The definition of VC dimension is: if there exists a set of n points that can be shattered by the classifier and there is no set of n+1 points that can be shattered by the classifier, then the VC dimension of the classifier is n.

For finding VC dimension of $\begin{cases} h(x) = +1 & \text{if } a \le x \le b \\ h(x) = -1 & \text{otherwise} \end{cases}$ we will consider several points, starting from the number of one point. For one point it is possible for classifying. For 2 points we consider 4 group:

- 1: $h_1 = +1$, $h_2 = +1$
- 2: h₁=-1, h₂=-1
- 3: h₁=-1, h₂=+1
- 4: h₁=+1, h₂=-1

All 4 modes are possible. For all 4 modes, you can find a number like x for the output of the function.

For 3 points we consider 8 group:

1: $h_1 = +1$, $h_2 = +1$, $h_3 = +1$ 2: $h_1 = +1$, $h_2 = +1$, $h_3 = -1$ 3: $h_1 = +1$, $h_2 = -1$, $h_3 = +1$ 4: $h_1 = +1$, $h_2 = -1$, $h_3 = -1$ 5: $h_1 = -1$, $h_2 = +1$, $h_3 = +1$ 6: $h_1 = -1$, $h_2 = -1$, $h_3 = +1$ 7: $h_1 = -1$, $h_2 = -1$, $h_3 = -1$ 8: $h_1 = -1$, $h_2 = -1$, $h_3 = -1$

all states is possible except number 3. Due to $h_1 = +1$ and $h_3 = +1$ so $a \le X1 \le b$ and $a \le X3 \le b$. We have to find X2 where $X1 \le X2 \le X3$. The only number that can be found is either smaller than x1 or larger than x3 which is not acceptable. So VC dimension is 2.