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ABSTRACT: A method for estimating detention storage capacity in stormwater 
management is presented! A generalized storage-overflow relationship is de
rived. This relationship defines real available storage (empty space in detention 
basin) on the positive range and overflow volumes on the negative range. By 
using exponential probability density functions for the independent hydrologic 

„- >"\ variables runoff volumes, runoff durations, and interevent times, and the gen-
•^ ) eralized storage relationship, a new probability distribution is derived for the 
^y treatment plant overflow volumes. The new distribution provides an easy-method 

for estimating the detention storage and treatment capacity for a design risk 
level. The methodology has the advantage that it provides easy to use prelim
inary planning information for stormwater management without the need for 
extensive simulation. 

INTRODUCTION 

Urban stormwater and combined sewer overflow are major sources of 
pollution in many receiving streams. Unless the combined sewer over
flows are controlled and treated, many receiving streams may become 
unsuitable for h u m a n needs. The methods for planning stormwater con
trol measures (treatment and storage) can be grouped under the follow
ing three categories: (1) Design storm approach; (2) simulation modeling; 
and (3) derived distribution approach. 

The design storm is usually obtained from frequency-duration-depth 
curves. The design storm is coupled with a unit hydrograph and routed 
through a treatment plant of specified capacity to estimate the needed 
storage. Because the method ignores the cumulative effect of closely 
spaced storms, the estimate of the treatment capacity-storage combina
tion is not accurate. The use of this method is severely criticized in the 
literature. For example, Linsley and Crawford (6) point out that while 
the cost of storm drainage systems runs to billions of dollars per year, 
the use of such a crude method is thus hardly justified. 

Simulation is the conceptual modeling of a physical system. This ap
proach recognizes not only the properties of a storm but also the effect 
of successive storm events. For prespecified treatment capacity-storage 
combinations, performance curves for storm overflows can be developed 
(4,9,10). In general, these models are extensive, data intensive, and re
quire a large computer memory. Also, a large number of computer runs 

'Asst. Prof., Dept. of Civ. Engrg.,. Virginia Polytechnic Inst, and State Univ., 
Blacksburg, Va. 24061. 

2Prof., School of Civ. Engrg., Purdue Univ., West Lafayette, Ind. 47907. 
3Grad. Student, Dept. of Civ. Engrg., Virginia Polytechnic Inst, and State Univ., 

Blacksburg, Va. 24061. 
Note.—Discussion open until March 1, 1986. To extend the closing date one 

month, a written request must be filed with the ASCE Manager of Journals. The 
manuscript for this paper was submitted for review and possible publication on 
June 18, 1984. This paper is part of the Journal of Water Resources Planning and 
Management, Vol. I l l , No. 4, October, 1985. ©ASCE, ISSN 0733-9496/85/0004-
0382/$01.00. Paper No. 20105. 

382 

J. Water Resour. Plann. Manage. 1985.111:382-398.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
 S

tu
di

 D
i P

ad
ov

a 
on

 1
0/

21
/1

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



have to be made to develop the performance curves. 
The derived distribution approach is based on the statistical distri

butions of random variables. Using hydrological relationships, new 
probability distributions are derived for the dependent variables such as 
runoff and overflow. It may yield closed form solutions that provide 
quick estimates for the treatment and storage and are easily adaptable 
to further analytical treatment. In the present work, based on the de
rived distribution approach, analytical solutions are developed for the 
treatment-storage planning without resorting to extensive simulation 
models. 

Howard (5) assumed that the storm volumes and the interevent times 
(time between storms) were exponentially distributed. Analytical expres
sions for the probability distributions of the overflows and related vari
ables were derived but the durations of storms were not taken into ac
count. Di Toro and Small (3) proposed a derived distribution for the 
stormwater overflows. The flows were assumed to be uniform over the 
duration. The flows, durations, and interevent times were assumed to 
be gamma distributed. In the formulation, several expressions did not 
have analytical solutions and were numerically evaluated. Chan and Bras 
(I) proposed a distribution for overflows based on the kinematic routing. 
This method did not consider the carryover storage. This formulation 
also required an approximation scheme for end results. Smith (12) took 
into consideration the duration of storms. The storm volumes, dura
tions, and interevent times were assumed to be exponentially distrib
uted. The storage level in the reservoir was also considered as a random 
variable. The expression for the distribution of storage level ruled out a 
strictly analytical solution. Following Smith (12), Schwarz and Adams 
(II) obtained analytical expressions for the probability distribution of spill 
volumes from two detention storage reservoirs in series. Many of these 
algorithms require extensive numerical schemes to obtain end results. 
Loganathan and Delleur (8) derived an analytical expression for the dis
tributions of combined sewer overflows based on exponential distribu
tions for runoff volumes, durations of events, and interevent times. No 
numerical scheme was required. Also a probability distribution function 
for the quality of the pollutant after mixing with the untreated overflows 
was derived. Both Refs. 5 and 8 assumed that the previous storm com
pletely filled the storage. This assumption leads to an upperbound es
timate of treatment and storage because of the consideration of the worst 
scenerio. However, it is not realistic and leads to "over design." In the 
present work, this assumption is relaxed, which changes the whole anal
ysis. The problem falls into an analysis of certain stochastic process rather 
than an analysis of functions of random variables. 

GENERALIZED STORAGE 

The urban stormwater management process may be idealized as shown 
in Fig. 1. A sequence of runoff events with volumes, Xt (basin inches), 
durations, X2 (hours), and interevent times, X3 (hours) is shown. The 
stormwater runoff X1 is treated at treatment rate a (in. /hr). Because of 
the limited treatment capacity, if the runoff volume, Xx, is greater than 
that which can be treated in X2 (hours), the untreated excess (Xj - aX2) 
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Receiving Stream 

FIG. 1.—Schematic Representation of Urban Stormwater Runoff Process 

•— To treatment plant 
rate "a" 

FIG. 2.—Generalized Storage 

must be stored for later treatment. Let the storage capacity be b (in.). It 
is possible that a major storm, can exceed both the treatment capacity 
and the available storage (empty space in the tank). In such a situation 
an overflow of Y (in.) occurs. Considering the nth runoff event the fol
lowing notation is used: S(n) = available storage (empty space) at the 
end of the nth runoff event; Xi"' = volume of the nth event; X^ = du
ration of the nth event; X3 = time between (n — l)st and nth events; 
Y(n) = overflow volume at the end of the nth event. Consider S(n — 
1), the available storage at the end of the (n - l)st storm. Because the 
stormwater can be withdrawn from the storage for treatment during the 
interevent time, xf\ the available storage at the beginning of the nth 
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event can be written as (see Fig. 2) [S(n - 1) + 0X3 ]. This storage will 
be reduced by [X{"} - aX2"'] at the end of the nth event. Thus, the avail
able storage at the end of the nth event is 

S(n) = min {min [S*(n - 1) + aXf\ b] - [Xf - aXf], b} (1) 

in which 

S * ( H - 1 ) = S ( M - 1 ) if S ( n - 1 ) > 0 ] . 

= 0 if S(n - 1)<0J 

Because of the limited storage capacity b, the minima are used in Eq. 1. 
It is seen that S(n) can be negative in Eq. 1. The negative storage S(n) 
will occur whenever the runoff volume X] is very large. In such a sit
uation, an overflow occurs and is precisely equal to —S(n). 

S(n — 1) < 0 means that there is an overflow at the end of (n — l)st 
stage and there is no empty space in the tank at the end of the (n - l)st 
stage (tank is full). This implies physically at the end of the (n — l)st 
storm the actual available storage (empty space) must be zero. There
fore, one defines S*(n — 1) as in Eq. 2 In computing the available storage 
at the end of the nth storm. S* is called the generalized storage because 
S(n) can be negative. 

It is of interest to examine Eq. 1 more carefully. In general, the ranges 
for Xf, X2

n), Xf are [0,°°), and thus S(n) has a range (-00,00). There are 
several cases of interest in analyzing the range of S(n): 

1. For X[n) > aXf and xf - aXf < min [S*(n - 1) + aX3
n), b] there 

is real available storage (empty space > 0). 

S(n) = min [S*(n - 1) + flX^'0, b] - [X^ - aXf] <b (3) 

because Xf - aXf > 0. 
2. For Xf > aXf and X '̂0 - aXf > min [S*(n - 1) + aXf, b] there 

is an overflow (see Fig. 3). 

Y(n) = -S(n) = X? - aXf - min [S*(n - 1) + aXf, b] (4) 

because b > 0. 
3. For X]"' < 0X2"' it is possible to withdraw water from storage for 

treatment, even during the storm period. Thus, the storage space can 
be increased by [flX2

n) - Xi"'] > 0 during the storm period. 

S(n) = min {min [S*(n - 1) + aXf., b] + {aXf - xf], b) (5) 

Thus, the positive S(n) provides for real storage and negative S(n) rep
resents the overflow. 

The probabilities of exceedence of overflow volumes can be used as 
various risk levels. Suppose an expression for these risk levels is avail
able, then, it is possible to compute the treatment-storage combinations 
for a design risk level. For mathematical simplicity, Eq. 1 can be written 

as 

S(n) = min {min [S(n - 1) + aXf, b] - [Xf - aXf], b} IlSi„-l)>0] 

+ min {min [aX3
n), b] - [Xf - aXf], b) IlS{n.1)s0] (6) 
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FIG. 3.—Overflow 

in which 

W D > O ] = 1 i f S ( n - 1 ) > 0 ] 
= 0 if S ( n - l ) < 0 j 

/[.] is called the indicator function; and Eq. 6 is used to derive the dis
tribution of S(n). Based on suitable probability distributions for Xi , X2 , 
and X3 , and Eq. 6, a new distribution for S(n) can be derived. If Xf, 
. . . , Xf are independent, identically distributed (i.i.d.) variables, and 
X2"', Xj"' are i.i.d. variables, then S(n) forms a time homogeneous Mar
kov chain. It was shown in Refs. 8 and 12 that Xi, X2, and X3 could be 
taken as exponentially distributed random variables. 

DERIVATION OF DISTRIBUTION FUNCTIONS 

The following assumptions are used in the analysis. The validity of 
these assumptions is examined in the application section: 

1. It is assumed that X[1}, Xf>, . . . , X? are independent, identically 
distributed (i.i.d.) variables. Also, Xf' and X3

n> are i.i.d. variables. 
2. Xi, X2, X3 are statistically independent (8,12). 
3. X!, X2, X3 are exponentially distributed with parameters a, 0, and 

-y, respectively (8,12). 

Based on Eq. 6 the following probability statement can be made for 
S(n - 1) > 0: 

P[S{n) > s\S(n - 1) = c] = P{min [min (c + aX3, b) 

- (Xi - AX2), b] > s); S(n - 1) > 0, c > 0 (8) 

and for S(n - 1) < 0: 

P[S(n) > s\S(n - 1) = c] = P{min [min (aX3, b) 

- (Xj - aX2), b] > s}; S(n - 1) < 0, c = 0 (9) 
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(10) 

(11) 

By letting T = min [c + aX3, b] and W = Xj - aX2. . 

then Eq. 8 is rewritten for s > b, as 

P [S(n)>s |S (n - 1) = c] = P [ T - W>s]P[b>s] = 0 . . . 

since P(b > s) = 0, and for s < b, Eq. 8 is rewritten as 

P[S(n)>s\S(n - 1) = c] = P[T - W > s] (12) 

since P(b > s) = 1. The evaluation of Eq. 12 requires the calculation of 
the distributions of T and W. 

Distribution of T.—The exceedence probability function of T can be 
derived as follows. From the definition of T in Eq. 10, it may be written 
as 

P[T>t] = P[c + aX3>t]P[b>t] 

= 0 if t > b 

= P[c + ax3> t] if t<b 

In particular for t < b, and making use of assumption 3 

7 

(13) 

(14) P[c + aX3> t] = exp —(t-c) for t>c 
\_ a J 

= i for t < c 

Thus, the probability density function of T is obtained from Eq. 14 as 

7 
/r(f) = - e x p 

a 
= 0 

= exp 

— (t-c 
a 

7 
-{b-c) 
a 

) for b> t>c 

for t < c 

for t = b 
> 

(15) 

Distribution of W.—The probability distribution function of W is de
rived as follows from the definition Eq. 10 and assumption 3: 

P(W <w) = aP exp (-ax1 - (3x2)rf.t,dx2, for w > 0 

>• 

= (3 {1 - exp [-a(w + ax2)]} exp (-fix2)dx2, for iy < 0 
J-w/n J 

The probability density function of W is obtained from Eq. 16 

(16) 

fw(w) = «P 
afl + (3 

aP 

exp (—au>) for if > 0 

exp — zo \ for m < 0 
aa + p \ a ' 

(17) 

Conditional Distribution of S(n).—Considering Eq. 12, the probability 
of storage at the end of the nth storm to be greater than some threshold 
value, s, given that the storage at the end of the (« - l)st storm equals 
c is calculated for the two cases c < s < b and s s c < b. For the first 
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case namely, c < s < b 

P[S(n) > s\S(n - 1) = c] = P(T - W > s). (18) 

P[S(n)>s\S(n-l) = c] = P(W<t-s)fT(t)dt 

exp [-a(b - s)] 

+ P(W<t-s)fT(t)dt 

+ exp — (b-c) 
a 

(19) 
(aa + (3) 

in which the first integral corresponds to t - s < 0, the second integral 
to t - s > 0 and the last term is due to the point mass of T at b. The 
conditional cumulative distribution of S (n) can be written as 

P[S(n) < s\S(n - 1) = c] = 1 - P[S(n) > s|S(« - 1) = c]. 

on; 

P 

(20) 

By using Eqs. 15, 19, and 20 the conditional distribution of S(n) for c < 
s < b can be written as 

P[S(n) < s|S(« - 1) = c] = 1 - m exp - (s - c) exp 
7 

~ (s - c) 

- (1 - &) exp - - (s - c) 
a 

aa 
+ k — exp 

7 
-a(b - s) — (b - c) 

a 

in which m = aya 
k = 

for 0 < c < s < 

P7 
(afl + P)(7 - (3)' " (aa + P)(afl + 7) 

Considering the second case, namely s ^ c < b 

(21) 

(22) 

P[S(n) < s\S(n - 1) = c] = P(W < f - s)fT(t)dt 
•b-

exp - ^ ( b - c ) 
(aa + p) 

exp [-ot(fr - s)] (23) 

Thus, the conditional distribution of S(n) is 

P[S(n)<s |S(« - 1) = c] =fc j e x p [ - a ( c - s ) ] + — 

exp -a(b - s) (b — c) 
a 

for s<c<b . . . , (24) 

The point probability mass of S(n) at b for a given S(n - 1) is 

P[S(«) = b\S(n - 1) = c] = m I exp 

-exp - ^ ( b - c ) (25) 
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Special Case.—Consider the special case wherein previous storm com
pletely filled the storage. It is seen that c = 0. By using Eq. 24 and re
calling Y(n) = ~S(n) there results 

P[Y(n) > y] = K exp (-ay) for y > 0 

in which K = k aa 
1 H exp 

7 

-b a + 

(26) 

(27) 

Thus, P(0 < Y{n) 
and P(Y = 0) = 1 

< y) = K[l 
- K 

(28) 
exp (-ay)] for . y > 01 

for y = oj 

This result was previously obtained by Loganathan and Delleur (8) and 
is a particular case of the present analysis. 

STORAGE ESTIMATION 

In many urban drainage problems, estimation of storage capacity for 
a fixed treatment rate and a given risk level is required. The risk is de
fined as the probability of overflows into the receiving stream. Let e be 
the risk level. Two cases are of interest: 

Case a.—Initially the tank is empty, c = b. This is the most favorable 
scenario. From Eq. 24 

P[S(n)s=0|S(n-l) = 6 ] = — 5 — 
aa + p 

For a given treatment rate a 

exp (—ab) s e 

b > - l n 
a (aa + (3)e 

(29) 

(30) 

Using Eq. 30, the storage capacity for a given treatment rate can be com
puted. This will also guarantee that the probability of overflows will be 
less than or equal to the design risk level, e. In Eq. 30, it is seen that 
the parameter 7 is not present. That is, the interevent time does not play 
any role in computing the probability. It is because of the assumption 
that the entire storage is available as empty space at the end of the pre
vious storm. Since the whole tank is empty, no water is withdrawn dur
ing the interevent time and thus 7 does not appear in Eq. 30. 

It can be shown analytically that for a given storage capacity b, the 
overflow probability is a minimum when the tank is kept empty; also 
the overflow probability is a maximum when the tank is kept full. By 
letting c = 8b, 0 < 8 < 1, in Eq. 24 the overflow probability is given as 

aa 
P[S(n)<0\S(n- 1) = 8b] = k\ — exp - b a + - ( l - 8 ) 

a 

+ exp (-aSb)} (31) 

which is a function of 8, /(S) = P[S(n) < 0\S(n - 1) = 8b] (32) 

The minimum is found at the stationary point given by 8 = 1. So, the 
minimum overflow probability is obtained when the tank is empty. Be-
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cause /(8) is a convex function on 0 s 8 < 1, the maximum is attained 
at 8 = 0, which corresponds to the full tank situation. 

Case b.—Initially the tank is full, c = 0. This is the most critical sce
nario. From Eqs. 24 and 27 
P[S{n) < 0\S(n - 1) = 0] = K (33) 
From Eqs. 33 and 27 it can be seen that no matter how large a storage 
is provided, there is a finite probability of overflow, k. This probability 
is exactly equal to P[XX > a(X2 + X3)]. There is a finite probability of 
occurrence of runoff volumes that can exceed the volume that can be 
treated during the intefevent time and the duration of the event; This 
result agrees with the intuition that initially full storage would lead to 
more overflows. For a given risk level e (e must be greater than the finite 
overflow probability), and fixed treatment rate a, the storage capacity 
can be computed from Eq. 33 as 

b> In 
aBa 

(34) 
aa + 7 |_e(aa + p)(aa + 7) - B7 

Eqs. 30 and 34 can be used as design aids for estimating detention stor
age capacity. 

TREATMENT RATE ESTIMATION 

Using Eq. 24 for various risk levels the storage-treatment combination 
can be found. It is of interest to consider the case when storage capacity 
is zero. From Eq. 29 for fa = 0 it is seen 

B 
— 7 T = * (35) 

which yields a = (36) 
ae 

It is to be noticed when the storage capacity b = 0, it does not matter 
whether the initial storage is full or empty. Thus, Eq. 34 also yields the 
same value for the treatment rate a as in Eq. 36. In Eq. 34 a quadratic 
expression is to be solved for a. 

FLOW CAPTURE EFFICIENCY 

The fraction of the runoff volume captured by the storage is defined 
as the flow capture efficiency, which can be expressed as [1 - E(Y)/ 
E(Xj)]. This parameter is used in Refs. 3 and 4 for determining the stor
age capacity for a given treatment rate. In the following, a relationship 
between the flow capture efficiency and the storage estimators given in 
Eqs. 30 and 34 is derived. From Eq. 24 by using Y{n) = ~S(n), the con
ditional cumulative distribution function for Y(n) can be obtained. It is 
given as 

P[Y(n)<y|S(« - l).= c] = 1 - f c | e x p [ - a ( c + y)] 

— exp 
7 

-a{b + y)-1 {b - c) 
a 

for y > 0 (37) 
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Also, by letting P[Y(n) < y\S(n - 1) = c] = G(y) (38) 

and because only positive overflows need be considered 

E[Y(n)\S(n - 1) = c] = | ydG(i/) (39) 

E[Y(n)|S(n - 1) = c] =-P[S(n) < 0|S(« - 1) = c] (40) 
a 

Recalling E(Xi) = 1/a there results 

1 

E(X, 
E[Y(n)\S(n - 1) = c] = P[S(n) < 0\S(n - 1) = c] (41) 

Based on Eq. 40, upper and lower bounds on storage capacity, b, for a 
given treatment rate, a, can be derived. Considering the initial storage 
is full (critical case), S(n - 1) = 0 

-^—[E(Y(n)\S(n - 1) = 0] = P[(S(n) s 0|S(« - 1) = 0] (42) 
t ( A i ) 

which is exactly the same as Eq. 33 and yields the upper bound storage 
given by Eq. 34. Considering the most favorable situation that the initial 
storage is empty, S(n - 1) = b 

-^—[E(Y(n)\S(n - 1) = b] = P[(S(n) < 0\S(n - 1) = b] (43) 
fc(Ai) 

leads to the lower bound storage given in Eq. 30. Thus, it may be con
cluded that Eqs. 30 and 34 provide analytical expressions for storage 
capacity for a specified flow capture efficiency. The flow capture effi
ciency and the risk level e used in Eqs. 30 and 34 are related by 

e = l — flow capture efficiency (44) 

TRANSITION PROBABILITIES 

It is also of interest to compute the probabilities of storage changes. 
To fix the value of c, the following mid point approximation will be used. 

The event [ax < S (n) < a2] • ci x ai +Cl2 
s(") = —T- (45) 

Transition to Real Storage.—Suppose {ax + a2)/2 = c > 0 and b > a3, 
a4 > c. The transition probability P[a3 < S(n) < a^S{n - 1) = c] can be 
computed from Eq. 21 as follows: 

P[a3 < S(n) < a4\S(n - 1) = c] = P[S(n) < a4\S(n - 1) = c] 

- P[S(n) < a3\S(n - 1) = c] (46) 

For c > a4 > a3 > 0, Eq. 24 can be used to compute P[a3 < S(n) < a4\S(n 
- 1) = c]. 

Transition from an Overflow.—Whenever S(n - 1) < 0, c = 0. In such 
a case, the transition probability is given as, P[a3 < S(n) < a4\c = 0], It 

391 

J. Water Resour. Plann. Manage. 1985.111:382-398.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
 S

tu
di

 D
i P

ad
ov

a 
on

 1
0/

21
/1

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



is to be noted that c = 0, regardless of the numerical value of S (n - 1) 
as long as S(n - 1) < 0. It is also physically conceivable because the nth 
storage depends on the available empty space (in this case zero) and not 
on the magnitude of the overflow. 

Transition to an Overflow.—For an overflow a3, a4 < 0 £ c. Eq. 24, 
is used to compute the transition probabilities P[a3 < S(n) < a4\S(n - 1) 
= c]. 

Transition to Entire Storage.—Full capacity becomes available. This 
probability P[S(n) = b\S(n - 1) = c] is computed from Eq. 25. 

APPLICATION 

The transition probabilities were computed for the West Lafayette data 
(7). The West Lafayette area is 3,052 acres (12.35 km2). The interevent 
time is defined as the time between the beginning of the current runoff 
event and the end of the previous runoff event. The runoff events are 
generated from the observed rainfall using a runoff coefficient 0.21 and 
a maximum depression storage of 0.18 in. (4.6 mm). The statistical in
dependence and exponential probability distributions for Xj , X2, and X3 
are verified in Ref. 8. The statistical independence is verified by com
paring the expected value of the products with the product of the ex
pected values of Xl, X2, and X3, which must be equal. The exponential 
distribution is verified by plotting the log exceedence probabilities with 
the corresponding cutoff values, which must be a straight line. The sta
tistics of X : , X2, and X3 are given in Table 1. In computing the transition 
probabilities (see Table 2), the following ranges are considered for S(n) 
as eleven states, i: (-°°,-0.18), (-0.18,-0.16), (-0.16,-0.14), (-0.14, 
-0.12), (-0.12,-0.10), (-0.10,-0.08), (-0.08,-0.06), (-0.06,-0.04), 
(-0.04,-0.02), (-0.02,0), (0). 

Case a.—In this case, the existing situation in West Lafayette is ana
lyzed. The special case, Eq. 28 is considered. For a treatment rate a = 
0.006 and no storage b = 0.0, the transition probabilities are given in 
Table 2. The transition is from zero available storage to an overflow state. 
From Eq. 25 

TABLE 1.—Runoff Data (1953-1974) 

Parameter 
(1) 

Mean runoff volume, £(Xj) 
Mean duration, £(X2) 
Mean interevent time, E(X3) 

Value 
(2) 

0.06 in. (1.5 mm) = 16.7 1/in. 
2.1 hr = 0.4761 1/hr 
70 hr = 0.0141 1/hr 

TABLE 2.—Probability of Overflow 

State, / 

Initial 
state, c 

(1) 
0 

1 
(2) 

0.040 

2 
(3) 

0.016 

3 
(4) 

0.023 

4 
(5) 

0.032 

5 
(6) 

0.044 

6 
(7) 

0.062 

1 

(8) 

0.086 

8 
0) 

0.120 

9 
(10) 

0,168 

10 
(11) 

0.235 

11 
(12) 

0.174 
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P[S(n) = 0|c = 0] = — - = 0.174 (47) 
(afl + (i) 

This is the probability of no overflow which is the same as that obtained 
in Ref. 8. In Table 2, there is a probability of 0.235 that the overflow will 
be in state 10, that is (-0.02,0) in., also, it is seen that there is only 4% 
probability that an overflow will exceed 0.18 in. 

Case b.—In this case no treatment and no storage are assumed, i.e., 
a = b = 0. Thus, the probabilities of overflow must coincide with those 
of runoff. From Eq. 6, for a = b = 0, S(n) = — Xf 

P{Xl<xl) = P{-Xl>-x1)=P{S>s) 

in which S = - X i , Xj > 0 (48) 

From Eq. 24, for a = b = c = 0 

P(S > s) = 1 - exp (as) = 1 - exp {-OLXX) = P(Xt < xx), s < 0 (49) 

Case c.—Consider the case of infinite ^treatment and large storage, then, 
there can be no overflows. Because of infinite treatment the storage should 
be empty always. That is, total capacity of storage is available all the 
time. This can be verified by Eqs. 21, 24, and 25. From Eq. 21 as A f °° 

P[S(n) < s\S(n - 1) = c] = 0 0 < c < s < b (50) 

From Eq. 24 

P[S{n) < s)\S(n - 1) = c] = 0 s < c (51) 

From Eq. 25 

P[S(n) = b\S(n - 1) = c] = 1 (52) 

Case d.—In this case, a storage capacity b = 0.09 and a treatment rate 
a = 0.04 are used. The transition probabilities from state i, to s t a t e ; are 
given in Table 3. States i and ;' represent the available storage (empty 
space) in storage. From the transition matrix, it is observed if the initial 
available storage (empty space) is large, then the probability of overflows 
is low. Also, it agrees with the intuition that initially large available empty 
space has higher probability of reaching the whole capacity. Using the 
transition probability matrix P, it is possible to compute the uncondi
tional probabilities for each of the states. The steady state probabilities 
k, are given by 

\ = X[P] (53) 

For case d the steady state probabilities are computed as in Table 4. 
Because the overflow probability is 0.0931, a small value, the storage 

capacity 0.09 and treatment rate 0.04 can be considered as acceptable 
control measures. Eqs. 30 and 34 can also be used in this regard. For e 
= 0.1, and a = 0.04, the lower and upper bound storage values are 0.085 
and 0.088 in., respectively. It is noted that the relatively close values of 
upper and lower bounds are due to the fact that the mean interevent 
time is large. For large interevent times the parameter 7 —» 0. From Eq. 
34 as 7 -» 0, b -* 1/a In [p/(aa + p)e, which is the same as Eq. 30. The 
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TABLE 3.—Transition Probabilities 

i 
(1) 

0 
0.009 
0.027 
0.045 
0.063 
0.081 
0.09 

/ 
0 

(2) 

0.0964 
0.0955 
0.0941 
0.0932 
0.0927 
0.0925 
0.0925 

0.009 
(3) 

0.0337 
0.0335 
0.0330 
0.0327 
0.0325 
0.0325 
0.0325 

0.027 
(4) 

0.0452 
0.0450 
0.0446 
0.0442 
0.0440 
0.0439 
0.0438 

0.045 
(5) 

0.0603 
0.0602 
0.0600 
0.0597 
0.0594 
0.0592 
0.0592 

0.063 
(6) 

0.0803 
0.0804 
0.0804 
0.0804 
0.0802 
0.0800 
0.0800 

0.081 
(7) 

0.1073 
0.1074 
0.1078 
0.1080 
0.1081 
0.1081 
0.1080 

0.09 
(8) 

0.5768 
0.5780 
0.5801 
0.5818 
0.5831 
0.5838 
0.5840 

TABLE 4.—Steady State Probabilities 

State 
d) 

0 
0.009 
0.027 
0.045 
0.063 
0.081 
0.09 

Probability 
(2) 

0.0931 
0.0327 
0.0441 
0.0594 
0.0801 
0.1079 
0.5827 

treatment rate is computed for no storage case. From Eq. 36 for e = 0.1, 
treatment rate, a = 0.26 in./hr. 

APPLICATION OF THE STORAGE ESTIMATION EQUATIONS 

The results obtained from Eqs. 30 and 34 for storage-treatment com
binations are compared with the simulation results obtained by Goforth 
et al. for the data of Atlanta, Georgia. The estimation of the storage 
capacity required for a desired combination of treatment rate and risk 
level is of interest as an aid in the design of facilities. This can be con
veniently carried out with Eqs. 30 and 34. It must be noted that the 
equations are conditioned on the value of S(n - 1). This value cannot 
be known with certainty because of the dynamic nature of the system. 
However, safety and operational considerations usually dictate that the 
most critical condition be considered. This condition corresponds to an 
initially full tank condition. On the other hand an empty tank condition 
would be the most favorable situation. The two solutions provide upper 
and lower boundaries of feasible capacities of the system that would 
maintain the desired risk level. In areas with long interevent times it 
may be desirable to choose a storage capacity or treatment rate close to 
the empty tank condition, while in areas of short interevent times the 
values may be chosen to the full tank condition. In any case, judgment 
must be exercised. 

The results of the analytical model are compared with the results of 
simulation studies. The results for the simulation model were obtained 
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TABLE 5.—Runoff Parameters (from Ref. 4) 

Parameter 
(1) 

Year of record 
Number of events 
Mean runoff volume, £ (Xi) 

Mean runoff duration, E (X2) 
Mean interevent time, E(X3) 

Description 
(2) 

1953 
71 
0.223 in. (5.7 mm); coefficient of variation 

(c.v.) 1.102 
6.887 hr; c.v. 1.121 
124.3 hr; c.v. 0.937 

by Goforth et al. using the EPA's Stormwater Management Model 
(SWMM). The rainfall data were obtained, from the National Weather 
Service, for the city of Atlanta, Georgia. The catchment has an area of 
24.7 acres (0.1 km2) with 37% imperviousness. The model transformed 
the rainfall to runoff and the runoff is collected at a detention facility. 
For the simulation only one year of hourly rainfall d^ta were utilized 
because the runoff parameters were vejy similar to those obtained with 
the full record of 24.6 yr. The parameters are given Table 5. According 
to Ref. 4 a minimum interevent time of 8 hr was applied in defining the 
runoff events, which was used to obtain a value close to unity for the 
coefficient of variation associated with the interevent time. The coeffi
cient of variation of these parameters is close to one and therefore the 
assumption of exponential distributions is justified. The results are pre
sented as curves of flow capture efficiency, or the complement of the 
risk level, for values of the storage volume and treatment rate. For ease 
of presentation the storage is rescaled with respect to the mean runoff. 
Also, the treatment rate is rescaled by 

E(X1) 
Qm = - ^ (54) w E(X3)

 v ; 

and the rescaled treatment rate is (a/Qm). The results are shown in Figs. 
4 and 5. 

Fig. 4 shows that lower values of the flow capture efficiency provide 
a close match with simulation results. For higher values of the efficiency 
the curves fall below those of the simulation, although for higher values 
of (a/Qro) the curves tend to converge. The results are as expected be
cause lower risk levels imply larger storage volumes, especially when 
the treatment rate is small. For higher risk levels a smaller storage is 
required for a given treatment rate. Thus, the assumption of initial emp
tiness would provide a better match with the lower efficiencies. For lower 
risk levels, the larger storage volumes reduce the likelihood of initial 
emptiness. However, the results are consistent in that the analytical model 
provides a lower bound on the storage capacity at these levels. 

Similar arguments are used for the results shown in Fig. 5. The initial 
full tank condition from Eq. 34 provides storage levels above those ob
tained from the simulation for higher efficiencies, while a close match 
is obtained for lower efficiencies. For low risk levels the storage require
ment will increase. The fact that, for these low risk levels, the simulation 
curve falls below the analytical curves is a reflection of the likelihood 
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FIG. 4.—Comparison of Flow Capture Efficiency Estimates (Lower Bound) 

FIG. 5.—Comparison of Flow Capture Efficiency Estimates (Upper Bound) 

that the tank may not have been initially full in view of the magnitude 
of the mean interevent time. However, as the treatment rate is increased 
the results tend to converge because only less storage is needed. For 
low storage values, the initial condition of storage does not affect the 
results significantly. 

The analytical model is thus found to be a useful tool for studying the 
interactions of the elements of storage and treatment. Furthermore, it 
provides for various alternative treatment/storage combinations, and thus 
allows for greater flexibility in design. The relative performance of the 
analytical solution is compared with the result of the simulation by Go-
forth et al. because of the nonavailability of the actual observed overflow 
data. 

EXAMPLE 

Estimate the detention storage-treatment capacity required to prevent 
untreated overflows getting into the receiving stream with a reliability 
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(flow capture efficiency) of 90% for the Atlanta data in Table 5. 

Solution: 
1. Estimate the mean runoff volume, E(X[) = 0.223 in.; a = 4.484. 
2. Estimate the mean runoff duration, E(X2) = 6.887 hr; (3 = 0.145. 
3. Estimate the mean interevent time, £(X3) = 124.3 hr; 7 = 0.008. 
4. Given reliability 90% and therefore, the risk e = 0.10. 

By using Eq. 30, the lower bound storage 

0.145 
b > 0.223 In 

_ (0.4484a + 0.0145), 

By using Eq. 34, the upper bound storage 

(55) 

b>-
(4.484a 4- 0.008) 

f 0.65a f ) 
In \ (56) 

[[(0.4484a + 0.0145)(4.484a + 0.008) - 0.00116]J 

For a treatment capacity a = 0.02 in . /h r , the storage limits are 0.41 and 
0.5 in. 

CONCLUSION 

The generalized storage model is very useful in computing the prob
abilities of real storage and overflow volumes. Because the model con
siders carryover storage, it is expected to yield realistic solutions in com
puting storage capacity and treatment rate. The method provides quick 
estimates for storage capacity and treatment rate. It may be viewed as 
a better table top technique for stormwater management planning. 
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APPENDIX II.—NOTATION 

The following symbols are used in this paper: 

a = treatment rate (in./hr); 
b = detention storage capacity (in.); 
c = given storage level due to previous event (n — 1); 

E( ) = expected value of random variable; 
G = conditional cumulative distribution function of overflow Y; 
J = indicator function; 
k = p-y/(cta + P)(aa + 7); 

m = aya/(aa + p)(7 - (j); ' 
n = index for current event; 
P = transition probability matrix; 
S = empty space in detention tank; 
T = min [c + aX3, b]; 

W = X1-aX2; 
Xi = runoff volume; 
X2 = duration of runoff event; 
X3 = interevent time; 
Y = overflow volume; 
a = 1/E(XX); 
P = 1/E(X2); 
7 = 1/E(X3); 
8 = fraction of total storage b; 
e = risk of overflow; and 
A. = steady state probabilities for storage levels. 
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