
CS229 Supplemental Lecture notes

Hoeffding’s inequality

John Duchi

1 Basic probability bounds

A basic question in probability, statistics, and machine learning is the fol-
lowing: given a random variable Z with expectation E[Z], how likely is Z to
be close to its expectation? And more precisely, how close is it likely to be?
With that in mind, these notes give a few tools for computing bounds of the
form

P(Z ≥ E[Z] + t) and P(Z ≤ E[Z]− t) (1)

for t ≥ 0.
Our first bound is perhaps the most basic of all probability inequalities,

and it is known as Markov’s inequality. Given its basic-ness, it is perhaps
unsurprising that its proof is essentially only one line.

Proposition 1 (Markov’s inequality). Let Z ≥ 0 be a non-negative random

variable. Then for all t ≥ 0,

P(Z ≥ t) ≤ E[Z]

t
.

Proof We note that P(Z ≥ t) = E[1 {Z ≥ t}], and that if Z ≥ t, then it
must be the case that Z/t ≥ 1 ≥ 1 {Z ≥ t}, while if Z < t, then we still have
Z/t ≥ 0 = 1 {Z ≥ t}. Thus

P(Z ≥ t) = E[1 {Z ≥ t}] ≤ E

[

Z

t

]

=
E[Z]

t
,

as desired.
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Essentially all other bounds on the probabilities (1) are variations on
Markov’s inequality. The first variation uses second moments—the variance—
of a random variable rather than simply its mean, and is known as Cheby-
shev’s inequality.

Proposition 2 (Chebyshev’s inequality). Let Z be any random variable with

Var(Z) < ∞. Then

P(Z ≥ E[Z] + t or Z ≤ E[Z]− t) ≤ Var(Z)

t2

for t ≥ 0.

Proof The result is an immediate consequence of Markov’s inequality. We
note that if Z ≥ E[Z] + t, then certainly we have (Z − E[Z])2 ≥ t2, and
similarly if Z ≤ E[Z]− t we have (Z − E[Z])2 ≥ t2. Thus

P(Z ≥ E[Z] + t or Z ≤ E[Z]− t) = P((Z − E[Z])2 ≥ t2)

(i)

≤ E[(Z − E[Z])2]

t2
=

Var(Z)

t2
,

where step (i) is Markov’s inequality.

A nice consequence of Chebyshev’s inequality is that averages of random
variables with finite variance converge to their mean. Let us give an example
of this fact. Suppose that Zi are i.i.d. and satisfy E[Zi] = 0. Then E[Zi] = 0,
while if we define Z̄ = 1

n

∑n

i=1 Zi then

Var(Z̄) = E

[

(

1

n

n
∑

i=1

Zi

)2
]

=
1

n2

∑

i,j≤n

E[ZiZj] =
1

n2

n
∑

i=1

E[Z2
i ] =

Var(Z1)

n
.

In particular, for any t ≥ 0 we have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

≥ t

)

≤ Var(Z1)

nt2
,

so that P(|Z̄| ≥ t) → 0 for any t > 0.
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2 Moment generating functions

Often, we would like sharper—even exponential—bounds on the probability
that a random variable Z exceeds its expectation by much. With that in
mind, we need a stronger condition than finite variance, for which moment
generating functions are natural candidates. (Conveniently, they also play
nicely with sums, as we will see.) Recall that for a random variable Z, the
moment generating function of Z is the function

MZ(λ) := E[exp(λZ)], (2)

which may be infinite for some λ.

2.1 Chernoff bounds

Chernoff bounds use of moment generating functions in an essential way to
give exponential deviation bounds.

Proposition 3 (Chernoff bounds). Let Z be any random variable. Then for

any t ≥ 0,

P(Z ≥ E[Z] + t) ≤ min
λ≥0

E[eλ(Z−E[Z])]e−λt = min
λ≥0

MZ−E[Z](λ)e
−λt

and

P(Z ≤ E[Z]− t) ≤ min
λ≥0

E[eλ(E[Z]−Z)]e−λt = min
λ≥0

ME[Z]−Z(λ)e
−λt.

Proof We only prove the first inequality, as the second is completely iden-
tical. We use Markov’s inequality. For any λ > 0, we have Z ≥ E[Z] + t if
and only if eλZ ≥ eλE[Z]+λt, or eλ(Z−E[Z]) ≥ eλt. Thus, we have

P(Z − E[Z] ≥ t) = P(eλ(Z−E[Z]) ≥ eλt)
(i)

≤ E[eλ(Z−E[Z])]e−λt,

where the inequality (i) follows from Markov’s inequality. As our choice of
λ > 0 did not matter, we can take the best one by minizing the right side of
the bound. (And noting that certainly the bound holds at λ = 0.)
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The important result is that Chernoff bounds “play nicely” with sum-
mations, which is a consequence of the moment generating function. Let us
assume that Zi are independent. Then we have that

MZ1+···+Zn
(λ) =

n
∏

i=1

MZi
(λ),

which we see because

E

[

exp

(

λ
n
∑

i=1

Zi

)

]

= E

[

n
∏

i=1

exp(λZi)

]

=
n
∏

i=1

E[exp(λZi)],

by of the independence of the Zi. This means that when we calculate a
Chernoff bound of a sum of i.i.d. variables, we need only calculate the moment
generating function for one of them. Indeed, suppose that Zi are i.i.d. and
(for simplicity) mean zero. Then

P

( n
∑

i=1

Zi ≥ t

)

≤
∏n

i=1 E [exp(λZi)]

eλt

= (E[eλZ1 ])ne−λt,

by the Chernoff bound.

2.2 Moment generating function examples

Now we give several examples of moment generating functions, which enable
us to give a few nice deviation inequalities as a result. For all of our examples,
we will have very convienent bounds of the form

MZ(λ) = E[eλZ ] ≤ exp

(

C2λ2

2

)

for all λ ∈ R,

for some C ∈ R (which depends on the distribution of Z); this form is very
nice for applying Chernoff bounds.

We begin with the classical normal distribution, where Z ∼ N (0, σ2).
Then we have

E[exp(λZ)] = exp

(

λ2σ2

2

)

,
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which one obtains via a calculation that we omit. (You should work this out
if you are curious!)

A second example is known as a Rademacher random variable, or the
random sign variable. Let S = 1 with probability 1

2
and S = −1 with

probability 1
2
. Then we claim that

E[eλS] ≤ exp

(

λ2

2

)

for all λ ∈ R. (3)

To see inequality (3), we use the Taylor expansion of the exponential function,

that is, that ex =
∑∞

k=0
xk

k!
. Note that E[Sk] = 0 whenever k is odd, while

E[Sk] = 1 whenever k is even. Then we have

E[eλS] =
∞
∑

k=0

λk
E[Sk]

k!

=
∑

k=0,2,4,...

λk

k!
=

∞
∑

k=0

λ2k

(2k)!
.

Finally, we use that (2k)! ≥ 2k · k! for all k = 0, 1, 2, . . ., so that

E[eλS] ≤
∞
∑

k=0

(λ2)k

2k · k! =
∞
∑

k=0

(

λ2

2

)k
1

k!
= exp

(

λ2

2

)

.

Let us apply inequality (3) in a Chernoff bound to see how large a sum of
i.i.d. random signs is likely to be.

We have that if Z =
∑n

i=1 Si, where Si ∈ {±1} is a random sign, then
E[Z] = 0. By the Chernoff bound, it becomes immediately clear that

P(Z ≥ t) ≤ E[eλZ ]e−λt = E[eλS1 ]ne−λt ≤ exp

(

nλ2

2

)

e−λt.

Applying the Chernoff bound technique, we may minimize this in λ ≥ 0,
which is equivalent to finding

min
λ≥0

{

nλ2

2
− λt

}

.

Luckily, this is a convenient function to minimize: taking derivatives and
setting to zero, we have nλ− t = 0, or λ = t/n, which gives

P(Z ≥ t) ≤ exp

(

− t2

2n

)

.
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In particular, taking t =
√

2n log 1
δ
, we have

P

(

n
∑

i=1

Si ≥
√

2n log
1

δ

)

≤ δ.

So Z =
∑n

i=1 Si = O(
√
n) with extremely high probability—the sum of n

independent random signs is essentially never larger than O(
√
n).

3 Hoeffding’s lemma and Hoeffding’s inequal-

ity

Hoeffding’s inequality is a powerful technique—perhaps the most important
inequality in learning theory—for bounding the probability that sums of
bounded random variables are too large or too small. We will state the
inequality, and then we will prove a weakened version of it based on our
moment generating function calculations earlier.

Theorem 4 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded

random variables with Zi ∈ [a, b] for all i, where −∞ < a ≤ b < ∞. Then

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

≤ exp

(

− 2nt2

(b− a)2

)

and

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≤ −t

)

≤ exp

(

− 2nt2

(b− a)2

)

for all t ≥ 0.

We prove Theorem 4 by using a combination of (1) Chernoff bounds and
(2) a classic lemma known as Hoeffding’s lemma, which we now state.

Lemma 5 (Hoeffding’s lemma). Let Z be a bounded random variable with

Z ∈ [a, b]. Then

E[exp(λ(Z − E[Z]))] ≤ exp

(

λ2(b− a)2

8

)

for all λ ∈ R.
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Proof We prove a slightly weaker version of this lemma with a factor of 2
instead of 8 using our random sign moment generating bound and an inequal-
ity known as Jensen’s inequality (we will see this very important inequality
later in our derivation of the EM algorithm). Jensen’s inequality states the
following: if f : R → R is a convex function, meaning that f is bowl-shaped,
then

f(E[Z]) ≤ E[f(Z)].

The simplest way to remember this inequality is to think of f(t) = t2, and
note that if E[Z] = 0 then f(E[Z]) = 0, while we generally have E[Z2] > 0.
In any case, f(t) = exp(t) and f(t) = exp(−t) are convex functions.

We use a clever technique in probability theory known as symmetrization

to give our result (you are not expected to know this, but it is a very common
technique in probability theory, machine learning, and statistics, so it is
good to have seen). First, let Z ′ be an independent copy of Z with the
same distribution, so that Z ′ ∈ [a, b] and E[Z ′] = E[Z], but Z and Z ′ are
independent. Then

EZ [exp(λ(Z−EZ [Z]))] = EZ [exp(λ(Z−EZ′ [Z ′]))]
(i)

≤ EZ [EZ′ exp(λ(Z−Z ′))],

where EZ and EZ′ indicate expectations taken with respect to Z and Z ′.
Here, step (i) uses Jensen’s inequality applied to f(x) = e−x. Now, we have

E[exp(λ(Z − E[Z]))] ≤ E [exp (λ(Z − Z ′))] .

Now, we note a curious fact: the difference Z − Z ′ is symmetric about zero,
so that if S ∈ {−1, 1} is a random sign variable, then S(Z −Z ′) has exactly
the same distribution as Z − Z ′. So we have

EZ,Z′ [exp(λ(Z − Z ′))] = EZ,Z′,S[exp(λS(Z − Z ′))]

= EZ,Z′ [ES [exp(λS(Z − Z ′)) | Z,Z ′]] .

Now we use inequality (3) on the moment generating function of the random
sign, which gives that

ES [exp(λS(Z − Z ′)) | Z,Z ′] ≤ exp

(

λ2(Z − Z ′)2

2

)

.

But of course, by assumption we have |Z−Z ′| ≤ (b−a), so (Z−Z ′)2 ≤ (b−a)2.
This gives

EZ,Z′ [exp(λ(Z − Z ′))] ≤ exp

(

λ2(b− a)2

2

)

.
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This is the result (except with a factor of 2 instead of 8).

Now we use Hoeffding’s lemma to prove Theorem 4, giving only the upper
tail (i.e. the probability that 1

n

∑n

i=1(Zi − E[Zi]) ≥ t) as the lower tail has
a similar proof. We use the Chernoff bound technique, which immediately
tells us that

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

= P

(

n
∑

i=1

(Zi − E[Zi]) ≥ nt

)

≤ E

[

exp

(

λ

n
∑

i=1

(Zi − E[Zi])

)]

e−λnt

=

( n
∏

i=1

E[eλ(Zi−E[Zi])]

)

e−λnt
(i)

≤
( n
∏

i=1

e
λ
2(b−a)2

8

)

e−λnt

where inequality (i) is Hoeffding’s Lemma (Lemma 5). Rewriting this slightly
and minimzing over λ ≥ 0, we have

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

≤ min
λ≥0

exp

(

nλ2(b− a)2

8
− λnt

)

= exp

(

− 2nt2

(b− a)2

)

,

as desired.
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