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If someone has doubts about the fact that
lim (0(6)) =0
n—oo

(actually this is true for every non-zero constant, not only for 6), she/he should recall the notion of
"ittle o":

Definition A function ¢(n) is "a little o" of ¥(n) —and one writes ¢(n) = o(1p(n)) for n - co— if

1m o(n) =0.
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Therefore, if ¢)(n) is a non-zero constant (as our 6 above), i.e. ¥(n) =k € R\{0}, one has
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which is obviously equivalent to
lim ¢(n) = 0.
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