
22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 1 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

Goal: To Show the Effect that Overfitting and
Unfitting have on Variance and Bias ¶

In [1]:

The Sine function was chosen as the model which we would like to predict

In [2]:

1 million points were generated around the Sine function. Then a random number
generator was used to randomly select 50 points. A visual representation of this can be
seen below in Fig 1.0 and Fig 1.1.

Linear Regression was chosen as the predictor of the Sine function as this will clearly
underfit the data. This predictor function f(x) was run for 1000 iterations each with newly
selected test data of 50 points. The result of these 1000 liner predictions f(x) where x =
{0,1,2....,999} are shown in Fig 1.2.

import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

def f(x):
 return np.sin(2 * np.pi * x)

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 2 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [3]: np.random.seed(56)
n_samples = 1000000
x_plot = np.linspace(0, 1, 100)
X = np.random.uniform(0, 1, size=n_samples)[:, np.newaxis]
y = f(X) + np.random.normal(scale=0.3, size=n_samples)[:, np.newaxis
y_intercept_list = []
slope_list = []
g_x_list = []
y_pred_list = []
y_train_list = []

for i in range(1000):
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
 model = LinearRegression().fit(X_train, y_train)
 y_intercept = model.intercept_[0]
 slope = model.coef_[0]
 y_intercept_list.append(y_intercept)
 slope_list.append(slope)
 g_x = slope * x_plot + y_intercept
 g_x_list.append(g_x)
 y_pred = model.predict(X_train)
 y_pred_list.append(y_pred)
 y_train_list.append(y_train)

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 3 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [4]: x_plot = np.linspace(0, 1, 100)
ax = plt.gca()
ax.plot(x_plot, f(x_plot), color='red')
ax.scatter(X_train, y_train, s=10)
ax.set_ylim((-2, 2))
ax.set_xlim((0, 1))
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_title('Fig 1.0 - 50 randomly selected points')
plt.show()

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 4 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [5]: x_plot = np.linspace(0, 1, 100)
ax = plt.gca()
ax.plot(x_plot, f(x_plot), color='red')
ax.scatter(X_test, y_test, s=10)
ax.set_ylim((-3, 3))
ax.set_xlim((0, 1))
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_title('Fig 1.1- 1 million points to chosen test data from')
plt.show()

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 5 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [6]:

In [7]:

A polynomial of degree 10 was chosen as the preditor to overfit the data. The graph of
these 1000 models are shown in Fig 1.3

ax = plt.gca()
for i in g_x_list:
 ax.plot(x_plot,i, color='green')

ax.scatter(X_train, y_train, s=10)
ax.plot(x_plot, f(x_plot), color='red')

ax.set_ylim((-2, 2))
ax.set_xlim((0, 1))
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_title('Fig 1.2 1000 Linear Regression Predictor Models')
plt.show()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 6 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [8]:

In [9]:

y_intercept_polynomial_list = []
coefs_polynomial_list = []
g_x_polynomial_list = []
y_pred_polynomial_list = []
y_train_polynomial_list = []
x_train_polynomial_list = []
degree = 10

for j in range(1000):
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
 x_ = PolynomialFeatures(degree, include_bias=False).fit_transform
 model = LinearRegression().fit(x_, y_train)
 y_intercept = model.intercept_[0]
 coefs = model.coef_
 y_pred = model.predict(x_)
 y_intercept_polynomial_list.append(y_intercept)
 coefs_polynomial_list.append(coefs)
 y_pred_polynomial_list.append(y_pred)
 y_train_polynomial_list.append(y_train)
 x_train_polynomial_list.append(X_train)

import numpy as np
from matplotlib import pyplot as plt

def PolyCoefficients(x, coeffs, degree):
 y = 0
 for i in range(degree):
 y += coeffs[i]*x**i
 return y

y_all_list = []
for m in range(100):
 y_list = []
 for l in range(100):
 x_p = x_plot[l]
 y_values = PolyCoefficients(x_p, coefs_polynomial_list[m][0],
 y_list.append(y_values)
 y_all_list.append(y_list)

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 7 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [10]:

The sun squared error, the variance and the bias are computed below for the linear
regression models and the polynomial of order 10 models. The results of which can be
seen below.

In [11]:

ax = plt.gca()
for n in y_all_list:
 ax.plot(x_plot, n, color='green')

ax.plot(x_plot, f(x_plot), color='red')
ax.scatter(X_train, y_train, s=15, color='blue')

ax.set_ylim((-5, 20))
ax.set_xlim((0, 1))
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_title('Fig 1.3 1000 models of the polynomial predictor of degree 10'
plt.show()

SSE_list = []
Variance_list = []
Bias_list = []
for i in range(1000):
 SSE = np.mean((np.mean(y_pred_list[i]) - y_train_list[i])** 2)
 Variance = np.var(y_pred_list[i])
 Bias = SSE - Variance
 SSE_list.append(SSE)
 Variance_list.append(Variance)
 Bias_list.append(Bias)

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 8 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

In [12]:

The bias measures the distortion of an estimate. The linear regression model is
represented by the blue dots and the polynomial of order 10 is represented by the red
dots.

It is clear that a linear regression cannot capture the complexity of the Sine function and
underfits the data. This gives it a high bias in comparision to the polynomial of order 10
which has little bias as it greatly overfits the data.

In [13]:

The mean bias of the linear regression is 0.27586501344444864
 while the mean bias of the polynomial of order 10 is 0.069673699
31498046

SSE_polynomial_list = []
Variance_polynomial_list = []
Bias_polynomial_list = []
for i in range(1000):
 SSE = np.mean((np.mean(y_pred_polynomial_list[i]) - y_train_polynomial_list
 Variance = np.var(y_pred_polynomial_list[i])
 Bias = SSE - Variance
 SSE_polynomial_list.append(SSE)
 Variance_polynomial_list.append(Variance)
 Bias_polynomial_list.append(Bias)

title('Bias Comparision')
plot(Bias_list,'.', color='blue');
plot(Bias_polynomial_list, '.',color='red',);
xlabel("Iteration Number")
ylabel("Bias")

('The mean bias of the linear regression is ',np.mean(Bias_list), '\n while the mean bias of the polynomial of order 10 is '

22/11/2022, 19:59Lecture 13 - Exercise - Jupyter Notebook

Page 9 of 9http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Lecture%2013%20-%20Exercise.ipynb#

It can also be seen that overfitting the data causes a high variance while underfitting the
data causes a lower variance as seen below.

In [14]:

In []:

The mean variance of the linear regression is 0.30599270842377924
 while the mean variance of the polynomial of order 10 is 0.50586
81103237923

plt.title('Variance Comparision')

plt.plot(Variance_list, '.',color='blue');
plt.plot(Variance_polynomial_list, '.' ,color='red');
plt.xlabel("Iteration Number")
plt.ylabel("Variance")
print('The mean variance of the linear regression is ',np.mean(Variance_list

