
08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 1 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

The goal is to show that the use of
backpropagation can capture properties of
the input in the hidden layer that are not
explicitly represented by the input.
The use of less hidden units than input units imposes a constraint on the problem and
forces the neural network to rerepresent the input units.

In [1]:

This neural network's purpose is to learn the target function f(x) where f(x) is a vector
which contains seven 0's and a 1. This has been represented below using a pandas
dataframe where there are 8 rows which represent the 8 different vector combinations
that can make up f(x).

In [2]:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn import preprocessing

index = ["1", "2", "3", "4", "5", "6", "7", "8"]
vectors = ["v_1", "v_2", "v_3", "v_4", "v_5", "v_6", "v_7", "v_8"]

data = np.array([[1, 0, 0, 0, 0, 0, 0 , 0],
 [0, 1, 0, 0, 0, 0, 0 , 0],
 [0, 0, 1, 0, 0, 0, 0 , 0],
 [0, 0, 0, 1, 0, 0, 0 , 0],
 [0, 0, 0, 0, 1, 0, 0 , 0],
 [0, 0, 0, 0, 0, 1, 0 , 0],
 [0, 0, 0, 0, 0, 0, 1 , 0],
 [0, 0, 0, 0, 0, 0, 0 , 1]])

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 2 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

In [3]:

The data is split into X and Y where X is the input that we want the neural network to use
to predict the output values in Y.

Normally X is taken to be a subset of the total number of columns avaliable and Y is
chosen to be the value that we wish to predict. For example, X could be the number of
bedrooms and square footage in a house and Y could be the value of that house. We use
the info in X to predict the value of Y and then we can compare this Y to the values in our
training sample.

However as we want the input data and output data to be identical, the values of X and Y
are equal.

In [4]:

The sizes of the input, hidden and output layers are defined to be 8,3 and 8 as the
purpose of this exercise is to have a smaller hidden layer such that the 3 hidden layers
will be forced to represent the 8 input layers.

Out[3]: 1 2 3 4 5 6 7 8

v_1 1 0 0 0 0 0 0 0

v_2 0 1 0 0 0 0 0 0

v_3 0 0 1 0 0 0 0 0

v_4 0 0 0 1 0 0 0 0

v_5 0 0 0 0 1 0 0 0

v_6 0 0 0 0 0 1 0 0

v_7 0 0 0 0 0 0 1 0

v_8 0 0 0 0 0 0 0 1

(8, 8)
(8, 8)

df = pd.DataFrame(data=data, index=vectors, columns=index)
df

split into X and Y
Y = df
X = df

print(X.shape)
print(Y.shape)

convert to numpy arrays
X = np.array(X)

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 3 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

In [5]:

Inital values of W1 and W2 are created using a small random value. The 2 bias weights
are initalised as zero vectors.

In [6]:

The activation functions used in neural networks are Sigmoid, tanh, Softmax, ReLU,
Leaky ReLU. A different activation fucntion can be chosen for each layer of the neural
network.

T.Michell does not specify which activation function that was used to obtain the hidden
values found in the diagram and thus two arbitrary activation functions are used. The
tanh function is used for the hidden layer while the sigmoid function is used for the
output layer.

In forward propagation, the input data is fed through the neural network in a forward
direction and computes the predicted error.

In [7]:

input_unit = X.shape[0]
hidden_unit = 3
output_unit = Y.shape[0]

def parameters_initialization(input_unit, hidden_unit, output_unit):
 np.random.seed(2)
 W1 = np.random.randn(hidden_unit, input_unit)*0.1
 b1 = np.zeros((hidden_unit, 1))
 W2 = np.random.randn(output_unit, hidden_unit)*0.1
 b2 = np.zeros((output_unit, 1))
 parameters = {"W1": W1,
 "b1": b1,
 "W2": W2,
 "b2": b2}

 return parameters

def sigmoid(z):
 return 1/(1+np.exp(-z))
def forward_propagation(X, parameters):
 W1 = parameters['W1']
 b1 = parameters['b1']
 W2 = parameters['W2']
 b2 = parameters['b2']

 Z1 = np.dot(W1, X) + b1
 A1 = np.tanh(Z1)
 Z2 = np.dot(W2, A1) + b2
 A2 = sigmoid(Z2)
 cache = {"Z1": Z1,"A1": A1,"Z2": Z2,"A2": A2}

 return A2, cache

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 4 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

For back propagation, the partial derivatives of the error function E are computed. This
allows the weights to be adjusted to increase the accuracy of the neural network. The
gradient descent technique is used which is discussed below.

Note: In class, we focused on these partial derivatives using the sigmoid function for both
the hidden layer and the output layer. However below, this changes for dW1 and db1 as
we are now using the tanh function as the activation function for the hidden layer.

In [8]:

The parameters are updated through each iteration using the gradient descent method.
The batch method is implemeted below where each value is iterated through, this is
chosen as the neural network and number of iterations is small. The learning rate that is
chosen is 0.3 to keep with the values used in 'Machine Learning' by T.Mitchell.

def backward_propagation(parameters, cache, X, Y):
 m = X.shape[1]

 W1 = parameters['W1']
 W2 = parameters['W2']
 A1 = cache['A1']
 A2 = cache['A2']

 dZ2 = A2-Y
 dW2 = (1/m) * np.dot(dZ2, A1.T)
 dZ2 = np.array(dZ2)
 db2 = (1/m) * np.sum(dZ2, axis=1, keepdims=True)
 dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
 dZ1 = np.array(dZ1)
 dW1 = (1/m) * np.dot(dZ1, X.T)
 db1 = (1/m)*np.sum(dZ1, axis=1, keepdims=True)

 grads = {"dW1": dW1, "db1": db1, "dW2": dW2,"db2": db2}

 return grads

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 5 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

In [9]:

The neural network is ran for 5000 iterations by applying forward progation followed by
backward propagation followed by gradient descent.

In [10]:

Using the final values for the parameters W1,b1,W2,b2 and the input values X, a value for
Y is predicted.

In [11]:

def gradient_descent(parameters, grads, learning_rate):
 W1 = parameters['W1']
 b1 = parameters['b1']
 W2 = parameters['W2']
 b2 = parameters['b2']

 dW1 = grads['dW1']
 db1 = grads['db1']
 dW2 = grads['dW2']
 db2 = grads['db2']
 W1 = W1 - learning_rate * dW1
 b1 = b1 - learning_rate * db1
 W2 = W2 - learning_rate * dW2
 b2 = b2 - learning_rate * db2

 parameters = {"W1": W1, "b1": b1,"W2": W2,"b2": b2}

 return parameters

def neural_network_model(X, Y, hidden_unit, num_iterations):
 np.random.seed(32)

 parameters = parameters_initialization(input_unit, hidden_unit,

 W1 = parameters['W1']
 b1 = parameters['b1']
 W2 = parameters['W2']
 b2 = parameters['b2']

 for i in range(0, num_iterations):
 A2, cache = forward_propagation(X, parameters)
 grads = backward_propagation(parameters, cache, X, Y)
 parameters = gradient_descent(parameters, grads, 0.3)
 return parameters
parameters = neural_network_model(X, Y, 3, 5000)

def prediction(parameters, X):
 A2, cache = forward_propagation(X, parameters)
 predictions = np.round(A2)

 return predictions

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 6 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

In [12]:

Looking at the values of the predicted Y, it is clear by comparision that this equals the
real output Y.

In [13]:

In [14]:

The hidden values are shown below, as tanh was used as the activation function, the
range of values are from -1 to 1. These are then normalised and rounded to the range of
0 to 1. Looking back, the sigmoid activation function would have been more suitable to
this problem as it outputs out vaues from 0 to 1 thus no normalisation would have been
required.

In [15]:

The predicted values for Y are
 [[1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.]]
The true values for Y are
 1 2 3 4 5 6 7 8
v_1 1 0 0 0 0 0 0 0
v_2 0 1 0 0 0 0 0 0
v_3 0 0 1 0 0 0 0 0
v_4 0 0 0 1 0 0 0 0
v_5 0 0 0 0 1 0 0 0
v_6 0 0 0 0 0 1 0 0
v_7 0 0 0 0 0 0 1 0
v_8 0 0 0 0 0 0 0 1

A2, cache = forward_propagation(X, parameters)

predictions = prediction(parameters, X)
print('The predicted values for Y are \n' , predictions)
print('The true values for Y are \n' , Y)

w1 = parameters['W1']
b1 = parameters['b1']
w2 = parameters['W2']
b2 = parameters['b2']

hidden_values = cache['A1'].T

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 7 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

In [16]:

In [17]:

In [18]:

Below, the hidden values are seen first rounded to 3 decimal places and then rounded to
0 or 1.

In [24]:

Out[16]: array([[0.99490787, -0.04302783, -0.92818738],
 [-0.90009014, -0.93967381, 0.98884459],
 [0.02941738, 0.99386195, -0.94039297],
 [0.98758792, 0.97646282, 0.94002666],
 [-0.06999129, -0.99436434, -0.91497241],
 [0.97236054, -0.97592586, 0.98942764],
 [-0.82942252, 0.97808555, 0.99074451],
 [-0.99540778, 0.04510161, -0.78967455]])

The hidden values when normalised and rounded to 3 decimal places
are

Out[24]: [array([1. , 0.478, 0.006]),
 array([0.048, 0.028, 0.999]),
 array([0.515, 1. , 0.]),
 array([0.996, 0.991, 0.974]),
 array([0.465, 0. , 0.013]),
 array([0.989, 0.009, 0.999]),
 array([0.083, 0.992, 1.]),
 array([0. , 0.523, 0.078])]

hidden_values

def NormalizeData(data):
 return (data - np.min(data)) / (np.max(data) - np.min(data))

normalised = NormalizeData(hidden_values)
normalised_hidden_values = preprocessing.minmax_scale(hidden_values,
hidden_values_2 = [np.round(x,3) for x in normalised_hidden_values]
hidden_values_rounded = [np.round(x) for x in normalised_hidden_values

print('The hidden values when normalised and rounded to 3 decimal places are'
hidden_values_2

08/11/2022, 13:59Neural-Networks-3 - Jupyter Notebook

Page 8 of 8http://localhost:8888/notebooks/Desktop/CS/Machine%20Learning/ML_Code/Neural-Networks-3.ipynb

In [26]:

It can be seen that each of the 8 vectors in the input are uniquely represented by a
hidden layer value which consists of 3 binary values. Thus this shows how the use of
backpropagation can capture properties of the input units.

(1,0,0,0,0,0,0,0) is represented by (1,0,0)
(0,1,0,0,0,0,0,0) is represented by (0,0,1)
(0,0,1,0,0,0,0,0) is represented by (1,1,0)
(0,0,0,1,0,0,0,0) is represented by (1,1,1)
(0,0,0,0,1,0,0,0) is represented by (0,0,0)
(0,0,0,0,0,1,0,0) is represented by (1,0,1)
(0,0,0,0,0,0,1,0) is represented by (0,1,1)
(0,0,0,0,0,0,0,1) is represented by (0,1,0)

In []:

The hidden values when normalised and rounded to 0 decimal places
are

Out[26]: [array([1., 0., 0.]),
 array([0., 0., 1.]),
 array([1., 1., 0.]),
 array([1., 1., 1.]),
 array([0., 0., 0.]),
 array([1., 0., 1.]),
 array([0., 1., 1.]),
 array([0., 1., 0.])]

print('The hidden values when normalised and rounded to 0 decimal places are'
hidden_values_rounded

