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RenormalizationRenormalization

In quantum field theory like QCD and QED, physical quantities R can be expressed  by a    
perturbation series in powers of 

s
 or , respectively.

If, for example, 
s 
≪ 1, the series may converge sufficiently quickly such that it provides a 

realistic prediction of R  even if only a limited number of perturbative orders will be known. 

Example of R : , , jets production rates, hadronic event shapes, …

Consider R(Q2, 
s
) being dimensionless and depending on 

s  
and only a single energy scale Q.

 Q2  larger than any other relevant, dimensional parameter such as quark masses. In the        
following:   m

q
   ≡ 0

 When calculating R as a perturbative series in power of  
s
, ultraviolet divergences occur. 

 To give meaning to R the divergences  are first made temporarely finite through the       
regularization procedure.  
The regularization introduces additional parameters: a finite mass to the gluons, a cutoff 
parameter Λ, etc. 
 The divergences are then expressed in a well defined manner (even if with divergent limit).
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Renormalization Renormalization 

These divergencies now regularized are then removed absorbing them in the definition of 
physical parameters through a procedure called renormalization. 
The renormalization is a precise (even if arbitrary) prescription which introduces a new energy 
scale  
 R and 

s
 become function of this renormalization scale .

 Being R dimensionless:

                                         R  ≡ R(Q2/2, 
s
);          

s
  ≡ 

s
(2)

The choice of  is arbitrary, but the value of the experimental observable  R  can't  depend on  
:

                                                                                  
           

The equation implies that any explicit dependence of R on  must be cancelled by an appropriate 
-dependence of 

s 
to all orders.


2d

d 2 R Q
2
/

2 ,s=2∂

∂
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∂
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∂

∂s R=0



Experimental Subnuclear Physics 4

Renormalization Renormalization 

Example: 
doing the natural identification: Q2 =2 
 one eliminates  the uncomfortable presence of a second and unspecified energy scale
 

s
 becomes a running coupling constant: 

s
(Q2) 

 R  = R(
s
(Q2) ): the energy dependence of R enters only through the energy dependence of    

      
s
(Q2)

Any residual -dependence is a measure of the quality of a given calculation in finite 
perturbative order.  
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
ss
 and its energy dependence  and its energy dependence 

While QCD does not predict the absolute size of 
s
, its energy dependence is precisely 

determined.
If 

s
(2) is measured at a given scale, QCD definitely predicts its size at any other energy scale  

Q2 through the renormalization group equation (RGE):  
 
                  
                                                                                                

The perturbative expansion of the  function is calculated to complete 4-loop approximation: 

                      
where (N

f
 = n. of active quarks flavours at the energy scale  Q, C

A
 = 3, C

F
= 4/3 in SU(3)

C
):

Q2∂sQ
2


∂Q2  =  sQ
2


sQ
2
=−0s

2
Q2

−1s
3
Q2

−2s
4
Q2

−3s
5
Q2

O s
6


0=
11CA−2N f
   12

=
33−2Nf

 12
                                         1-loop 

1=
17C A

2
−5CA N f 3CFN f

            242 =
153−19N f

  242                     2-loop 

2=
77139−15099N f325N f

2

           34563                                     3-loop 

3=
29243−6946N f405,089N f

2
1,49931N f

3

                2563           4-loop

For theories exhibiting SU(N) 
symmetry  the group constants 
are: :
C

A
 = N; C

F
 = (N2-1)/2N

beta function
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
ss
 and its energy dependence  and its energy dependence 


0
, 

1
 are independent of the renormalization scheme.

All higher order  coefficients are scheme dependent.
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The  runningThe  running  costantcostant

The 1-loop solution of: 

 
                  
comes from: 

and is:

relationship between 
s
(Q2) and 

s
(2)

if 
0
 > 0 (N

f
 < 17) and Q2  ∞ ;  

s
(Q2)  0  asymptotic freedom

if Q2  0 ;   
s
(Q2)  ∞   confinament

Q2∂sQ
2


∂Q2 =sQ
2


Q2d sQ
2


d Q2 =−0s
2
Q2



sQ
2
=

        s
2


10s
2
ln 

Q2


2 
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Example: 


s
(2 = M2

Z
 ) = 0.12 per N

f
 = 2, …, 5


s
(Q2 ) > 1 for Q2   ≤   O(100 MeV … 1 GeV) 

                  
Q2  < 1 GeV2  this is the non-perturbative region, where the  confinament happens.  Here the  
RGE equation cannot be used.

Including the 
1
term or higher similar but more complicated expression are obtained. They can 

be solved numerically. 

 

    The running costantThe running costant  



Experimental Subnuclear Physics 9

 
Putting:

one obtains:

             

for Q2 2;  
s
(Q2)  ∞  

Example: ~ 0.1 GeV for 
s
(M

Z
 = 90.2 GeV ) = 0.12 and N

f 
= 5

This is the standard parameterization. 

 2=
      2

e1/  0s
2


sQ
2
=

       1

0 ln Q2
/

2


The running costant The running costant 
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This parameterization has a certain number of caveats: 
1) 

s
(Q2) must be continuous when crossing a quark threshold  

     depends on the quarks number
2)  depends on the renormalization scheme 

Renormalization scheme used here : “modified minimal subtraction scheme”: 
Therefore   will be labelled:  

MS
 MS

N f 

The running costant The running costant   
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The running costant The running costant 

Q2  ∞  
s
(Q2)  0

sQ
2
  = 

  1
0 L

−
  1

0
2 L2 1 ln L

    
  1

0
3L3 1

2

0
2

ln2L−ln L−1 
2

0 
    

  1

0
4 L4 1

3

0
3 −ln3L

5
2

ln2L2 ln L−
1
2 −3

12

0
2 ln L

3

20 
L  =  ln Q2

/ MS
2


In 4-loop approximation:
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Any experimental proof of asymptotic freedom will therefore require precise determination of 
s 

(or of other observables which depend on 
s
(Q2)), in a possibly large range of energy scale. 

This range should include as small as possible energies, since the relative energy dependence is 
largest there. 

To date, precise experimental data and respective QCD analyses are available in the range of  Q≈ 
1 GeV to 1000 GeV.  

  The running costantThe running costant
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Relative size of finite order approximations  Relative size of finite order approximations  
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Quark masses and thresholds Quark masses and thresholds 

Up to now m
q
 ≈  0 because Q2 e 2  are much larger than any other energy scale 

This is not enterely correct: QCD studies for Q ~ 1.5 GeV (~ m
c
) or  Q ~ 4.5 GeV  (~ m

b
) 

m
q
 ≠ 0 effects
1)  Finite quark masses alter the pertubative predictions of the R observables

a) explicit quark mass corrections in higher than leading perturbative order are available 
only for very few observables. 

b) phase space effects can often be studied using hadronization models and MC simulation 
techniques. 

2)  Any quark-mass dependence of  R introduces a term  

  to the equation of   R = R(Q2/2, 
s
(2), m): 


2∂m

∂
2

∂R
∂m


2d R

d 2       2∂

∂
2 

2∂s

∂
2

∂

∂s


2∂m

∂ 
2

∂

∂m R=0
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           can be solved introducing a  running mass, m(Q2), in a similar way as the running         
           coupling  

s
(Q2) was obtained: 

           
           

m
(

s
): mass anomalous dimension.

           The solution is:    

2∂

∂
2    s

∂

∂ s
 −  msm

∂

∂m R Q2
/

2 ,s ,m /Q =0

Q2∂m

∂Q2  =  −msm Q2


m Q2
=m 

2
exp[−∫


2

Q2

dQ2

Q2 msQ
2
]

          =m 
2
exp[− ∫

s
2

sQ
2

ds
ms

 s ]

Quark masses and thresholds Quark masses and thresholds 
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Quark masses and thresholds Quark masses and thresholds 



Experimental Subnuclear Physics 17

Quark masses and thresholds Quark masses and thresholds 



Experimental Subnuclear Physics 18

Quark masses and thresholds Quark masses and thresholds 
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      3) 
s 
indirectly depends on m

q
 through the dependence of the  coefficients on N

f

          An effective theory for (N
f
-1) flavours has to be consistent with a theory for N

f
 flavours       

          at the heavy quark threshold:  (Nf) ~ O(m
q
)  matching conditions for the 

s  
values of 

          the (N
f
-1)- and N

f
-quark flavour theories. 

         The matching conditions are simple: 
s
(Nf-1) =

 


s
(Nf) for leading and next-to-leading orders  

          For higher orders the matching conditions are more complicated. 

Quark masses and thresholds Quark masses and thresholds 
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Perturbative predictions of observablesPerturbative predictions of observables  


s
 not directly observable, but only through  R observables 

the observables are usually given by a power series of 
s
(2):

R
n
 = n

th
 order coefficients of the perturbative series

P
l
 R

0
 = the lowest-order value of R

For processes which involve gluons already in lowest order perturbation theory, P
l
 itself may 

include powers of 
s

For example: (  ggg  hadrons), P
l
 ∝ 

s
3  

If no gluons are involved in lowest order, for example: DIS processes, e+e-  hadrons, 
P

l
 R

0 
= CONSTANT, and the usual choice of  normalization is  P

l  
≡ 1

R
0
 = lowest order coefficient

R
1
 =  leading order (LO) coefficient

R
2
 =  next-to-leading (NLO) coefficient

R
3
 =  next-to-next-to-leading (NNLO) coefficient

R Q2
=Pl∑n

Rns
n

          =Pl R0R1s
2
R2Q

2
/

2
s

2


2
... 
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QCD calculations in NLO perturbative calculation are available for many observables: event 
shapes, jet production rates, scaling violations of structure functions 

Calculations including the complete NNLO are available for some totally inclusive quantities:  
moments and sum rules of structure functions in DIS, (e+e-  hadrons), (Z0  hadrons), ( 
 hadrons), … but also for the production of vector bosons,  Higgs bosons,  Higgs in association 
with a vector boson,  top-antitop couples, etc.

This  situation is due to the complicated nature of  QCD: 
gluon self-coupling   large number of  Feynman diagrams in higher orders of perturbative 
theory.  

Perturbative predictions of observablesPerturbative predictions of observables  
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Another approach to calculating higher order corrections is based on the resummation of 
logarithms  which arise from soft and collinear singularities in gluon emission  (*):


s
n logn+1(...) ≡ leading logarithms (LL)


s
n logn(...) ≡ next-to-leading log (NLL)


s
n logm(...) ≡ subdominant logarihtmic correction 0 < m < n

(*) Also at high energy, short distances,  the long distance aspects of QCD are not negligible. Soft 
and collinear gluon emission produces infrared singularities in perturbative theory. The light 
quarks  (m

q
 ≪ ) produce divergences when m

q
  0 (mass singularities).

R  ≈  A s
n logn1

...B s
n logn...C s

n logm...

Timeline branchingSpaceline branching

Perturbative predictions of observablesPerturbative predictions of observables  
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Renormalization scale dependence Renormalization scale dependence   

R independence from the choice of 2:

Putting  
s 
  

s
(2), and                                        , the pertubative expansion of  R  and of the  

-function gives:

To solve this equation, the 
s
n(2) coefficients have to go to zero for every n:     

2∂

∂
2 

2∂s

∂
2

∂

∂s R=0

Q2∂sQ
2


∂Q2 =sQ
2


0=
2∂R0

∂
2    s

2
 

2∂R1

∂
2   s

2


2
[2∂R2

∂
2 −R10]

                                                 s
3


2
[ 2∂R3

∂ 
2 − [R112 R20 ] ]

                                                 O s
4


R0=costant ;
R1=costant ;

R2Q
2
/

2
=R21−0R1 ln Q2

/
2
;

R3 Q
2
/

2
=R3 1− [2R21R11 ] ln Q

2
/

2
R10

2 ln2
Q2

/
2

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Invariance of the complete perturbation series from 2 implies that R
2
, R

3
, … explicitly depend on 

2

In infinite order, the renormalization scale dependence of   and R
n
 cancel. 

In any finite (truncated) order the cancellation is not perfect. 
All realistic pQCD predictions include an explicit dependence on  2

This dependence is more pronounced in LO, because  R
1
 does not depend on   no 

cancellation of the logarithm scale dependence of  
s
(2).

At NLO or at higher orders the dependence is weaker  partial cancellation due to the  
dependence  of  R

n
 (for n ≥  2) on  2

The  dependence on 2 is often used to test the theoretical calculations and the predictions of the 
observables.  
For example:  e+e-  hadrons, the central value of  

s
(2) is calculated for 2 = E2

cm
, the changes 

of the result, obtained  varying 2 in a reasonable interval, are taken as systematic uncertainties. 

Renormalization scale dependence Renormalization scale dependence   
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Nonperturbative QCD methodsNonperturbative QCD methods  

At large distances or low momentum  transfers  
s
 > 1  pQCD is not valid

Non perturbative methods  for Q2 < 1 GeV2 important to understand: 
 fragmentation of q and g in hadrons (hadronization), 
 absolute masses, 
 splitting mass of the mesons
 ...
Hadronization models: used in MC simulations to describe the transition of  q and g into  
hadrons. They are based on QCD-inspired mechanisms: string fragmentation, cluster 
fragmentation. 
Many free parameters, adjusted in order to reproduce experimental data.
Important tools for detailed QCD studies and to define resolution and acceptance of the detectors. 

Power corrections: analytic approach to approximate nonperturbative hadronization effects by 
means of  perturbative methods, introducing a universal, non-perturbative parameter:   

in such a way one parameterizes the unknown behaviour of 
s
(Q2) below a certain infrared 

matching scale 
I

0 I =
1
 I
∫
0

 I

dk sk 
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Lattice Gauge Theory: field operators are applied on a discrete,  4-dimensional  Euclidean 
space-time of hypercubes of side length  a
It is used to calculate: hadron masses, mass splittings, QCD matrix elements.

     

m
ud

 = (m
u 
+ m

d
)/2 

Nonperturbative QCD methodsNonperturbative QCD methods  

3.0 3.5 4.0 4.5

=
+

+
=

+
p
h
e
n
o
.

MeV

Maltman 01
Narison 06
Dominguez 09
PDG

MILC 04, HPQCD/MILC/UKQCD 04
HPQCD 05
CP-PACS/JLQCD 07
RBC/UKQCD 08
PACS-CS 08
MILC 09
MILC 09A
HPQCD 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
HPQCD 10
MILC 10A
PACS-CS 10
BMW 10A, 10B
Laiho 11
PACS-CS 12
RBC/UKQCD 12
RBC/UKQCD 14B

FLAG average for = +

ETM 14
FNAL/MILC/TUMQCD 18

FLAG average for = + +
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Lattice Gauge Theory: 

     

Nonperturbative QCD methodsNonperturbative QCD methods  

80 90 100

=
+

+
=

+
ph

en
o.

MeV
Vainshtein 78
Narison 06
Jamin 06
Chetyrkin 06
Dominguez 09
PDG

MILC 09A
HPQCD 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
HPQCD 10
PACS-CS 10
BMW 10A, 10B
PACS-CS 12
RBC/UKQCD 12
RBC/UKQCD 14B
Maezawa 16
FLAG average for = +

ETM 14
HPQCD 14A 
FNAL/MILC/TUMQCD 18
HPQCD 18  
FLAG average for = + +
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Lattice Gauge Theory: 

     

Nonperturbative QCD methodsNonperturbative QCD methods  
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