
Comparison between the sklearn decision trees and the theory

Interpretation

We have discussed that the possibility to interpret the way that DT makes the decision is one of

the greatest advantages of this method. This allows us, not only to get the final result, but to

understand why that result is chosen. This ease of interpretation makes the visualization of the

algorithm possible. Sklearn software has multiple ways of visualizing the tree. We could use the

plot_tree function or export the tree in Graphviz format. In the picture below, we can see the

visualization example from the sklearn documentation by using the plot_tree function.

Usages

In class, we have focused on using the tree for binary or multiclassification. Sklearn supports

both of these usages. However, the implementation of sklearn can also be used for regression,

using the DecisionTreeRegressor class. This is an important difference from what we have

discussed, and it is certainly worth mentioning. The main difference between using the sklearn

decision tree for classification and regression is in the second parameter. The second parameter

is the vector of labels used for training. In the case of classifications, it will hold the integer

values, and in case of the regression float point values. In the picture below, there is a simple

example from the documentation of using the decision tree for the regression problem.

Overfitting

Sklearn deals with overfitting by using pruning, setting the minimum number of samples at a

leaf node or setting the maximum depth of the tree. We have talked about all these methods in

our lectures. The specific algorithm that sklearn uses for pruning is called Minimal Cost-

Complexity Pruning (details in the documentation). Also, using the parameters such as

min_samples_split or min_samples_leaf can help in solving this problem.

Data

We have seen that DTs can handle both categorical and numerical data. In fact, we have

discussed some ways on how to deal with numerical data and transform them to the

categorical ones. However, the sklearn implementation of DTs doesn’t support the categorical

variables as the input, so only the numerical variables can be used.

Tree algorithm

In class, we have been presented with the ID3 algorithm, which creates a tree in a greedy

manner, choosing the attribute that will yield the largest Information Gain. The problem is that

the ID3 finds the best (by the aforementioned criteria) categorical attribute, and the sklearn

implementation works with numerical data. C4.5 algorithm solves this problem by dynamically

defining a discrete attribute that partitions the continuous attribute value into the set of

intervals. We have discussed how to do this in class, we can set the threshold for splitting the

intervals in such a way that it maximizes the Information Gain. CART algorithm is very similar to

C4.5, but it supports the numerical target variables, so it can be used for regression.The sklearn

implementation uses an optimized version of this CART algorithm.

Impurity measures

Impurity measure is really important because the Information Gain, which the algorithm uses to

choose the next attribute, depends on it. The impurity measures displayed in the sklearn

documentation are Gini and Entropy (Log Loss). These are exactly the measures that we have

been taught. Also, we have mentioned that we could use the Misclassification impurity

measure. Below, I have put the formulas from the sklearn documentation to show that they are

the as the ones that we have learned in our lectures.

Multi-output problems

The sklearn implementation of the decision tree is also capable of solving another type of

problem that we have not discussed in class, the Multi-output problems. In this case, the

parameter that represents the labels is a 2d array of shape (n_samples, n_outputs). Two

changes need to be made in order to adjust to this problem. Firstly, n values should be stored in

leaves, instead of 1. Also, the splitting criteria should take into account the average reduction

across all n outputs. Sklearn has the Multi-output problem support for both the

DecisionTreeClassifier and DecisionTreeRegressor.

