
Multilayer Network Delta rule - Backpropagation

Matteo Gioele Collu - 2056763

In class we have seen how the delta rule is used in order to update a single-
layer neural network, where the only layer of neurons happens to be the output
layer, which directly contributes to the value of the error that we want to min-
imize. In such a way it is possible to update easily the neurons’ weights by
taking the opposite direction of their gradient. If we consider the error as:

E =
∑

k
1
2 (tk − zk)

2

We define the delta rule as:

δk = (tk − zk) ∗ ∇(zk)
∆ik = η ∗ δk ∗ yi

where δk represents the gradient with respect to the output k (zk is the activation
of the neuron k), while ∆ik represents the amount that has to be added to the
current weight in order to update it and minimize the error(i-k represents the
link between the i-th input and the k-th neuron).

When it comes to deal with a multi-layer network, we are faced with neu-
rons that are not directly connected to the error, making it more complex to
determine how much each of them is contributing to the error and how.

Figure 1: How a previous weight affects the next ones

1



Moreover, we can see from the Figure 1 how a weight associated to an inner
neuron is going to affect and eventually spread its contributed along all the next
ones. Then its update must somehow be related to the error that he receives
from the later neurons. We can see how it is possible to deal with this complex
situation. In order to make this happen, we have to adapt the delta rule to
the current situation. The network can be divided in hidden layers and output
layer. The output layer is the one which is directly related to the output of the
network, then to the error function. In this layer it is possible to apply the delta
rule the we have already defined and update the weights accordingly to it. For
each layer we will use the information retrieved by its subsequent layer. This
information will tell the to the current layer how much each unit is contributing
to the error of the next layer. We can rewrite the delta rule as:
For the output layer:

δk = (t− zk) ∗ ∇(zk)

For an inner layer:

δk = ∇(zk) ∗
∑

j Wkjδj

In both cases:

∆ik = η ∗ δk ∗ yi
As before δk refers to the gradient of that specific unit with respect to the

error. Since the error is calculated over the last layer in the forward phase, the
value of δ for inner units must wait that the values of the next layers have been
calculated. This is why this algorithm is called backpropagation and consists of
two phases: the forward one, in which the output of the network is calculated,
and the backward one, where the weights are updated and the error is propa-
gated starting from the last layer up to the first one.
It is worth note it that the gradient of a unit is obtained by applying the chain
rule of derivatives. Let’s take as example this network where all the units are
represented as matrices (Figure2):

Figure 2: Representation of a NN where all the components are represented
singularly

In this example the components are:

2



• X are the inputs

• W1 are the weights of the first layer

• h1 is the matrix multiplication of the first layer

• a1 is the activation of the first layer

• W2 are the weights of the second layer

• h2 is the matrix multiplication of the second layer between the output of
the activation of the first layer and the weights associated

• z is the activation of the second layer, or the output of the network

• t is the target

• Er is the error

With this particular schema, it will be easy to see how the chain rule is applied
and how starting from the output layer avoids to repeat some calculations. In
this network the forward step corresponds to σ(W2∗σ(W1∗X)), with * intended
as matrix multiplication. We would like to know how W1 and W2 contributes
to the error, then we would like to know:

∂Er

∂W1
and

∂Er

∂W2

Following the schema and the chain rule, it appears that:

∂Er

∂W2
=

∂Er

∂z

∂z

∂h2

∂h2

∂W2

∂Er

∂W1
=

∂Er

∂z

∂z

∂h2

∂h2

∂a1

∂a1

∂h1

∂h1

∂W1

We can see from the two equations above that they share:

∂Er

∂z

∂z

∂h2

This information is the δ of the output layer that has been described before and
represents the derivative of the layer. As we have seen before, this information
will then be passed to a previous layer, which will use it in order to compute its
δ. If a new layer was added in the back of the above network

∂Er

∂z

∂z

∂h2

∂h2

∂a1

∂a1

∂h1

would have represented the δ up to the second-last layer. With this, we can see
that computing the delta starting from the last layer it’s easier and avoid to
repeat a lot of calculation.

3


