The definition of VC dimension is: if there exists a set of n points that can be shattered by the classifier and there is no set of $n+1$ points that can be shattered by the classifier, then the VC dimension of the classifier is n.

For finding VC dimension of $\left\{\begin{array}{l}h(x)=+1 \text { if } a \leq x \leq b \\ h(x)=-1 \\ \text { otherwise }\end{array}\right.$ we will consider several points, starting from the number of one point. For one point it is possible for classifying. For 2 points we consider 4 group:

1: $h_{1}=+1, h_{2}=+1$
2: $h_{1}=-1, h_{2}=-1$
3: $h_{1}=-1, h_{2}=+1$
4: $h_{1}=+1, h_{2}=-1$
All 4 modes are possible. For all 4 modes, you can find a number like x for the output of the function.

For 3 points we consider 8 group:
1: $h_{1}=+1, h_{2}=+1, h_{3}=+1$
2: $h_{1}=+1, h_{2}=+1, h_{3}=-1$
3: $h_{1}=+1, h_{2}=-1, h_{3}=+1$
4: $h_{1}=+1, h_{2}=-1, h_{3}=-1$
5: $h_{1}=-1, h_{2}=+1, h_{3}=+1$
6: $h_{1}=-1, h_{2}=+1, h_{3}=-1$
7: $h_{1}=-1, h_{2}=-1, h_{3}=+1$
8: $h_{1}=-1, h_{2}=-1, h_{3}=-1$
all states is possible except number 3 . Due to $\mathrm{h}_{1}=+1$ and $\mathrm{h}_{3}=+1$ so $a \leq \mathrm{X} 1 \leq b$ and $a \leq \mathrm{X} 3 \leq b$. We have to find X 2 where $X 1 \leq \mathrm{X} 2 \leq X 3$. The only number that can be found is either smaller than x 1 or larger than x 3 which is not acceptable. So VC dimension is 2 .

