Compute

$$
\lim _{n \rightarrow \infty} n^{\alpha}\left(\frac{1}{n}-\sin \left(\frac{1}{n}\right)\right)
$$

One has

$$
\sin x=x-\frac{x^{3}}{6}+o\left(x^{3}\right), \quad \text { as } x \rightarrow 0,
$$

so that (setting $x=\frac{1}{n}$)

$$
n^{\alpha}\left(\frac{1}{n}-\sin \left(\frac{1}{n}\right)\right)=n^{\alpha}\left(\frac{1}{n}-\frac{1}{n}+\frac{1}{6 n^{3}}+o\left(\frac{1}{n^{3}}\right)\right)=\frac{1}{6 n^{3-\alpha}}+o\left(\frac{1}{n^{3-\alpha}}\right)
$$

Hence

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{\alpha}\left(\frac{1}{n}-\sin \left(\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} \frac{1}{6 n^{3-\alpha}}+o\left(\frac{1}{n^{3-\alpha}}\right)=\lim _{n \rightarrow \infty} \frac{1}{6 n^{3-\alpha}}(1+o(6)) \\
= & \lim _{n \rightarrow \infty} \frac{1}{6 n^{3-\alpha}} \cdot \lim _{n \rightarrow \infty}(1+o(6))=\lim _{n \rightarrow \infty} \frac{1}{6 n^{3-\alpha}}=\lim _{n \rightarrow \infty} \frac{1}{6 n^{3-\alpha}}= \begin{cases}0 & \forall \alpha<3 \\
\frac{1}{6} & \alpha=3 \\
+\infty & \forall \alpha>3\end{cases}
\end{aligned}
$$

If someone has doubts about the fact that

$$
\lim _{n \rightarrow \infty}(o(6))=0
$$

(actually this is true for every non-zero constant, not only for 6), she/he should recall the notion of
"little o":
Definition A function $\phi(n)$ is "a little o" of $\psi(n)$-and one writes $\phi(n)=o(\psi(n))$ for $n \rightarrow \infty$ - if

$$
\lim _{n \rightarrow \infty} \frac{\phi(n)}{\psi(n)}=0 .
$$

Therefore, if $\psi(n)$ is a non-zero constant (as our 6 above), i.e. $\psi(n) \equiv k \in \mathbb{R} \backslash\{0\}$, one has

$$
\lim _{n \rightarrow \infty} \frac{\phi(n)}{k}=0,
$$

which is obviously equivalent to

$$
\lim _{n \rightarrow \infty} \phi(n)=0 .
$$

