)+1 6 s Z - ( ’ )-|-'._)_."'.'§‘ ('R - (_' ’ )—15 Weak IntEractlonS
L SU(2) doublet

= Quarks interact with nggs field via Yukawa coupling

Ly = C?JQLz“d F,JQL?()URJ + H.c.

Generic complex matrix of yukawa coupling constants

= Quarks acquire mass through because of spontaneous symmetry breaking

1 — 1 —
[:,1[ — _\/;FGIJ([{J([{R] — \/;I'Fjjlliiug.’{j _'_ H.C.
M, = Gv/V2, M, =Fuv/V2

Mass matrices for up and down quarks. Elements are complex!
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Weak Interactions and Mass Eigenstates

= Diagonalize mass matrices to obtain mass eigenstates
= Rotate quark fields by with unitary complex matrices V,, Vg, Vi, Var
= Choose arbitrary phases so that M is diagonal

M, = Gv/V2, M, =Fuv/V2

VdLl\/IdelH — ngiags VU-Ll\/Iu.VZ_R = Mgiag
Universality of

: : . weak interactions:
= Lagrangian for weak interactions of quarks

same constant g
for all couplings

1 -7 T - .
Ly = — \/;guiif}“lijdw |4 :‘ + h.c. — qq
= Lagrangian after going from interaction to mass eigenstates 4j
No more universal coupling constant!
1 = — .
CH' = — \/;Ej'l[Li’:¢’lvij d'Lj IIJ_ —|— h.C. V jum— VuLV(TiL
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No more Universality of Weak Interactions

= In absence of CKM matrix all weak interactions have same coupling
= This is referred to as universality of weak interactions

w+ qi

g _
qj

= Because of CKM matrix coupling depends on quarks involved in the transition
= Universality is broken!

qi

q;
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Cabibbo-Kobayashi-Maskawa Matrix

(Ve Vs Vi)
VCKM = VT VdL VCKM = Vd V, Vcb

ul, c cs

\V;d Ve Vi )

s

Origin of CKM matrix is the difference between mass eigenstates and weak
interaction eigenstates

Lagrangian of Standard Model is diagonal in weak eigenstates with universal
coupling constant

Universality is broken when moving from interaction basis to mass basis
necessary to obtain Lagrangian for mass terms after spontaneous symmetry
breaking

Vekm 1S @ unitary complex matrix
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Properties of CKM Matrix

M(diag) is unchanged if /" = p/v,/ ¥, =P'V]  VP(CKM)=P"(CKM)P"

Pf = phase matrix

Vo= M Vs N e 0 (W, V(e 0 _ Vet e
Vo Vo) L0 e )P VL0 7% ) {1,770 p,,e7 7
(0y—2y) = (2, = XD+ (@ = 2y) = (9, = 1)) Among 4 phases, only 3 can be arbitrarly chosen

and removed (so 2n-1)
Generally for a rotation matrix in complex plane

Quark families # Angles # Phases # Irreducible Phases
n n(n-1)/2 n(n+1)/2 n(n+l)/2-(2n-1)=(n-1)(n-2)/2
> : 2 Necessary for
3 3 0 @, CP Violation
4 10 3 in SM

= Today we know there are three flavors, or generations of quarks

= But this was not the case when CKM matrix was first proposed in 1973!
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How do we know there are only 3
generations of matter?
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Number of neutrino families from LEP (@ CERN

HADRONS

0:....|...,|....|....|....|....1..,,|....
88 89 90 91 92 93 94 95 96

ENERGY (GeV)
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Families of matter known in 1972

Three Quarks for Muster Mark !...Joyce

Only 2 families were

d q Known

= — Charm quark not even
€ lu observed yet!
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Kobayashi-Maskawa Mechanism of CP Violation

Two Young
Postdocs at that
time !

ik 1) e

Proposed a daring explanation for CP violation in K decays

CP violation appears only in the charged current weak interaction of quarks

There is a single source of CP Violation = Complex Quantum Mechanical Phase
Oy in inter-quark coupling matrix

Need at least 3 Generation of Quarks (then not known) to facilitate this

CP is NOT an approximate symmetry, BKM = ], it is MAXIMALLY violated !
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1974: Discovery of charm in J/psi

Seen as a resonance m~3.1 GeV I'~10-100KeV
*Brookhaven (p on Be target)
C e+ MJr
C
— _ hadrons
e u
C [~70 KeV
I'(ee)~5 KeV e*e” final state
I'(pp)~5 KeV . SLAC (ete-)
8o : 24z Evems-t; j'-' - I
0t SPECTROME TER SC—IU"J & ™
F B3 ntnerral current Gl
B0y po CI=1C% corrant 2000 ".:*
- Nalelal i
5ot 500 [ ®
> 40f r (N
= E ] ) 1 '.
& Z L P00 '
i3t 2 »
Z =
% 15 i
20 z - : - *
L {ﬁ =l i i -
1] % _'I_._l‘
0, A 2 //A =14 -_.I:-I
2.5 275 3.0 3,28 s -
ey =[] Nt '
, . 3.10 3.12 3.14
The decay through strong interaction is so suppressed
that the electromagnetic interaction becomes important hadronic final state
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1977: Discovery of bottom in Upsilon(1S) @ FNAL

PRL 39
252(1977)
Y(1$)
T *“'"uu.:’ '*fh“ | } }
i T NSy |
. | HH 1 ] t \{‘ 39 ]
T a )
ﬁiﬁ?w i u/ \%m. -
J |

SSSSSSSSS
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Standard Parameterization of CKM matrix

3 mixing angles and one CP-violating KM phase.
The angles 0, in the first quadrant, so s, ¢, = 0

—is
Ve = |0 ¢y Sy |0 1 0 —S, ¢, 0
is
—i
C12Cr3 S1nC3 S13€
— | B is B is
S1pCr37C 15,385 3€ CipCr3 ™81, 8385 3€ §23C 13
is is
S1282337C1pCr3853€ TCp ST S35 3€ Cyr3C3
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Features of CKM Matrix

l3 u C

VIODIs<y

same 1-2 2-3 1-3

familiy d s
Relative magnitudes
d S b

Diagonal elements ~ 1 A
(=

Vo . Vi ~4x107

Vi Ve ~02 ¢

us

Vi,  Via ~ 4 %103
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Wolfenstein Parameterization of CKM Matrix

= Wolfenstein first saw a pattern with 4 parameters

with 2 quneratons [RRGINEPEY), A | AR (p-in)
Vo=l A 2272 4% oot
AR (=p-i) -AA? 1
\ /
A = V| ~ 0.22
A — V.| A =~ 0.80
Jor+t = ,l/(AV.]) = 035
n/ o = tan[arg(Vub)] =~ 2.5
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Measurements of CKM Element Magnitudes

e c e-
D n K n b u
(
Vo =097425| |V =02252| [V ,=0.004
ud Us ub o-
, (£0.02%) (£0.4%) (= 6%) <
< b S¢
________ Vo =230 ' =0.987 V' =0.041
cd cs B cb n
—+ '0 -+ 0 1 il Q -
- d (22%) (x1%) (E3%) -l <
~0.008 -0.039 _1.01 D £
V. V. ~0.039 V., =101 K
+40 +39 +120
) | ) | (e .
b—»—vibfvwv\,‘i—d W- MY <
B’ B _._L._\‘_,_ sd t b
(_i—-c—v;d/\/\/\f\f\,\:«L—E u,ct
PDG review of CKM b quark plays a special role in determination of CKM elements!
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Measuring CKM Elements

Measurements related to first 2 generations briefly discussed here
= Most measurements established since a while

Mostly focus on decays of B mesons and related measurements because

= B factories at SLAC and KEK since 1999 have allowed a detailed study of many B
decays that were not available previously

= B mesons are an excellent laboratory to study CP Violation
= Observations of 2 different types of CP violation in B mesons since 2001!
= First observation in 1964 with neutral Kaons

Redundant measurements of same observables in different processes allow to
verify CKM paradigm

= Discrepancies could be a sign of New Physics beyond Standard Model
= For example: use measurements to verify unitarity of CKM matrix
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From Hadrons to Quarks

CKM matrix elements describe processes at quark level but
processes observed experimentally involve hadrons

Theory is used to relate measurements with hadrons to quantities
defined for quarks
= HQET, OPE, Lattice QCD

Ultimately must verify theories with measurements

When models are used to interpret data this should be described
clearly and some kind of error assigned to the model-dependency
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Typology of Tree Decay Amplitudes

Hadronic & Leptonic
current do factorize

< v f
. ~J -t
eptonic N — — <
b —~—
&~ V
vt
Semileptonic / v
(In most cases best —
way to extract IV |) - F om&} F“a(:l,pr N

* Low energy QCD: decay constant f
* Lattice QCD starts to get precise

Exclusive Decays:

* FF: Symmetries (y & HQS)

* FF: Lattice QCD, Sum Rules; ...
Inclusive Decays:

* Operator Product Expansion

No factorization in naive sense
due to gluon exchange

Hadronic

o :
Fo@fﬁfé{g{or ;’j

Theoretical developments:
e.g. QCD Factorisation approach
Not used for IVuI extraction (yet)
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CKM Elements in First Two Generations

V(“KM

(

KM

\

(Ve Vi| Vi
= Vea V| Ve
\ Vi Vie Vi J
1—/12 /2 A A/13 ( p—il])\
A =22 a8
A/I?’(l—p—i;]) _A2? 1 )
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Measuring |V _|and |V _|

IV_I: 1) Super-allowed nuclear -decays

2) Neutron PB-decay
3) Pionic B-decay

v _I 1) Semileptonic Kaon decays

2) Leptonic Kaon & Pion decay

IVch, IVCSI: 1) Dimuon production from neutrinos on nuclei

2) Semileptonic D-meson decays
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[V_|: B Decays

Fermi-transitions: 0+->0* within same isospin multiplet
pure vector-current (take advantage of CVC)

3
v, =2 nmgﬂ 26 (11+AR] Ft’ =y '(1"'6‘R) '(I_SAC)
Radiative Correction 1 T
(nucleus-independent) 1765 Imegral 51 Vil = 0.H7373+0.00031
A= (2.40 0.08)% K Bt oo

3) Isospin-symmetry breaking

Neutron 3-decays: n— pe v,

Vector transition: G, =g,  G; |V,,| (CVC <=>Isospin Cons.: g =1)
Axial-V. transition: G, = 9,G; |[V,,| (PCAC: g,/g, =A=z1)

1 (mY G2, F

T, 2wh(ac)

. N
-(1+3 ?\2]-]”[1+5 RJ-(1+AR) => Measure T andé\ | not well known
_/

l ‘ » Gamov-Teller-transition => g,
Fermi-transition => g,
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Super-allowed pion 3 decay

- TIOe+ Ve Pure Vector transition

(K/Mn2)Br(m*—>n’e*v)

V=
“ ZGF(1+AR)f1f2f(1+63)Tn 0 N
il :
Best experiment: em 5 ’“5*1 ‘ §
* PIBETA experiment at PSI -//'/> [\, |‘ . %ﬁ\l\/\
* Stopped / '

* Detection of ° in Csl ball,
* Normalisation with T — e*v,

PRL 93. 181803 (2004):
BF (1 — me*v,) = (1.036 +0.004__ +0.004_ +0.003 ) 10°

V.4l .= 0.9739 £ 0.0029
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'V

: Semileptonic K Decays

us

K ;decays: K+ »n°l*v,;and K —l*v,, 00 —0 (pure Vector transitions)

" / form factor at g> = 0
2 2 7
_(mKC ) Gpe|V,l

r. c2r. (0f-1-(1+4,)(1+8,
“ 192 ™ A (#e) A 7. 0F-L {1+ 4, }
/ "
Normalisation: PhaSe Space Il‘ltegl'a]: I = I(f+_, (ml/mK)zfo)
K': C= 12 N => K  preferred
K’: C=1 N

<K(p)lay"sim(p,)>=C|((ph+p") f.(¢")+(pi— 1) £.()). ¢"=(Pl— L)

Averaging many experimental results:

V.| =0.2231 £ 0.0007 (with f,(0) coming from lattice QCD calculations )
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di-muon Production in Deep Inelastic Scattering

Charm production in Deep Inelastic Scattering v d(s)—>pc (c—sp v )
of Neutrinos/Anti-Neutrinos on Nucleons: v,d(5)—>u'e (e—suv,)
¥ | y
4 ,, s
Vv (V. W’ Vi
d (S ) 1 ui( Cs ) C s

(Anti-)Neutrino-Nucleon Cross Section (CHDS, CCFR, CHARM II)
+ quark density distributions: Vv, BF ,=(4.63+0.34)10 "
BF = (

0.0919+0.0094)
=0.224+0.014 (6%)

Semileptonic BF of charmed hadrons:

(produced in DIS fragmentation) |‘ 7

k|V.| BF.=(4.53+0.37)10"
B f;dx[x.s'(x)+x§(x)]

In addition:

o = =0.453+0.106 T00% (CCFR)
with 1 — e . ~0.096
i’ |de[xft(x)+xd(x)]

V |=1.04£0.16 (16%)
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Semileptonic D and Leptonic D_Decays

D= Klv
D> uv

DS-) TV

Averaging the determinations from leptonic and semileptonic decays:

V.| =0.987 + 0.011
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Hadronic or Semileptonic ?

= Semileptonic decays are main approach to measurement of these first 4
CKM elements

Measure branching fractions and lifetimes

One vertex is leptonic > No CKM element

One vertex is hadronic - Only 1 CKM element in decay amplitude
Extract CKM element for experimental measurement

= Where do we need theory and why

Hadronic part of semileptonic decay amplitudes parameterized via form
factors

Hadronic vertex in leptonic decays parameterized with decay constants
Estimate form factors with lattice QCD
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