Experimental Tests of the Standard Model (3)

- Measurements of the Weinberg angle
- W^{\pm} and Z^{0} discovery
- Precision measurements of the Z^0
- Precision measurements of the W
- Discovery/measurements of the top
- Discovery of the Higgs

CP violation

- Well before the clear evidence of the quarks and the discovery of the J/ψ meson, an experiment found a small **violation of the CP invariance** in the weak interaction of the neutral kaons.
- In a small percentage, K⁰₂ are seen to decay into two pions (experiment made by Christenson, Cronin, Fitch, Turlay (1964))
- In 1973 Kobayashi and Maskawa noted that the presence of the CP invariance in the weak interactions implies, in the context of the quark model of the hadrons, the presence of a <u>complex phase</u> in the matrix representing the transition probabilities.
 - With 4 quarks, the matrix is 2x2 and the unitarity request implies $(n-1)^2 = 1$ free parameter: θ_c (Cabibbo angle)
 - The number of complex phases in a unitary matrix is (n-1)(n-2)/2, therefore the minimum number of quark generation to have CP violation is 3.
- The K.M. speculation becomes more credible after the discovery of the charm.
- The following discovery of the tau lepton (Perl et al., 1975) makes more strong the hypothesis of the three quarks generation, and the hunt of the *b* quark starts.

b quark discovery

- Lederman *et al.* 1977: 400 GeV protons from the Fermilab synchrotron collide against a berillium target, final states with muons in the two magnetic spectrometers are analyzed.
- The experiment finds a bump of events with an invariant mass of about 9 10 GeV, they were recognized as three distinct resonances: *Y*(1S,2S,3S).
- The properties of the new quark are studied also in the *e*+*e* collider confirming the charge (-1/3, PLUTO/DASP), the increase of *R*, and the weak isospin (PETRA, 1983)

3 generations: theoretical motivations

 At this point there are many experimental reasons to search for the top quark completing the third quarks family and explain the CP violation in a natural manner.
From the theoretical side there are even more suggestions for the top existence:

1) Cancellation of the triangular anomalies

- 2) Weak isospin of the *b*-quark
- 3) Non-existence of the FCNC of the neutral B
- 4) Frequency of the neutral *B* oscillations
- 5) Width of the *W* boson

Phenomenology of the top quark

- Decay mechanisms:
 - Standard decay
 - FCNC decays $(t \rightarrow Bq \text{ with } B = g, \gamma, Z, H \text{ and } q = u, c)$
- Production mechanisms at the hadronic colliders
 - Pair production
 - Electroweak single-top production $(qq' \rightarrow t b, qb \rightarrow t q')$

top decays

- The "standard" decays of the top always include a W boson and a b or s or d quark
 - From the values of $|V_{tb}|$ and $|V_{ts}|$ follows that $t \rightarrow Wb$ is dominant
 - **B** $(t \rightarrow Ws)$: 0.2% only
 - The helicity conservation prevents the decay into W with h = +1
 - The decay is "semi-weak" because the top mass is huge and the width depends on the third power of the top mass $\rightarrow \tau = 10^{-25}$ s

$$\begin{split} V_{tb} &= 0.9990 \pm 0.0004 \implies BR(b) \approx 1 \\ V_{ts} &= 0.044 \pm 0.010 \implies BR(s) \approx 0.2\% \\ V_{td} &= 0.011 \pm 0.009 \implies BR(d) \approx 0.01\% \end{split}$$

$$\Gamma = \frac{G_F m_t^3}{8\sqrt{2}\pi} \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right)$$
$$\approx 175 \,\mathrm{MeV} \left(\frac{m_t}{M_W}\right)^3$$

Implications of Γ **(top) = 1.5 GeV**

- The big value of Γ works as a cut-off for the QCD dynamics, which is connected to the $\Lambda = 150-200 \text{ MeV}$
 - The angular distribution of the top decays follows the predictions of a ½ spin particle, because QCD has no time to modify the decay of a "free particle".
 - To be compared with the *b*-quarks decay, which happens inside the mesons ($\tau_{\rm B} >> 1/\Lambda$), it is isotropic (does not depend on the *b* spin)
 - The top quark is produced and decays as a free particle, QCD has no time to work
 - This implies the possibility:
 - to measure the spin of the top directly from the angular distributions of the decay product
 - **b** to measure the dynamics of the decays and verify if it is governed by the V-A interaction

• For the *tt* toponium: $\Gamma(tt) = 2\Gamma(t) = 3$ GeV while the foreseen splitting between the states 1S and 2S is 1.2 GeV \rightarrow there is no time for the building of the resonances

• At Tevatron and LHC it is possible to study the characteristics of the top spin, at a linear collider one will observe the cross section increasing with *s* without any spike.

Top quark pair production

Top quark pair production

Main mechanism: pair production via strong interaction

Tevatron

Full next-to-next-toleading-order (NNLO) accuracy in the strong coupling constant αs, including the resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms

mt = 172.5 GeV, MSTW2008NNLO PDF

Uncertainty from scale variation and PDF
~4% uncertainty for Tevatron

LHC: ATLAS full 7 TeV sample Tevatron: D0 full sample ~29,000 l+jets events ~2,700 l+jets events

Top quark decay

Top quark decay

Motivations

First step in understanding selected tt sample
Test of theoretical QCD calculations

New physics in top quark production

Finding top quark decay: kinematics

Finding top quark decay: b-tagging

- Powerful tool to suppress backgrounds to top
- Utilizes
 - Iong live time of B-hadrons
- Use as
 - cut on b-tagging algorithm output
 - continuous variable

- Secondary Vertex tagger (SVX)
- reconstructs secondary vertex
- L_{2D}/σ > 7.5

- combines properties of displaced tracks and secondary vertex
- 7 variables total

Experimental Subnuclear Physics

Silicon Detectors

- Almost all detectors at the hadron colliders have microvertex detectors (CDF from1992, D0 from 2002)
- Various concentric cylinders, built of "modules" silicon layers, 300 µm depth, with strips at a distance of 50-60 µm and with a positive bias of 100-200 V, charge (20000 electrons) is collected
- The silicon is a *pn* junction inversely polarized → depleted of free charge → all the charge produced by ionization is collected with low noise
- The detector permits high precision in the position measurement of the charged particles passing the silicon layers → a tracking of high precision is obtained → B tagging!

Principles of operation

Dilepton channel

Dilepton channel

Experimental Subnuclear Physics

9.1 fb⁻¹

S/B = 2.6

8.8 fb⁻¹

18

lepton + jets channel

Provides the most precise measurements

lepton + jets channel

Experimental Subnuclear Physics

TEVATRON combination

PRD 89, 072001 (2014)

weight: 60% CDF, 40% D0 probability - 92%, correlation - 17%

Tevatron combination: 5.4% precision

LHC results

LHC results

LHC results

Standard Reconstruction

- Reconstruct invariant mass distributions from final state objects:
 - Leptons, jets, and missing transverse momentum
- Measured mass corresponds to definition used in MC
- All presented measurements on m_t^{MC}
 - Relation between theoretical well defined top-quark mass and m_t^{MC} to be determined

Measurement Method

- Build estimator for m_t (e.g. inv. mass of decay products)
- Parametrize estimator as function of m^{MC} (and possible other parameters)
- Possible per event combination of multiple estimators
- Ideogram method, CMS all-jets and I+jets
- Template method, all other measurements
- Perform maximum likelihood fit to data

Experimental Subnuclear Physics

Datasets

- 7 TeV analyses based on 3.5 5.0 fb⁻¹ from 2011
- 8 TeV analyses based on 18.2 19.7 fb⁻¹ from 2012
- Produced number of top-quark pair events:
 - 2011: 800k, 2012: 5M, each number per experiment
- Cornerstones of measurements are understanding and minimizing impact of systematic uncertainties

Overview of Measurements

- Alljets channel:
 - ATLAS @ 7 TeV
 - CMS @ 7 & 8 TeV
- Lepton+Jets channel:
 - ATLAS @ 7 TeV
 - CMS @ 7 & 8 TeV
- Dilepton channel:
 - ATLAS @ 7 TeV
 - CMS @ 7 & 8 TeV
- No measurements in final states with τ

All-Jets Channel

- Largest branching ratio (46%)
- 2 bottom quarks and 4 lighter quarks in the final state
 - Require 6 jets with 2 b tags (as clean as possible)
- Largest and worst predictable background (multijets)
 - Fully data-driven background prediction needed
- Background reduction with help of event topology
 - Kinematic Fit

Experimental Subnuclear Physics

Experimental Subnuclear Physics

All-Jets Top-Quark Mass @ ATLAS 7 TeV

- Kinematic fit for jet-parton assignment
- Background: ABCD method
- Reduce JES uncertainty:

• $R_{3/2} = m_{jjj} / m_{jj}$

	Source	Unc. [GeV]
bJES: 0.62 Had: 0.50	JES+PU	0.52
	bJES+Had	0.80
	Detector modelling	0.17
	Signal modelling	0.51
	Background	0.35
	Method	0.42
	Syst.	1.22
	Stat.	1.40
	Total	1.86

All-Jets Top-Quark Mass @ CMS 7 TeV

- Kinematic fit
- Background: event mixing
- ▶ Tighter selection than ATLAS 🖑
 - Less events
 - Narrower peak

Source	Unc. [GeV]	
JES+PU	0.97	
bJES+Had	0.49	
Detector modelling	0.29	
Signal modelling	0.46	
Background	0.13	
Method	0.13	
Syst.	1.23	
Stat.	0.69	
Total	1.41	

All-Jets Top-Quark Mass @ CMS 8 TeV

- Improved reconstruction
- Switch to 2D fit with JES scale factor (JSF)
- Fit signal and correct permutation fractions

JES+PU:	Source	Unc. [GeV]
	JES+PU+JSF	0.48
0.24	bJES+Had	0.39
	Detector modelling	0.21
	Signal modelling	0.52
	Background	0.22
	Method	0.06
	Syst.	0.86
	Stat. (m _t only)	0.27
	Total	0.90
		•

ATLAS+CMS Preliminary LHC <i>top</i> WG	m_{top} summary, $\sqrt{s} = 7-13 \text{ TeV}$	September 2021				
World comb. (Mar 2014) [2]	l −− π − total stat					
total uncertainty	m _{top} ± total (stat ± syst)	s Ref.				
LHC comb. (Sep 2013) LHCtopWG HITH	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [1]				
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [2]				
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]				
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]				
ATLAS, all jets	= 175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [4]				
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]				
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [6]				
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]				
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]				
ATLAS comb. (Oct 2018)	172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]				
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]				
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [10]				
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [11]				
CMS, all jets		7 TeV [12]				
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]				
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]				
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]				
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]				
CMS comb. (Sep 2015) ⊢⊮H	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]				
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [15]				
CMS, dilepton	172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [16]				
CMS, all jets	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [17]				
CMS, single top	172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [18]				
* Preliminary	[1] ATLAS-CONF-2013-102 (7) JHEP 09 (2017) 118 [2] aX0x:1403.4427 (8) EPJC 79 (2019) 280 [3] EPJC 75 (2015) 330 (9) ATLAS-CONF-2019-046	[13] PRD 93 (2018) 072004 [14] EPJC 77 (2017) 354 [15] EPJC 78 (2018) 891				
,	[4] EPJC 75 (2015) 158 (10] JHEP 12 (2012) 105 [5] ATLAS-CONF-2014-055 (11) EPJC 72 (2012) 2202	[16] EPUC 79 (2019) 368 [17] EPUC 79 (2019) 313				
	[6] PLB 761 (2016) 350 [12] EPJC 74 (2014) 2758	[18] arXiv:2108.10407				
165 170	175 180	185				
m _{ten} [GeV]						

Further material

- Ideogram method for mass determination: V.M. Abazov et al. (D0 Collaboration), *Measurement of the top quark mass in the lepton+jets channel using the IdeogramMethod*, hepex/0702018.pdf
- **Template method for mass determination**: T. Aaltonen et al. (CDF Collaboration), *Top quark mass measurement using the template method at CDF*, arXiv: 1105.0192v3