
Lez17_Ensemble_Learning_Adaboost

January 6, 2023

[1]: #Adaboost
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import sklearn.metrics as metrics
from sklearn.datasets import make_classification
from sklearn.ensemble import AdaBoostClassifier
import matplotlib.pyplot as plt

Import data of the titanic passengers
data_titanic = pd.read_csv("titanic_data.csv")

Preprocessing
Not all data is important for the training. The PassengerId, the name, the␣

↪number of siblings, the parch, the ticket number
and the cabin number are not important and therefore they will be dropped
data_titanic = data_titanic.drop(data_titanic.columns[[0, 3, 6, 7, 8, 10]],␣

↪axis = 1)

Fill the gaps:
For the age: Compute the average of ages of all passengers on board and take␣

↪it as value
ages = data_titanic["Age"]
age_average = round(ages.mean(axis = 0, skipna = True))
print('Age average: ', age_average)

def set_age(Age):
age = Age
if pd.isnull(age):

return age_average
else:

return age

data_titanic['Age'] = data_titanic['Age'].apply(set_age)

For the embarked: Take the most occuring value, available options: S, C and Q
Embarked = data_titanic["Embarked"]

1

count_S = 0
count_C = 0
count_Q = 0

Count embarks
for i in range(data_titanic.shape[0]):

if (Embarked[i] == 'S'):
count_S += 1

if (Embarked[i] == 'C'):
count_C += 1

if (Embarked[i] == 'Q'):
count_Q += 1

if ((count_S >= count_C) and (count_S >= count_Q)):
common_embarked = 'S'

if ((count_C > count_S) and (count_C >= count_Q)):
common_embarked = 'C'

if ((count_Q >= count_S) and (count_Q >= count_C)):
common_embarked = 'Q'

def set_Embarked(Embarked):
embarked = Embarked
if pd.isnull(embarked):

return common_embarked
else:

return embarked

data_titanic['Embarked'] = data_titanic['Embarked'].apply(set_Embarked)

Gender and Embarked have to be replaced by values: Set male = 0, female = 1␣
↪and S = 0, C = 1, Q = 2

replace_gender = {data_titanic.columns[2]: {"male": 0, "female": 1}}
replace_embarked = {data_titanic.columns[5]: {"S": 0, "C": 1, "Q": 2}}
data_titanic = data_titanic.replace(replace_gender)
data_titanic = data_titanic.replace(replace_embarked)

Age average: 30

[2]: # Split data into train and evaluation subsets, proportion 1:4
input_data = data_titanic.drop(data_titanic.columns[[0]], axis = 1) # Input has␣

↪to be without "Survived" statement
target_data = data_titanic['Survived'] # KNN algorithm has to predict survied␣

↪statement
input_train, input_evaluate, target_train, target_evaluate =␣

↪train_test_split(input_data , target_data, test_size = 0.25)

2

[3]: # Perform Adaboost
Use 50 Iterations
Iteration = [i for i in range(0,50)]
accuracies = [0] * 50

#Iteration
for i in Iteration:

classifier = AdaBoostClassifier(n_estimators = i+1, random_state = 0)
classifier.fit(input_train,target_train)
target_pred = classifier.predict(input_evaluate)
accuracies[i] = metrics.accuracy_score(target_pred, target_evaluate)

plt.plot(Iteration, accuracies, '-o', label='Accuracy')
plt.legend()
plt.show()
print("As expected, the accuracy becomes better with an increasing number of␣

↪iterations.")

As expected, the accuracy becomes better with an increasing number of
iterations.

[]:

3

