
29/10/2022, 14:12Perceptron

Page 1 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

Goal: Implement the Perceptron Algorithm
and Investigate the Initialization of the
Perceptron Algorithm using the Null Vector.
*An algorithm for the perceptron was used from the following website:

https://towardsdatascience.com/perceptron-algorithm-in-python-f3ac89d2e537

This algoritm was adjusted so the variable names were symnonmous to the variable

names used in lectures. As perceptrons deal with binary data, a dataset was created

which contained 2 features. These datasets are in R**2. Graphcally these are

represented as blue squares and red circles. 4 different datasets were created with

different parameters.

Dataset 1 contains 100 samples and the standard deviation of the clustors is 1.

Dataset 2 contains 500 samples and the standard deviation of the clustors is 1. This

is to investigate the impact that the increase of the sample size has on the output.

Dataset 3 contains 500 samples and the standard deviation of the clustors is 1.2. This

is to investigate the impact that the increase of the standard deviation has on the

output. Dataset 4 contains 500 samples and the standard deviation is increaed so

that the dataset is no longer linerarly seperable. This is to graphically show that the

perceptron cannot deal with non-linearly seperable data.

The 4 datasets are plotted below.

https://towardsdatascience.com/perceptron-algorithm-in-python-f3ac89d2e537

29/10/2022, 14:12Perceptron

Page 2 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

In [1]: import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets

x_1, y_1 = datasets.make_blobs(n_samples=100,n_features=2,
 centers=2,cluster_std=1.0,
 random_state=2)

x_2, y_2 = datasets.make_blobs(n_samples=500,n_features=2,
 centers=2,cluster_std=1.0,
 random_state=2)

x_3, y_3 = datasets.make_blobs(n_samples=500,n_features=2,
 centers=2,cluster_std=1.2,
 random_state=2)

x_4, y_4 = datasets.make_blobs(n_samples=500,n_features=2,
 centers=2,cluster_std=1.8,
 random_state=2)

fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20,15))
axs[0, 0].plot(x_1[:, 0][y_1 == 0], x_1[:, 1][y_1 == 0], 'bs')
axs[0, 0].plot(x_1[:, 0][y_1 == 1], x_1[:, 1][y_1 == 1], 'ro')
axs[0, 0].set_title('Sample of 100, Standard Deviation of 1')

axs[0, 1].plot(x_2[:, 0][y_2 == 0], x_2[:, 1][y_2 == 0], 'bs')
axs[0, 1].plot(x_2[:, 0][y_2 == 1], x_2[:, 1][y_2 == 1], 'ro')
axs[0, 1].set_title('Sample of 500, Standard Deviation of 1')

axs[1, 0].plot(x_3[:, 0][y_3 == 0], x_3[:, 1][y_3 == 0], 'bs')
axs[1, 0].plot(x_3[:, 0][y_3 == 1], x_3[:, 1][y_3 == 1], 'ro')
axs[1, 0].set_title('Sample of 500, Standard Deviation of 1.2')

axs[1, 1].plot(x_4[:, 0][y_4 == 0], x_4[:, 1][y_4 == 0], 'bs')
axs[1, 1].plot(x_4[:, 0][y_4 == 1], x_4[:, 1][y_4 == 1], 'ro')
axs[1, 1].set_title('Sample of 500, Standard Deviation of 1.5')

plt.suptitle('Random Classification Data with 2 classes', weight='bold',

for ax in axs.flat:
 ax.set(xlabel='feature 1', ylabel='feature 2')

plt.tight_layout()

29/10/2022, 14:12Perceptron

Page 3 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

The perceptron I am looking at is a Perceptron with a hard threshold which means to

say that the function is a step function which returns a value of 0 or 1.

The perceptron alogrithm has 4 imput parameters. The first is the number of training

examples and the second is the number of features (which should always be 2). The

Perceptron algorithm is initialized with the null vector. This will be updated later to a

non-null vector to look at the effects on the learning coefficient(n). The learning

coefficent is the third argument and the forth is the number of iterations. After each

iteration, the number of misclassified data features are stored in a list.

In [2]: def step_func(z):
 return 1.0 if (z > 0) else 0.0

29/10/2022, 14:12Perceptron

Page 4 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

A defiition is created to plot the decision boundary that the perceptron algorithm has

output.

In [3]: def perceptron(x, y, lr, num_iterations):

 m, n = x.shape

 # Initializing parapeters(w) to zeros.
 # +1 in n+1 for the bias term.

 w = np.zeros((n+1,1))

 # Empty list to store how many examples were
 # misclassified at every iteration.
 n_miss_list = []

 # Training.
 for num in range(num_iterations):

 # variable to store #misclassified.
 n_miss = 0

 # looping for every example.
 for idx, x_i in enumerate(x):

 # Insering 1 for bias, X0 = 1.
 x_i = np.insert(x_i, 0, 1).reshape(-1,1)

 # Calculating prediction/hypothesis.
 y_hat = step_func(np.dot(x_i.T, w))

 # Updating if the example is misclassified.
 if (np.squeeze(y_hat) - y[idx]) != 0:
 w += lr*((y[idx] - y_hat)*x_i)

 # Incrementing by 1.
 n_miss += 1

 # Appending number of misclassified examples
 # at every iteration.
 n_miss_list.append(n_miss)

 return w, n_miss_list

29/10/2022, 14:12Perceptron

Page 5 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

The above indicates that a larger the dataset and a larger varience causes the

percetron algorithm in this case to misidentify more points on the first iteration. For

all cases, these do converge using further iterations to a boundry which classifys all

points correctly. One of the cases is below with the second dataset, initially 24 points

are misclassified but by the 6th iteration, 0 points are misclassified. This shows nicely

the convergence of the perceptron algorithm on linearly classified data. Graphically

this can be seen as the yellow line splits the datset in two with the red dots above the

line and the blue squares below the line.

[24, 13, 10, 4, 3, 0, 0, 0, 0, 0]

The number of mislabeled classes for the first interation of sample = 100
is 11

The number of mislabeled classes for the first interation of sample = 500
is 24

The number of mislabeled classes for the first interation of sample = 500
 but with an increased standard deviation is 32

In [4]: def plot_decision_boundary(x,y,w):

 # The Line is y=mx+c
 # So, Equate mx+c = theta0.X0 + theta1.X1 + theta2.X2
 # Solving we find m and c
 x1 = [min(x[:,0]), max(x[:,0])]
 m = -w[1]/w[2]
 c = -w[0]/w[2]
 x2 = m*x1 + c

 # Plotting
 fig = plt.figure(figsize=(10,8))
 plt.plot(x[:, 0][y == 0], x[:, 1][y == 0], 'bs')
 plt.plot(x[:, 0][y == 1], x[:, 1][y == 1], 'ro')
 plt.xlabel("feature 1")
 plt.ylabel("feature 2")
 plt.title("Perceptron Algorithm")
 plt.plot(x1, x2, 'y-')

In [5]: w_1, miss_l_1 = perceptron(x_1, y_1, 0.5, 10)
w_2, miss_l_2 = perceptron(x_2, y_2, 0.5, 10)
w_3, miss_l_3 = perceptron(x_3, y_3, 0.5, 10)

print('The number of mislabeled classes for the first interation of sample = 100 is'
print('')
print('The number of mislabeled classes for the first interation of sample = 500 is'
print('')
print(f'The number of mislabeled classes for the first interation of sample = 500

In [6]: plot_decision_boundary(x_2, y_2, w_2)
print(miss_l_2)

29/10/2022, 14:12Perceptron

Page 6 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

Below it can be shown how the perceptron algroritm fails on non linearly seperable

data. It can be clearly seen visually that no line can seperate this data. The

perceptron algoritm is run for 50 iterations and it can be seen that the number of

misclassified points is remaining largely the same and will not converge down to 0.

[50, 30, 24, 18, 17, 14, 15, 15, 14, 14, 12, 14, 12, 13, 13, 10, 13, 15,
10, 13, 8, 13, 13, 8, 9, 10, 9, 10, 14, 10, 8, 13, 10, 10, 8, 8, 14, 8, 8
, 11, 8, 8, 11, 8, 8, 11, 13, 10, 10, 8]

In [7]: w_4, miss_l_4 = perceptron(x_4, y_4, 0.5, 50)
plot_decision_boundary(x_4, y_4, w_4)
print(miss_l_4)

29/10/2022, 14:12Perceptron

Page 7 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

A second definition of the perceptron algoritm is created but initialising the weights

with values of 1 rather than a null vector as previously used above. The datasets used

are the same as above. It can be seen that the learning rate causes the number of

misclassified points to converge to 0 at a slower rate.

29/10/2022, 14:12Perceptron

Page 8 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

In [8]: def perceptron_2(x, y, lr, num_iterations):

 m, n = x.shape

 # Initializing parapeters(w) to zeros.
 # +1 in n+1 for the bias term.

 w = np.ones((n+1,1))

 # Empty list to store how many examples were
 # misclassified at every iteration.
 n_miss_list = []

 # Training.
 for num in range(num_iterations):

 # variable to store #misclassified.
 n_miss = 0

 # looping for every example.
 for idx, x_i in enumerate(x):

 # Insering 1 for bias, X0 = 1.
 x_i = np.insert(x_i, 0, 1).reshape(-1,1)

 # Calculating prediction/hypothesis.
 y_hat = step_func(np.dot(x_i.T, w))

 # Updating if the example is misclassified.
 if (np.squeeze(y_hat) - y[idx]) != 0:
 w += lr*((y[idx] - y_hat)*x_i)

 # Incrementing by 1.
 n_miss += 1

 # Appending number of misclassified examples
 # at every iteration.
 n_miss_list.append(n_miss)

 return w, n_miss_list

29/10/2022, 14:12Perceptron

Page 9 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

In the cases below, the learning rate and the inizialisation of the original weighted

vector are the only parameters that are changing.

In the first example, the null vector is used w = (0, 0, 0). The learning rate is a value

between 0 and 1. Thus a small learning rate of 0.001 is compared against the largest

learning rate possible of 1. The problem with using a large learning rate is the

perceptron algorithm could converge too quickly to a suboptimal solution. In

contract, using a small learning rate can cause the algorithm to converge too slowly

causing the process to get stuck. The purpose of this comparision is to show the

impact that the null vector has on the learning rate so neither of the above issues

about the size of the learning rate are considered.

It can be seen that using the null vector the increase or decrease of the elarning rate

does not have an impact on how fast the misclassification of points converge to zero.

They both converge to 0 misclassifications after 6 iterations.

With a null initialisation vector and a learning rate of 0.001: [24, 13,
10, 4, 3, 0,
0, 0]
With a null initialisation vector and a learning rate of 1: [24, 13, 10,
4, 3, 0
, 0]

In the second example, when the initialation vector is non-null, w = (1,1,1), the

learning rate has a significant effect on the convergence. When the learning rate is

small, even after 50 iterations the algorithm is still misclassifing points although they

are clearly converging to 0 over time. This is a large contrast to the learning algoritm

of 1 which causes the algorithm to converge after 2 iterations.

With a non-null initialisation vector and a learning rate of 0.001: [73,
53, 39, 30, 23, 17, 15, 13, 12, 10, 10, 9, 9, 9, 8, 7, 7, 7, 6, 6, 6, 6,
6, 6, 6, 6, 7, 6, 6, 7, 6, 6, 7, 6, 6, 6, 7, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3
, 3, 3, 3]
With a non-null initialisation vector and a learning rate of 0.001: [26,
4, 0
, 0]

In [9]: w_2_sml_lp_zeros, miss_l_2_sml_lp_zeros = perceptron(x_2, y_2, 0.001, 50)
w_2_lrge_lp_zeros, miss_2_lrge_lp_zeros = perceptron(x_2, y_2, 1, 50)
print("With a null initialisation vector and a learning rate of 0.001: ",
print("With a null initialisation vector and a learning rate of 1: ", miss_2_lrge_lp_zeros

In [10]: w_2_sml_lp, miss_l_2_sml_lp = perceptron_2(x_2, y_2, 0.001, 50)
w_2_lrge_lp, miss_2_lrge_lp = perceptron_2(x_2, y_2, 1, 50)
print("With a non-null initialisation vector and a learning rate of 0.001: "
print("With a non-null initialisation vector and a learning rate of 0.001: "

29/10/2022, 14:12Perceptron

Page 10 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

A graphical representation of the non null initialisation vectors discussed above.

The first graph shows the small learning rate while the second graph shows the

output with the large learning rate.

In [11]: plot_decision_boundary(x_2, y_2, w_2_sml_lp)

plot_decision_boundary(x_2, y_2, w_2_lrge_lp)

29/10/2022, 14:12Perceptron

Page 11 of 11http://localhost:8888/nbconvert/html/Desktop/CS/Machine%20Learning/ML_Code/Perceptron.ipynb?download=false

In conclusion, the perceptron algotion was implemented on 4 different datasets. It

was shown that the perceptron algorithm works with binary and linearly sperable

data. It was also shown that the perceptron algorithm terminates in a finite number of

sets if the data is linearly seperable. It can be seen that if the perceptron algorithm

uses the null vector to initialise the weights, then the learning coeffiecient 'neta' does

not affect the learning rate.

