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1. Introduction 

Housing price prediction plays a vital role in the real estate market by helping 

buyers, sellers, and investors make informed decisions. This project employs 

advanced machine learning techniques, feature engineering, and model 

interpretability tools (SHAP and LIME) to predict housing prices accurately. We 

utilize a Random Forest Regressor model, augmented by SHAP (SHapley 

Additive exPlanations), to achieve high predictive performance and enhance 

model interpretability. 

2. Data Overview and Preprocessing 

The dataset (Housing_Price_Dataset) includes real estate features such as 

SquareFeet, Bedrooms, Bathrooms, YearBuilt, Neighborhood, and Price. The 

target variable is Price. 

• Handling Missing Values: Numeric columns were filled with their median 

values, while categorical columns were filled with their mode to ensure 

completeness without introducing significant bias. 

• Feature Engineering: 

o HouseAge was derived as 2025 - YearBuilt, representing the age of 

the house. 

o SquareFeet_per_Bedroom and Bedroom_to_Bathroom_Ratio 

were created to capture additional relationships and improve 

predictive capabilities. 

o Log Transformation was applied to SquareFeet and Price to 

address skewness in their distributions. 

• Categorical Encoding: One-hot encoding was applied to the 

Neighborhood column to convert categorical values into numeric features. 

• Data Normalization: The features were scaled using StandardScaler to 

ensure that all features contribute equally to the model, avoiding bias due 

to different scales. 

•  



3. Model Selection and Training 

Four regression models were selected for evaluation: 

• Linear Regression: A simple and interpretable model. 

• Decision Tree Regressor: A non-linear model suitable for capturing more 

complex relationships. 

• Random Forest Regressor: An ensemble method that aggregates multiple 

decision trees to improve accuracy and reduce overfitting. 

• Gradient Boosting Regressor: Another ensemble model that builds trees 

sequentially to improve model performance. 

The dataset was split into an 80% training set and a 20% testing set. For the 

Random Forest Regressor, hyperparameter tuning was done using 

GridSearchCV to optimize key parameters: 

• n_estimators: Number of trees (set to 100). 

• max_depth: Maximum depth of trees (optimized to 10 and 20). 

• min_samples_split: Minimum samples to split a node (set to 2). 

The optimal configuration was found to be max_depth=10 and n_estimators=100. 

4. Model Evaluation 

The models were evaluated using the following metrics: 

• Mean Absolute Error (MAE): Average magnitude of errors in 

predictions. 

• Root Mean Squared Error (RMSE): Penalizes larger errors more than 

MAE. 

• R² (Coefficient of Determination): Measures the proportion of variance 

explained by the model. 

Model Train R² Test R² Test RMSE Test MAE 

Linear Regression 0.65 0.61 48,000 38,000 

Decision Tree Regressor 0.90 0.58 50,000 40,000 

Random Forest Regressor 0.92 0.67 45,000 37,000 

Gradient Boosting Regressor 0.88 0.64 47,000 37,500 



The Random Forest Regressor emerged as the best-performing model with the 

highest Test R² (0.67), lowest RMSE (45,000), and MAE (37,000), making it the 

ideal choice for this task. 

5. Model Interpretability 

5.1 SHAP Analysis: 

• Global Interpretability: 

o Summary Plot: Displays the contribution of each feature to the 

model's predictions, showing their influence across all test samples. 

o Key Features: The most influential features included HouseAge, 

SquareFeet_per_Bedroom, and Bedroom_to_Bathroom_Ratio, with 

HouseAge being the most impactful feature for predicting housing 

prices. 

• Dependence Plot: Showed the relationship between HouseAge and 

predicted price. Older houses generally had lower prices, reinforcing the 

intuitive assumption about property depreciation over time. 

5.2 LIME Analysis: 

• Local Interpretability: 

o LIME was used to generate explanations for individual predictions. 

It provided insights into the top features influencing specific 

predictions. 

• Visualization: LIME was visualized for selected test instances, 

highlighting the impact of different feature values on individual 

predictions, enhancing transparency and understanding of model behavior. 

6. Conclusion and Future Work 

6.1 Key Findings: 

• Feature Engineering: Creating new features like 

SquareFeet_per_Bedroom and Bedroom_to_Bathroom_Ratio 

significantly improved model accuracy. 

• Random Forest Regressor: This model outperformed others in terms of 

predictive accuracy, demonstrating its effectiveness for capturing complex 

patterns in the data. 



• SHAP and LIME: These tools provided valuable insights into model 

decision-making, enhancing transparency and helping to identify the most 

impactful features. 

6.2 Future Work: 

• Further Feature Engineering: Investigate additional feature interactions 

and transformations to improve model performance. 

• Model Experimentation: Test other models such as XGBoost or more 

advanced Gradient Boosting methods to evaluate their performance against 

Random Forest. 

• Hyperparameter Optimization: Fine-tune additional Random Forest 

parameters to boost performance. 

• Ensemble Methods: Explore stacking models for improved predictive 

performance. 

• Deep Learning: Explore deep learning techniques like TabNet for 

potential improvements in prediction accuracy. 

6.3 Tools Used: 

• SHAP: Applied for global model interpretability, highlighting the 

influence of each feature on the predictions. 

• LIME: Used for local interpretability to explain individual predictions. 

• Random Forest: The primary model used for regression due to its 

robustness and accuracy. 

• PyTorch Tabular: Explored as a deep learning approach for tabular data 

to further improve predictive performance. 

 


