[1]1:

Lez17 Ensemble Learning Adaboost

January 6, 2023

#Adaboost

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split
import sklearn.metrics as metrics

from sklearn.datasets import make_classification
from sklearn.ensemble import AdaBoostClassifier
import matplotlib.pyplot as plt

Import data of the titanic passengers
data_titanic = pd.read_csv("titanic_data.csv")

Preprocessing

Not all data is important for the training. The PassengerId, the name, the,
—number of siblings, the parch, the ticket number

and the cabin number are not important and therefore they will be dropped

data_titanic = data_titanic.drop(data_titanic.columns[[0, 3, 6, 7, 8, 1011,
—axis = 1)

Fill the gaps:

For the age: Compute the average of ages of all passengers on board and take,
<1t as value

ages = data_titanic["Age"]

age_average = round(ages.mean(axis = 0, skipna = True))

print('Age average: ', age_average)

def set_age(Age):
age = Age
if pd.isnull(age):
return age_average
else:
return age

data_titanic['Age'] = data_titanic['Age'].apply(set_age)

For the embarked: Take the most occuring value, available options: S, C and (@
Embarked = data_titanic["Embarked"]

count_S = 0
count_C
count_Q

o
o O

Count embarks
for i in range(data_titanic.shape[0]):

if (Embarked[i] == 'S'):
count_S += 1

if (Embarked[i] == 'C'):
count_C += 1

if (Embarked[i] == 'Q'):

count_Q += 1

if ((count_S >= count_C) and (count_S >= count_Q)):

common_embarked = 'S'

if ((count_C > count_S) and (count_C >= count_Q)):
common_embarked = 'C'

if ((count_Q >= count_S) and (count_Q >= count_C)):
common_embarked = 'Q'

def set_Embarked(Embarked) :
embarked = Embarked
if pd.isnull(embarked):
return common_embarked
else:
return embarked

data_titanic['Embarked'] = data_titanic['Embarked'].apply(set_Embarked)

Gender and Embarked have to be replaced by wvalues: Set male = 0, female = 1
sand S =0, C =1, § =2

replace_gender = {data_titanic.columns[2]: {"male": 0, "female": 1}}

replace_embarked = {data_titanic.columns[5]: 0GP @, "GUg i, P@Us 2k

data_titanic = data_titanic.replace(replace_gender)

data_titanic = data_titanic.replace(replace_embarked)

Age average: 30

[2]: # Split data into train and evaluation subsets, proportion 1:4
input_data = data_titanic.drop(data_titanic.columns[[0]], axis = 1) # Input has,
»to be without "Survived" statement
target_data = data_titanic['Survived'] # KNN algorithm has to predict survied,
~statement
input_train, input_evaluate, target_train, target_evaluate =
~train_test_split(input_data , target_data, test_size = 0.25)

[3]1: # Perform Adaboost
Use 50 Iterations
Iteration = [i for i in range(0,50)]
accuracies = [0] * 50

#Iteration
for i in Iteration:
classifier = AdaBoostClassifier(n_estimators = i+1, random_state = 0)
classifier.fit(input_train,target_train)
target_pred = classifier.predict(input_evaluate)
accuracies[i] = metrics.accuracy_score(target_pred, target_evaluate)

plt.plot(Iteration, accuracies, '-o', label='Accuracy')

plt.legend()

plt.show()

print("As expected, the accuracy becomes better with an increasing number of
witerations.")

—8— Accuracy
0.84

0.83

0.82 1

0.81 -

0.80

As expected, the accuracy becomes better with an increasing number of
iterations.

[1:

