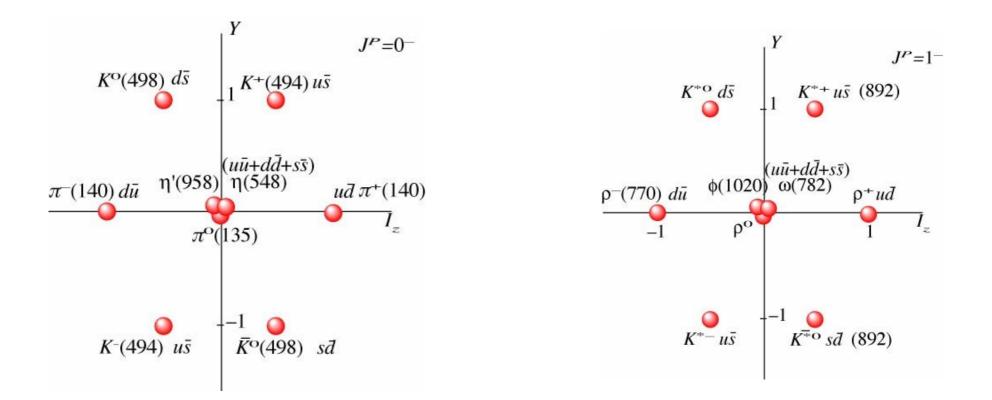
Quantum Chromodynamics (QCD)

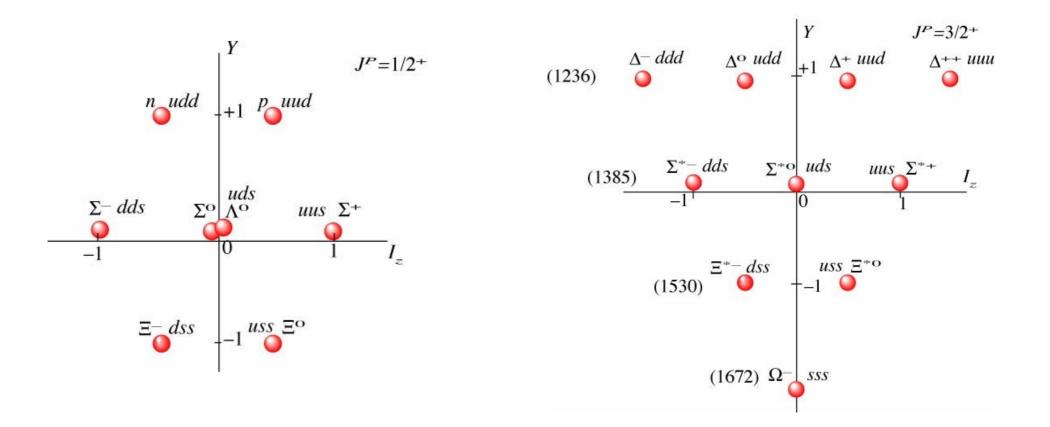
Fundamentals

Colour SU(3)
QCD lagrangian
Local gauge invariance

Hadronic matter is made of quarks

The idea of quarks comes from the symmetry present in the spectrum of the lowest-mass mesons and baryons: flavour SU(3) ($SU(3)_f$)





Experimental Subnuclear Physics

Quarks properties:

	В	Q	Ι	I _z	S	С	В	Т	т
d	1/3	-1/3	1/2	-1/2	0	0	0	0	4 - 8 MeV
u	1/3	2/3	1/2	1/2	0	0	0	0	1.5 - 4 MeV
S	1/3	-1/3	0	0	-1	0	0	0	80 - 130 MeV
С	1/3	2/3	0	0	0	+1	0	0	1.15- 1.35 GeV
b	1/3	-1/3	0	0	0	0	-1	0	4.1 - 4.4 GeV
t	1/3	2/3	0	0	0	0	0	+1	173 ± 3 GeV

• For example: baryons are interpreted as: *qqq*

The 3q in the spin-3/2 baryons are in symmetrical state of space, spin and SU(3)_f degrees of freedom

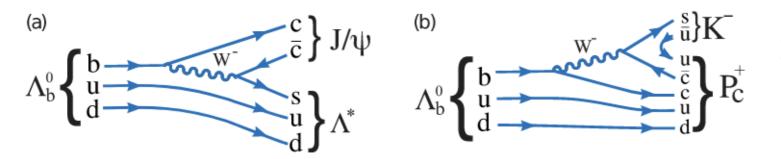
Problem with the **Fermi-Dirac Statistics** \rightarrow the wave function must be antisymmetric \rightarrow **colour** degree of freedom \rightarrow each *q* has colour with 3 possible values:

red, green, blue: a = 1, 2, 3

- Baryon wave functions are totally antisymmetric in this new index.
- The colour degree of freedom can lead to a proliferation of states → only colour singlet states can exist in nature.
- If $SU(3)_c$ is the group of colour transformation, the *q* transform according to the fundamental (3×3 unitary matrix) representation and the *anti-q* according to the complex conjugate representation.
- The basic singlet states are:

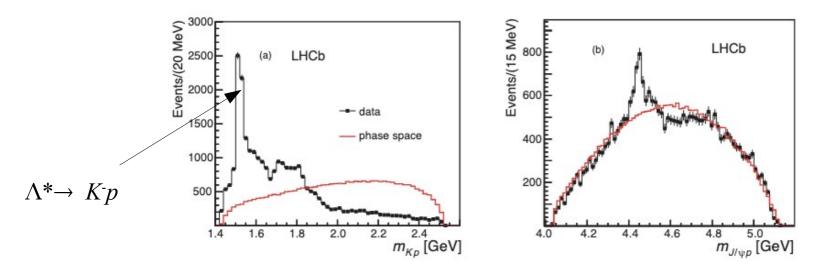
 $q_a \overline{q}^a$ for mesons $\epsilon^{abc} q_a q_b q_c$ for baryons

• ... but QCD permits also more exotic compositions::



pentaquark candidate

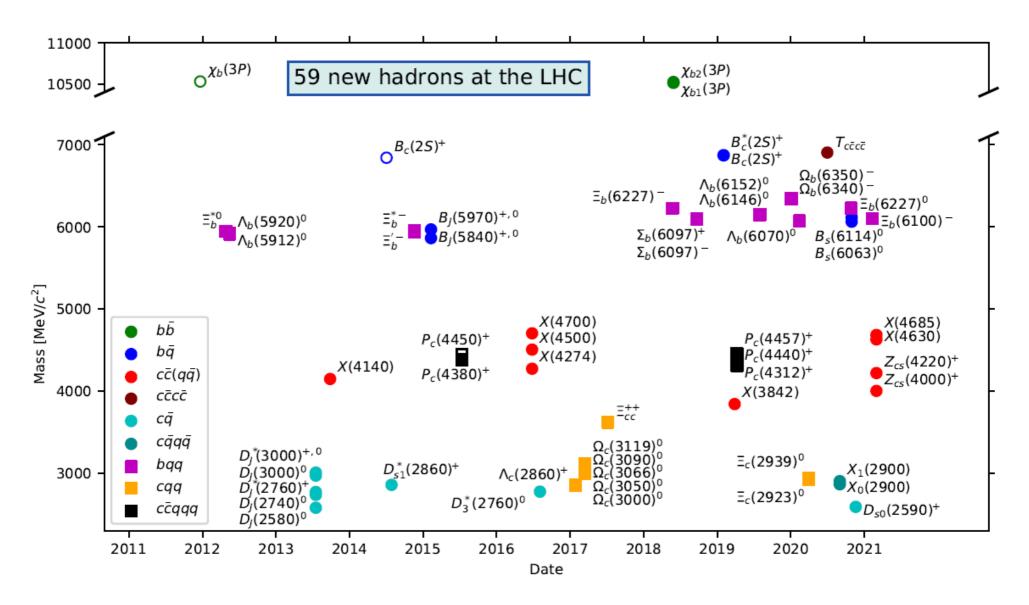
Figure 1: Feynman diagrams for (a) $\Lambda_b^0 \to J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \to P_c^+ K^-$ decay.



LHCb experiment arXiv:1507:03414

in reality the situation is more complex with more than one peak. see: LHCb experiment arXiv:1904:03947

Figure 2: Invariant mass of (a) K^-p and (b) $J/\psi p$ combinations from $\Lambda_b^0 \to J/\psi K^- p$ decays. The solid (red) curve is the expectation from phase space. The background has been subtracted.



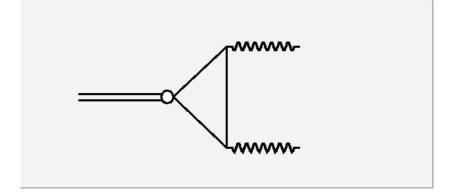
Experimental Subnuclear Physics

Experimental results (important from an historical point of view)) about the colour

• $\pi^0 \rightarrow \gamma \gamma$ $\Gamma(\pi^o \rightarrow \gamma \gamma) = \xi^2 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{64\pi} \frac{m_\pi^2}{f_\pi^2} = 7.6 \xi^2 eV$

where $f_{\pi} \sim 93 \text{ MeV} \equiv \text{ pion decay constant}$ Experimental value $\Gamma = 7.7 \pm 0.6 \text{ eV}$ The value of ξ is:

$$\xi = 3 \left[\left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 \right] = 1$$



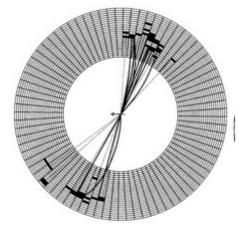
but the decay rate was calculated by Steinberger (1949) well before the discovery of quarks, using p e n as costituents:

$$\xi = [(1)^2 - (0)^2] = 1$$

the result is not conclusive.

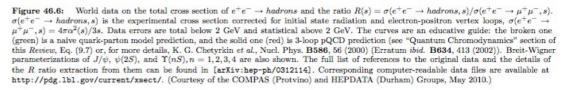
R ratio:

$$R = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 3\sum_i q_i^2$$



-2 10 J/ψ -3 10 $\psi(2S)$ Υ -4 10 [qui 10 -5 -6 10 -7 10 -8 10 10² 10 1 Υ 10 3 J/ψ $\psi(2S)$ Z 10² R 10 1 10 10² \sqrt{s} [GeV] 1

JADE experiment



R ratio:

$$R = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 3\sum_i q_i^2$$

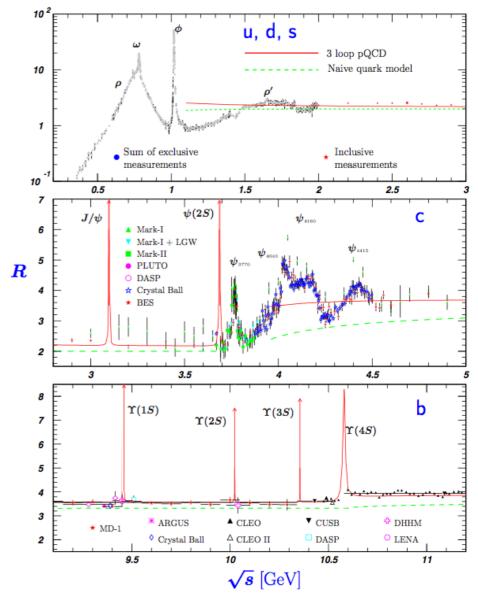
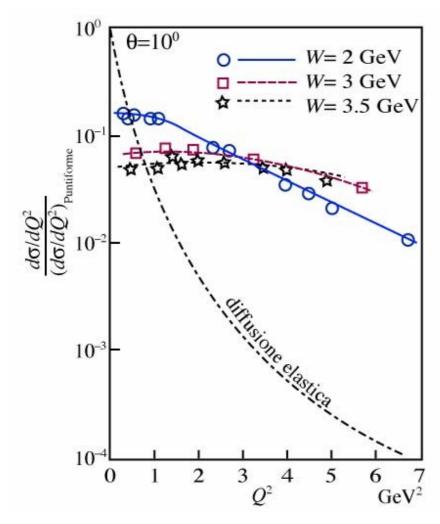
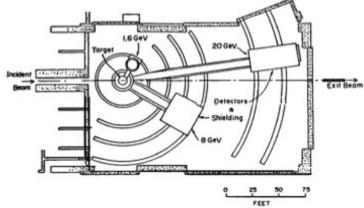


Figure 46.7: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are the same as in Fig. 46.6. Note: CLEO data above $\Upsilon(4S)$ were not fully corrected for radiative effects, and we retain them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and the details of the R ratio extraction from them can be found in [arXiv:hep-ph/O312114]. The computer-readable data are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Evidence of the Quarks

Deep inelastic scattering: $e^{-}N \rightarrow e^{-}X$ at SLAC





Experimental Subnuclear Physics

Asymptotic freedom

The q are not observed as free particles. They suffer strong interactions which bind them into the hadrons.

The asymptotic freedom predicts:

 $\alpha_s \gg 1$ for large *distances* \rightarrow confinament

 $\alpha_s < 1$ for small *distances* \rightarrow free *q* (at asymptotically large energies)

• The approach to asymptotia is very slow.

At any finite energy there are calculable corrections to the free quark result which are unambiguous predictions of the theory.

Lagrangian of QCD

The Feynman rules describing the interactions of quarks and gluons are derived by the lagrangian density:

$$\mathscr{L}_{\text{QCD}} = \mathscr{L}_{\text{classical}} + \mathscr{L}_{\text{gauge-fixing}} + \mathscr{L}_{\text{ghost}}$$

• where:

$$\mathscr{L}_{classical} = -\frac{1}{4} F^{A}_{\alpha\beta} F^{\alpha\beta}_{A} + \sum_{flavors} \overline{q}_{a} (i \gamma_{\mu} D^{\mu} - m)_{ab} q_{b}$$

$$F^{A}_{\alpha\beta} = \partial_{\alpha}A^{A}_{\beta} - \partial_{\beta}A^{A}_{\alpha} - gf^{ABC}A^{B}_{\alpha}A^{C}_{\beta}$$

the first two terms are similar to the QED.

The third term gives rise to the **self-interactions** of the gluons (vertices with 3 or 4 gluons). It gives origin to the property of **asymptotic freedom**.

 f^{ABC} (A,B,C = 1, ..., 8) are the structure constants of the SU(3)_c colour group;

g is the coupling constant which detemines the strength of the interaction between coloured quanta The quarks q_a (a = 1, 2, 3) are in a triplet representation of the colour group.

Local gauge invariance

*L*_{classical} ≡ invariant under local gauge transformations. One can perform a redefinitions of the quark fields independently at every point in space and time, without changing the physical content of the theory.

$$q_a(x) \rightarrow q_a(x) = \exp(it \cdot \theta(x))_{ab} q_b(x) \equiv \Omega(x)_{ab} q_b(x)$$

 $D_{\alpha}q(x) \rightarrow D_{\alpha}'q'(x) \equiv \Omega(x)D_{\alpha}q(x)$

The covariant derivative is so called because it transforms under a local gauge transformation in the same way as the quark field itself. (Where *t* is a matrix in the fundamental representation of $SU(3)_c$)

• from the last equation one can derive the properties of the gauge field A (gluon): $D'_{\alpha}q'(x) = (\partial_{\alpha} + igt \cdot A'_{\alpha})\Omega(x)q(x) =$ $\equiv (\partial_{\alpha}\Omega(x))q(x) + \Omega(x)\partial_{\alpha}q(x) + ig(t \cdot A'_{\alpha})\Omega(x)q(x)$ $t \cdot A_{\alpha} \equiv \sum_{A} t^{A} \cdot A^{A}_{\alpha}$

• with:

 $D'_{\alpha}q' \equiv \Omega D_{\alpha}q$

• one has:

$$t \cdot A_{\alpha}^{\prime} = \Omega \left(t \cdot A_{\alpha} \right) \Omega^{-1} + \frac{i}{g} \left(\partial_{\alpha} \Omega \right) \Omega^{-1}$$

Local gauge invariance

• The transformation property of the non-Abelian field strength tensor, $F_{\alpha\beta}$, is:

$$t \cdot F_{\alpha\beta} \rightarrow t \cdot F_{\alpha\beta} = \Omega(x) t \cdot F_{\alpha\beta} \Omega^{-1}(x)$$

Gluons have no mass because there is no gauge invariant way of including a mass. A term such as:

$$m^2 A_{\alpha} A^{\alpha}$$

is not gauge invariant. This is very similar to the QED requirement of a massless photon.
On the other hand the mass term for the quarks is gauge-invariant:

$$m \overline{q} q = m \overline{q}' q'$$

Feynman Rules

- ullet To obtain the Feynman rules of QCD, $\mathscr{L}_{\text{classical}}$ is not enough.
- The key point is that it is impossible to define the propagator for the gluon field without making a choice of gauge.
- The choice:

$$\mathscr{L}_{gauge-fixing} = -\frac{1}{2\lambda} (\partial^{\alpha} A^{A}_{\alpha})^{2}$$

fixes the class of **covariant gauges** with gauge parameter λ

In a non-Abelian theory such as QCD this covariant gauge must be supplemented by a ghost Lagrangian, which is given by:

$$\mathscr{L}_{ghost} = \partial_{\alpha} \eta^{A^{\dagger}} (D^{\alpha}_{AB} \eta^{B})$$

 $\eta^A \equiv$ complex scalar field which obeys Fermi statistics.

The ghost fields cancel unphysical degrees of freedom which would otherwise propagate in covariant gauges.