
Comparison between the sklearn decision trees and the theory  
 

Interpretation 

We have discussed that the possibility to interpret the way that DT makes the decision is one of 

the greatest advantages of this method. This allows us, not only to get the final result, but to 

understand why that result is chosen. This ease of interpretation makes the visualization of the 

algorithm possible. Sklearn software has multiple ways of visualizing the tree. We could use the 

plot_tree function or export the tree in Graphviz format. In the picture below, we can see the 

visualization example from the sklearn documentation by using the plot_tree function. 

 

 

 

 

 



Usages 

In class, we have focused on using the tree for binary or multiclassification. Sklearn supports 

both of these usages. However, the implementation of sklearn can also be used for regression, 

using the DecisionTreeRegressor class. This is an important difference from what we have 

discussed, and it is certainly worth mentioning. The main difference between using the sklearn 

decision tree for classification and regression is in the second parameter. The second parameter 

is the vector of labels used for training. In the case of classifications, it will hold the integer 

values, and in case of the regression float point values. In the picture below, there is a simple 

example from the documentation of using the decision tree for the regression problem. 

 

Overfitting 

Sklearn deals with overfitting by using pruning, setting the minimum number of samples at a 

leaf node or setting the maximum depth of the tree. We have talked about all these methods in 

our lectures. The specific algorithm that sklearn uses for pruning is called Minimal Cost-

Complexity Pruning (details in the documentation). Also, using the parameters such as 

min_samples_split or min_samples_leaf can help in solving this problem. 

Data 

We have seen that DTs can handle both categorical and numerical data. In fact, we have 

discussed some ways on how to deal with numerical data and transform them to the 

categorical ones. However, the sklearn implementation of DTs doesn’t support the categorical 

variables as the input, so only the numerical variables can be used. 

Tree algorithm 

In class, we have been presented with the ID3 algorithm, which creates a tree in a greedy 

manner, choosing the attribute that will yield the largest Information Gain. The problem is that 

the ID3 finds the best (by the aforementioned criteria) categorical attribute, and the sklearn 

implementation works with numerical data. C4.5 algorithm solves this problem by dynamically 

defining a discrete attribute that partitions the continuous attribute value into the set of 

intervals. We have discussed how to do this in class, we can set the threshold for splitting the 

intervals in such a way that it maximizes the Information Gain. CART algorithm is very similar to 

C4.5, but it supports the numerical target variables, so it can be used for regression.The sklearn 

implementation uses an optimized version of this CART algorithm. 



Impurity measures 

Impurity measure is really important because the Information Gain, which the algorithm uses to 

choose the next attribute, depends on it. The impurity measures displayed in the sklearn 

documentation are Gini and Entropy (Log Loss). These are exactly the measures that we have 

been taught. Also, we have mentioned that we could use the Misclassification impurity 

measure. Below, I have put the formulas from the sklearn documentation to show that they are 

the as the ones that we have learned in our lectures. 

 

Multi-output problems 

The sklearn implementation of the decision tree is also capable of solving another type of 

problem that we have not discussed in class, the Multi-output problems. In this case, the 

parameter that represents the labels is a 2d array of shape (n_samples, n_outputs). Two 

changes need to be made in order to adjust to this problem. Firstly, n values should be stored in 

leaves, instead of 1. Also, the splitting criteria should take into account the average reduction 

across all n outputs. Sklearn has the Multi-output problem support for both the 

DecisionTreeClassifier and DecisionTreeRegressor.  

 

 


