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One has
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0 ∀α < 3
1
6 α = 3
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If someone has doubts about the fact that

lim
n→∞
(o (6)) = 0

(actually this is true for every non-zero constant, not only for 6), she/he should recall the notion of
"little o":
De�nition A function ϕ(n) is "a little o" of ψ(n) �and one writes ϕ(n) = o(ψ(n)) for n→∞� if

lim
n→∞

ϕ(n)

ψ(n)
= 0.

Therefore, if ψ(n) is a non-zero constant (as our 6 above), i.e. ψ(n) ≡ k ∈ R/{0}, one has

lim
n→∞

ϕ(n)

k
= 0,

which is obviously equivalent to
lim
n→∞

ϕ(n) = 0.

1


