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CHAPTER

11

HYDROLOGIC
STATISTICS

Hydrologic processes evolve in space and time in a manner that is partly pre-
dictable, or deterministic, and partly random. Such a process is called a stochastic
process. In some cases, the random variability of the process is so large compared
to its deterministic variability that the hydrologist is justified in treating the pro-
cess as purely random. As such, the value of one observation of the process is not
correlated with the values of adjacent observations, and the statistical properties
of all observations are the same.

When there is no correlation between adjacent observations, the output
of a hydrologic system is treated as stochastic, space-independent, and time-
independent in the classification scheme shown in Fig. 1.4.1. This type of treat-
ment is appropriate for observations of extreme hydrologic events, such as floods
or droughts, and for hydrologic data averaged over long time intervals, such as
annual precipitation. This chapter describes hydrologic data from pure random
processes using statistical parameters and functions. Statistical methods are based
on mathematical principles that describe the random variation of a set of observa-
tions of a process, and they focus attention on the observations themselves rather
than on the physical processes which produced them. Statistics is a science of
description, not causality.

11.1 PROBABILISTIC TREATMENT OF
HYDROLOGIC DATA

A random variable X is a variable described by a probability distribution. The
distribution specifies the chance that an observation x of the variable will fall in
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a specified range of X. For example, if X is annual precipitation at a specified
location, then the probability distribution of X specifies the chance that the
observed annual precipitation in a given year will lie in a defined range, such as
less than 30 in, or 30 in—40 in, and so on.

A set of observations xj, xp, . . . , x, of the random variable is called
a sample. It is assumed that samples are drawn from a hypothetical infinite
population possessing constant statistical properties, while the properties of a
sample may vary from one sample to another. The set of all possible samples
that could be drawn from the population is called the sample space, and an event
is a subset of the sample space (Fig. 11.1.1). For example, the sample space
for annual precipitation is theoretically the range from zero to positive infinity
(though the practical lower and upper limits are closer than this), and an event A
might be the occurrence of annual precipitation less than some amount, such as
30 in.

The probability of an event, P(A), is the chance that it will occur when
an observation of the random variable is made. Probabilities of events can be
estimated. If a sample of n observations has n, values in the range of event A,
then the relative frequency of A is ny/n. As the sample size is increased, the
relative frequency becomes a progressively better estimate of the probability of
the event, that is,

P(A) = lim 4 (11.1.1)
n—o 1
Such probabilities are called objective or posterior probabilities because they
depend completely on observations of the random variable. People are accustomed
to estimating the chance that a future event will occur based on their judgment
and experience. Such estimates are called subjective or prior probabilities.
The probabilities of events obey certain principles:

1. Total probability. If the sample space (2 is completely divided into m nonover-

lapping areas or events Ay, Az, . . ., A, then
P(A) + P(A)) + ... + P(A,) = P(Q) = 1 (11.1.2)
2. Complementarity. It follows that if A is the complement of A, that is, A
={) — A, then
P(A) = 1 — P(A) (11.1.3)

Sample space 2

FIGURE 11.1.1
Events A and B are subsets of the sample space ().
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3. Conditional probability. Suppose there are two events A and B as shown in
Fig. 11.1.1. Event A might be the event that this year’s precipitation is less
than 40 in, while B might be the event that next year’s precipitation will
be less than 40 in. Their overlap is A N B, the event that A and B both
occur, two successive years with annual precipitation less than 40 in/year.
If P(B|A) is the conditional probability that B will occur given that A has
already occurred, then the joint probability that A and B will both occur,
P(A N B), is the product of P(B|A) and the probability that A will occur, that
is, P(A N B) = P(B|A)P(A), or

P(AN B)

P(BIA) = —ra (11.1.4)

If the occurrence of B does not depend on the occurrence of A, the events
are said to be independent, and P(B|A) = P(B). For independent events, from
(11.1.4),

P(A N B) = P(A)P(B) (11.1.5)

If, for the example cited earlier, the precipitation events are independent from
year to year, then the probability that precipitation is less than 40 in in two
successive years is simply the square of the probability that annual precipitation
in any one year will be less than 40 in.

The notion of independent events or observations is critical to the correct
statistical interpretation of hydrologic data sequences, because if the data are
independent they can be analyzed without regard to their order of occurrence. If
successive observations are correlated (not independent), the statistical methods
required are more complicated because the joint probability P(A M B) of succes-
sive events is not equal to P(A)P(B).

Example 11.1.1. The values of annual precipitation in College Station, Texas,
from 1911 to 1979 are shown in Table 11.1.1 and plotted as a time series in Fig.
11.1.2(a). What is the probability that the annual precipitation R in any year will
be less than 35 in? Greater than 45 in? Between 35 and 45 in?

TABLE 11.1.1
Annual Precipitation in College Station, Texas, 1911-1979 (in)

Year 1910 1920 1930 1940 1950 1960 1970

48.7 448 49.3 31.2 46.0 33.9
39.9 44.1 34.0 44.2 27.0 44.3 31.7
31.0 42.8 45.6 41.7 37.0 37.8 31.5
42.3 48.4 37.3 30.8 46.8 29.6 59.6
42.1 34.2 43.7 53.6 26.9 35.1 50.5
41.1 32.4 41.8 34.5 25.4 49.7 38.6
28.7 46.4 41.1 50.3 23.0 36.6 43.4
16.8 38.9 31.2 43.8 56.5 32.5 28.7
34.1 37.3 35.2 21.6 43.4 61.7 32.0
56.4 50.6 35.1 47.1 41.3 47.4 51.8
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Solution. There are n =79 — 11 + 1 = 69 data. Let A be the event R < 35.0in, B
the event R > 45.0 in. The numbers of values in Table 11.1.1 falling in these ranges
are ny = 23 and ng = 19, so P(A) = 23/69 = 0.333 and P(B) = 19/69 = 0.275.
From Eq. (11.1.3), the probability that the annual precipitation is between 35 and
45 in can now be calculated
P(35.0= R= 45.0in)=1— P(R < 35.0) — P(R > 45.0)
=1-0.333 - 0.275

=0.392

Example 11.1.2. Assuming that annual precipitation in College Station is an inde-
pendent process, calculate the probability that there will be two successive years of
precipitation less than 35.0 in. Compare this estimated probability with the relative
frequency of this event in the data set from 1911 to 1979 (Table 11.1.1).

Solution. Let C be the event that R < 35.0 in for two successive years. From
Example 11.1.1, P(R < 35.0 in) = 0.333, and assuming independent annual
precipitation,

P(C)=[P(R < 35.0 in)]?
=(0.333)?
=0.111

From the data set, there are 9 pairs of successive years of precipitation less than
35.0 in out of 68 possible such pairs, so from a direct count it would be estimated
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(a) Annual precipitation. (b) Frequency histogram.

FIGURE 11.1.2
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| precipitation in College Station, Texas, 1911-1979. The frequency histogram is formed by

adding up the number of observed precipitation values falling in each interval.
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that P(C) = nc/n=9/68 = 0.132, approximately the value found above by assuming
independence.

Probabilities estimated from sample data, as in Examples 11.1.1 and 11.1.2,
are approximate, because they depend on the specific values of the observations in
a sample of limited size. An alternative approach is to fit a probability distribution
function to the data and then to determine the probabilities of events from this
distribution function.

11.2 FREQUENCY AND PROBABILITY FUNCTIONS

If the observations in a sample are identically distributed (each sample value
drawn from the same probability distribution), they can be arranged to form a
frequency histogram. First, the feasible range of the random variable is divided
into discrete intervals, then the number of observations falling into each interval is
counted, and finally the result is plotted as a bar graph, as shown in Fig. 11.1.2(b)
for annual precipitation in College Station. The width Ax of the interval used in
setting up the frequency histogram is chosen to be as small as possible while still
having sufficient observations falling into each interval for the histogram to have
a reasonably smooth variation over the range of the data.

If the number of observations n; in interval i, covering the range
[x; — Ax, x;], is divided by the total number of observations », the result is called
the relative frequency function fy(x):

ﬁUﬂ==% (11.2.1)
which, as in Eq. (11.1.1), is an estimate of P(x; — Ax =< X = x;), the probability
that the random variable X will lie in the interval [x; — Ax, x;]. The subscript s
indicates that the function is calculated from sample data.

The sum of the values of the relative frequencies up to a given point is the
cumulative frequency function Fy(x):

Fox) = > fslxp) (11.2.2)

j=1

This is an estimate of P(X = x;}, the cumulative probability of x;.

The relative frequency and cumulative frequency functions are defined for
a sample; corresponding functions for the population are approached as limits as
n— % and Ax — 0. In the limit, the relative frequency function divided by the
interval length Ax becomes the probability density function f(x):

Ax—0

(11.2.3)

The cumulative frequency function becomes the probability distribution function
F(x),



HYDROLOGIC STATISTICS 335

F(x) = lim Fy(x) (11.2.4)

n—>co

Ar—0

whose derivative is the probability density function

f) = (11.2.5)

For a given value of x, F(x) is the cumulative probability P(X = x), and it can be
expressed as the integral of the probability density function over the range X = x:

PX = x)=F(x) = I_Oof(u) du (11.2.6)

where u is a dummy variable of integration.

From the point of view of fitting sample data to a theoretical distribution,
the four functions—relative frequency f(x) and cumulative frequency F (x) for
the sample, and probability distribution F(x) and probability density f(x) for the
population—may be arranged in a cycle as shown in Fig. 11.2.1. Beginning in the
upper left panel, (a), the relative frequency function is computed from the sample
data divided into intervals, and accumulated to form the cumulative frequency
function shown at the lower left, (). The probability distribution function, at the
lower right, (c), is the theoretical limit of the cumulative frequency function as
the sample size becomes infinitely large and the data interval infinitely small.
The probability density function, at the upper right, (d), is the value of the slope
of the distribution function for a specified value of x. The cycle may be closed
by computing a theoretical value of the relative frequency function, called the
incremental probability function:

pxi)=Px; —A&x = X = x;)

(*i
- .;x,-—Axf(x) dx
(X W, —Ax
=] S®d—| = fdx
=F(x;) — F(x; — Ax)
=F(x;) — F(x;—) (11.2.7)

The match between p(x;) and the observed relative frequency function f (x;) for
each x; can be used as a measure of the degree of fit of the distribution to the
data.

The relative frequency, cumulative frequency, and probability distribution
functions are all dimensionless functions varying over the range [0,1]. However,
since dF(x) is dimensionless and dx has the dimensions of X, the probability
density function f(x) = dF(x)/dx has dimensions [X]™' and varies over the range
[0, ]. The relationship dF(x) = f(x) dx can be described by saying that f(x)
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FIGURE 11.2.1
Frequency functions from sample data and probability functions from the population.

represents the “density” or “concentration” of probability in the interval [x, x +
dx].

One of the best-known probability density functions is that forming the
familiar bell-shaped curve for the normal distribution:

_ 2
—%;ji] (11.2.8)

fx) =

exp

2mo

where u and o are parameters. This function can be simplified by defining the
standard normal variable 7 as
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I~k (11.2.9)

The corresponding standard normal distribution has probability density function
1 _.2
f@) = — 7"
N2

which depends only on the value of z and is plotted in Fig. 11.2.2. The standard
normal probability distribution function

Sl

—0 =< 7 = ® (11.2.10)

F@) = J e 72 gy (11.2.11)

—0Q0

2w

where u is a dummy variable of integration, has no analytical form. Its values are
tabulated in Table 11.2.1, and these values may be approximated by the following
polynomial (Abramowitz and Stegun, 1965):

B = %[1 + 0.196854|z| + 0.115194]z|? + 0.000344|z|* + 0.019527|z] ~*

(11.2.124)

where |z| is the absolute value of z and the standard normal distribution has
F(z) =B for z <0 (11.2.12b)
=1—Bforz=20 (11.2.12¢)

The error in F(z) as evaluated by this formula is less than 0.00025.

Example 11.2.1. What is the probability that the standard normal random variable
z will be less than —2? Less than 1?7 What is P(—2 < z < 1)?

0.5
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0.3 1

f(2)

0.2
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FIGURE 11.2.2
The probability density function for the standard normal distribution (u = 0, o = 1).
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TABLE 11.2.1
Cumulative probability of the standard normal distribution

F4 .00 01 02 .03 04 .05 .06 07

08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 09115 0.9131 0.9147
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911
24 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

0.5319 0.5359
0.5714 0.5753
0.6103 0.6141
0.6480 0.6517
0.6844 0.6879

0.7190 0.7224
0.7517 0.7549
0.7823 0.7852
0.8106 0.8133
0.8365 0.8389

0.8599 0.8621
0.8810 0.8830
0.8997 0.9015
0.9162 0.9177
0.9306 0.9319

0.9429 0.9441
0.9535 0.9545
0.9625 0.9633
0.9699 0.9706
0.9761 0.9767

0.9812 0.9817
0.9854 0.9857
0.9887 0.9890
0.9913 0.9916
0.9934 0.9936

0.9951 0.9952
0.9963 0.9964
0.9973 0.9974
0.9980 0.9981
0.9986 0.9986

0.9990 0.9990
0.9993 0.9993
0.9995 0.9995
0.9996 0.9997
0.9997 0.9998

Source: Grant, E. L., and R. S. Leavenworth, Statistical Quality and Control, Table A
Hill, New York, 1972. Used with permission.

To employ the table for z < 0, use
fiz)  F(2)=1-F(A)
where F(Izl) is the tabulated value.

— o0 IG—Z —b’ +o0

, p.643, McGraw-
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Solution. P(Z = —2) = F(=2), and from Eq. (11.2.12a) with |z| = | — 2| = 2,

B =%[1 + 0.196854 X 2 + 0.115194 x (2)?

+0.000344 x (2)* + 0.019527 x (2)*]~*
=0.023

From (11.2.12b), F(—2) = B = 0.023.
P(Z = 1) = F(1), and from (11.2.124)

1
B =§[1 + 0.196854 X 1 + 0.115194 X (1)?

+ 0.000344 x (1) + 0.019527 x ()™

=0.159
From (11.2.12¢), F(1) =1 —B =1 —0.159 = 0.841.
Finally,
P(-2<Z<1)=FQ1)~F(—-2)
=0.841 — 0.023
=0.818.

11.3 STATISTICAL PARAMETERS

The objective of statistics is to extract the essential information from a set of
data, reducing a large set of numbers to a small set of numbers. Statistics are
numbers calculated from a sample which summarize its important characteristics.
Statistical parameters are characteristics of a population, such as w and o in Eq.
(11.2.8).

A statistical parameter is the expected value E of some function of a random
variable. A simple parameter 1s the mean u, the expected value of the random
variable itself. For a random variable X, the mean is E(X), calculated as the
product of x and the corresponding probability density f(x), integrated over the
feasible range of the random variable:

EX)=pn= J:Oxf(x)dx (11.3.1)

E(X) is the first moment about the origin of the random variable, a measure of
the midpoint or “central tendency” of the distribution.
The sample estimate of the mean is the average x of the sample data:

1 n
%= ;in (11.3.2)

i=1

Table 11.3.1 summarizes formulas for some population parameters and their
sample statistics.
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TABLE 11.3.1

Population parameters and sample statistics

Population parameter

Sample statistic

1. Midpoint

Arithmetic mean

p=EX) = [ xf(x) dx

Median
x such that F(x) = 0.5

Geometric mean

antilog [E(log x)]

2. Variability

Variance
o’ = E[(x — p)’]

Standard deviation
o={E[x— w}"

Coefficient of variation
(e
cCv=—
1

3. Symmetry

Coefficient of skewness

_ E[(x— )]
YT R

1

I
I
3=

2

50th-percentile value of data

nZ(xi -x)

i=1

€= (n — 1)(n — 2)s3

The variability of data is measured by the variance o2, which is the second

moment about the mean:

Elx—w?=0?= f (= p)f(x) dr (11.3.3)
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The sample estimate of the variance is given by

2= 1 > (i — 37 (11.3.4)

n—1:3

in which the divisor is n — 1 rather than n to ensure that the sample statistic is
unbiased, that is, not having a tendency, on average, to be higher or lower than
the true value. The variance has dimensions [X]2. The standard deviation o is a
measure of variability having the same dimensions as X. The quantity o is the
square root of the variance, and is estimated by s. The significance of the standard
deviation is illustrated in Fig. 11.3.1(a); the larger the standard deviation, the
larger is the spread of the data. The coefficient of variation CV = o7 i, estimated
by s/ x, is a dimensionless measure of variability.

The symmetry of a distribution about the mean is measured by the skewness
which is the third moment about the mean:

= e}

mu—mﬁ=f (x — w)3f(x) dx (11.3.5)

—0

The skewness is normally made dimensionless by dividing (11.3.5) by &2 to give
the coefficient of skewness vy

1
v=;Em—mﬁ (11.3.6)

A sample estimate for vy is given by:

nZ(xi -3

i=1

C, = (11.3.7)
o(n— D — 2)s3
b T
. |Negatively Positively
i skewed; skewed;
C;i< 0
n I
X x
{a) Standard deviation ©. (b) Coefficient of skewness Cs.

FIGURE 11.3.1

The effect on the probability density function of changes in the standard deviation and coefficient
of skewness.
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or

n2Zx3 — 3n Zx sz + 2 Zx3
i=1 |/ i=1 i=1 i=1
= 11.3.8
Cs n(n — D(n — 2)s3 ( )

As shown in Fig. 11.3.1(b), for positive skewness (y > 0), the data are
skewed to the right, with only a small number of very large values; for negative
skewness (y < 0), the data are skewed to the left. If the data have a pronounced
skewness, the small number of extreme values exert a significant effect on the
arithmetic mean calculated by Eq. (11.3.2), and alternative measures of central
tendency are appropriate, such as the median or geometric mean as listed in Table
11.3.1.

Example 11.3.1. Calculate the sample mean, sample standard deviation, and sam-
ple coefficient of skewness of the data for annual precipitation in College Station,
Texas, from 1970 to 1979. The data are given in Table 11.1.1.

Solution. The values of annual precipitation from 1970 to 1979 are copied in
column 2 of Table 11.3.2. Using Eq. (11.3.2) the mean is

n
- lz
X = - X
n
i=1

401.7

10
= 40.17 1n

The squares of the deviations from the mean are shown in column 3 of the table,

TABLE 11.3.2
Calculation of sample statistics for College Station

annual precipitation, 1970—1979 (in) (Example 11.3.1).

Column: 1 2 3 4
Year Precipitation x (x - x)2 (x-x)3
1970 33.9 39.3 —246.5
1971 31.7 71.7 —607.6
1972 31.5 75.2 -651.7
1973 59.6 377.5 7335.3
1974 50.8 106.7 1102.3
1975 38.6 2.5 -3.9
1976 43.4 10.4 33.7
1977 28.7 131.6 ~1509.0
1978 320 66.7 -545.3
1979 51.8 135.3 1573.0

Total 401.7 1016.9 6480.3
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totaling 1016.9 in%. From (11.3.4)

n
1 -
§° = n_lzt(xi—x)2

1016.9
9

= 113.0 in?

The standard deviation is
s = (113.0)!?
= 10.63 in

The cubes of the deviation from the mean are shown in column 4 of Table 11.3.2,
totaling 6480.3. From (11.3.7)

ni(xi -x)°
i=1

(n— D(n—2)s3

10 x 6480.3
T 9 x 8% (10.63)3

= 0.749

Cs =

11.4 FITTING A PROBABILITY
DISTRIBUTION

A probability distribution is a function representing the probability of occurrence
of a random variable. By fitting a distribution to a set of hydrologic data, a great
deal of the probabilistic information in the sample can be compactly summarized
in the function and its associated parameters. Fitting distributions can be accom-
plished by the method of moments or the method of maximum likelihood.

Method of Moments

The method of moments was first developed by Karl Pearson in 1902. He consid-
ered that good estimates of the parameters of a probability distribution are those
for which moments of the probability density function about the origin are equal
to the corresponding moments of the sample data. As shown in Fig. 11.4.1, if
the data values are each assigned a hypothetical “mass” equal to their relative
frequency of occurrence (1/n) and it is imagined that this system of masses is
rotated about the origin x = 0, then the first moment of each observation x; about
the origin is the product of its moment arm x; and its mass 1/», and the sum of
these moments over all the data is

n n
X 1 —
- = - g Xi =X
n n

i=1 i=1
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Y, M= Ix f(x)dx (first moment about the origin)

f(x)dx = "mass"

+

—

-—dx

4—-—-x——-| X
\

(a) Probability density function.

Moment arm
Fs(x)
L

n
X = Z —’1-1—Xi (first moment about the origin)
i=1

" tH l
Mass i

AN

Moment arm

(b) Sample data.

FIGURE 11.4.1 *
The method of moments selects values for the parameters of the probability density function so that
its moments are equal to those of the sample data.

the sample mean. This is equivalent to the centroid of a body. The corresponding
centroid of the probability density function is

mo= J:Oxf(x)dx (11.4.1)

Likewise, the second and third moments of the probability distribution can
be set equal to their sample values to determine the values of parameters of the
probability distribution. Pearson originally considered only moments about the
origin, but later it became customary to use the variance as the second central
moment, o* = E[(x— w)?], and the coefficient of skewness as the standardized third
central moment, y = E{(x — w)’)/¢”, to determine second and third parameters
of the distribution if required.

Example 11.4.1. The exponential distribution can be used to describe various
kinds of hydrologic data, such as the interarrival times of rainfall events. Its
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probability density function is f(x) = Ae ™ for x > 0. Determine the relationship
between the parameter A and the first moment about the origin, u.

Solution. Using Eq. (11.4.1),

o0

p=E@=| xfoyds
f o0
= | xhe Mdx
Jo
which may be integrated by parts to yield
_1
=

In this case A = 1/p, and the sample estimate for A is 1/ x.

As a matter of interest, it can be seen that the exponential probability density
function f(x) = Ae™ and the impulse response function for a linear reservoir (see
Ex. 7.2.1) u(l) = (1/k)e™* are identical if x = ! and A = 1/k. In this sense,
the exponential distribution can be thought of as describing the probability of the
“holding time” of water in a linear reservoir,

Method of Maximum Likelihood

The method of maximum likelihood was developed by R. A. Fisher (1922). He
reasoned that the best value of a parameter of a probability distribution should be
that value which maximizes the likelihood or joint probability of occurrence of the
observed sample. Suppose that the sample space is divided into intervals of length
dx and that a sample of independent and identically distributed observations x,
X3, . . ., X, is taken. The value of the probability density for X = x; is f(x)),
and the probability that the random variable will occur in the interval including
x; 18 f(x;) dx. Since the observations are independent, their joint probability of
occurrence is given from Eq. (11.1.5) as the product f(x) dx f(x3) dx . . . f(x,) dx
=[II le f(x;:)] dx", and since the interval size dx is fixed, maximizing the joint
probability of the observed sample is equivalent to maximizing the likelihood
function

n

L=]]fx) (11.4.2)

i=1

Because many probability density functions are exponential, it is sometimes more
convenient to work with the log-likelihood function

InLZ=> In [f(x)] (11.4.3)

i=1
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Example 11.4.2. The following data are the observed times between rainfall events
at a given location. Assuming that the interarrival time of rainfall events follows an
exponential distribution, determine the parameter A for this process by the method
of maximum likelihood. The times between rainfalls (days) are: 2.40, 4.25, 0.77,
13.32, 3.55, and 1.37.

Solution. For a given value x;, the exponential probability density is
J@i) = Ae™Mi
so, from Eq. (11.4.3), the log-likelihood function is

InL=> In [f(x)]

i=1

= z”: In (Ae ™)

i=1

= i(ln/\ — AX;)

i=1

=nlnA—21 > x
i=1

The maximum value of In L occurs when d(In L)/ A = 0; that is, when

oA
i=1
S0
n
11
A n < '
i=1
1
A=—
X

This is the same sample estimator for A as was produced by the method of moments.
In this case, x = (2.40 + 4.25 + 0.77 + 13.22 + 3.55 + 1.37)/6 = 25.56/6 =
4,28 days, so A = 1/4.28 = 0.234 day~!. Note that d*(In L)/9A®> = —nA?, which
is negative as required for a maximum.

The value of the log-likelihood function can be calculated for any value of
A. For example, for A = 0.234 day™!, the value of the log-likelihood function is

InL=nln )\—)\in

i=1
=6 1n (0.234) — 0.234 X 25.56
=—14.70
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FIGURE 11.4.2
The log-likelihood function for an exponential distribution (Example 11.4.2).

Figure 11.4.2 shows the variation of the log-likelihood function with A, with the
maximum value at A = 0.234 day~! as was determined analytically.

The method of maximum likelihood is the most theoretically correct method
of fitting probability distributions to data in the sense that it produces the most
efficient parameter estimates—those which estimate the population parameters
with the least average error. But, for some probability distributions, there is no
analytical solution for all the parameters in terms of sample statistics, and the
log-likelihood function must then be numerically maximized, which may be quite
difficult. In general, the method of moments is easier to apply than the method
of maximum likelihood and is more suitable for practical hydrologic analysis.

Testing the Goodness of Fit

The goodness of fit of a probability distribution can be tested by comparing
the theoretical and sample values of the relative frequency or the cumulative
frequency function. In the case of the relative frequency function, the x? test
is used. The sample value of the relative frequency of interval i is, from Eq.
(11.2.1), fox;) = n;/n; the theoretical value from (11.2.7) is p(x;) = F(x;) —
F(x;—1). The )? test statistic x2 is given by

m

[fs(x:) — px:))?
r=>2% (11.4.4)
Z p(x;)

where m is the number of intervals. It may be noted that nf{x;,) = n;, the
observed number of occurrences in interval i, and np(x;) is the corresponding
expected number of occurrences in interval i; so the calculation of Eq. (11.4.4)
is a matter of squaring the difference between the observed and expected numbers
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of occurrences, dividing by the expected number of occurrences in the interval,
and summing the result over all intervals.

To describe the y? test, the x> probability distribution must be defined. A
x° distribution with v degrees of freedom is the distribution for the sum of squares
of v independent standard normal random variables z;; this sum is the random
variable

= 2 (11.4.5)

i=1

The X2 distribution function is tabulated in many statistics texts (e.g., Haan,
1977). In the ¥? test, v=m —p — 1, where m is the number of intervals as before,
and p is the number of parameters used in fitting the proposed distribution. A
confidence level is chosen for the test; it is often expressed as 1 — «, where
a 1s termed the significance level. A typical value for the confidence level is
95 percent. The null hypothesis for the test is that the proposed probability
distribution fits the data adequately. This hypothesis is rejected (i.e., the fit is
deemed inadequate) if the value of x2 in (11.4.4) is larger than a limiting value,
,\%’ |~ determined from the x? distribution with v degrees of freedom as the
value having cumulative probability 1 — «.

Example 11.4.3. Using the method of moments, fit the normal distribution to the
annual precipitation at College Station, Texas, from 1911 to 1979 (Table 11.1.1).
Plot the relative frequency and incremental probability functions, and the cumulative
frequency and cumulative probability functions. Use the y? test to determine whether
the normal distribution adequately fits the data.

Solution. The range for precipitation R is divided into ten intervals. The first interval
i1s R = 20 in, the last is R > 60 in, gnd the intermediate intervals each cover a
range of 5 in. By scanning Table 11.1.1 the frequency histogram is compiled, as
shown in column 2 of Table 11.4.1. The relative frequency function f(x;) (column
3) is calculated by Eq. (11.2.1) with n = 69. For example, for i = 4 (30-35 in),
n, = 14, and

n
felxg)= —;3
_14
69
=0.203

The cumulative frequency function (column 4) is found by summing up the relative
frequencies as in Eq. (11.2.2). Fori = 4

4
Fix)= > fux)

ji=1
=F(x3) + fo(xa)
=0.130 + 0.203
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TABLE 11.4.1
Fitting a normal distribution to annual precipitation at College
Station, Texas, 1911-1979 (Example 11.4.3).

Column: 1 2 3 4 5 6 7 8

Interval Range

i (in) n Sx)  Fdx)  z Fx) px) x¢
1 < 20 1 0.014 0.014 —2.157 0.015 0.015 0.004
2 20-25 2 0.029 0.043 —1.611 0.053 0.038 0.147
3 25-30 6 0.087 0.130 —1.065 0.144 0.090 0.008
4 30-35 14 0.203 0.333 —0.520 0.301 0.158 0.891
5 35-40 11 0.159 0.493 0.026 0.510 0.209 0.805
6 40-45 16 0.232 0.725 0.571 0.716 0.206 0.222
7 45-50 10 0.145 0.870 1.117 0.868 0.151 0.019
8 50-55 5 0.072 0.942 1.662 0952 0.084 0.114
9 55-60 3 0.043 0.986 2,208 0.986 0.034 0.163

10 > 60 | 0.014 1.000 2.753 1.000 0.014 0.004

Total 69 1.000 - 1.000 2.377

Mean 39.77

Standard deviation 9.17

=0.333

It may be noted that this is P(X = 35.0 in) as used in Example 11.1.1,

To fit the normal distribution function, the sample statistics x = 39.77 in and
s = 9.17 in are calculated for the data from 1911 to 1979 in the manner shown in
Example 11.3.1, and used as estimates for i and o. The standard normal variate
z corresponding to the upper limit of each of the data intervals is calculated by
(11.2.9) and shown in column 5 of the table. For example, for i = 4,

X p
Zz
a.

_350-39.77
9.17

=—0.520

The corresponding value of the cumulative normal probability function is given by
(11.2.12) or Table 11.2.1 as 0.301, as listed in column 6 of Table 11.4.1. The
incremental probability function is computed by (11.2.7). For i = 4,

px)=P30 < X = 35in)
=F(35) — F(30)
=0.301 — 0.144
=0.158

and similarly computed values for the other intervals are shown in column 7.

The relative frequency functions f(x;) and p(x;) from Table 11.4.1 are plotted
in Fig. 11.4.3(a), and the cumulative frequency and probability distribution func-
tions F(x;) and F(x) in Fig. 11.4.3(b). From the similarity of the two functions
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FIGURE 11.4.3
Frequency functions for a normal distribution fitted to annual precipitation in College Station, Texas

(Example 11.4.3).

shown in each plot, it is apparent that the normal distribution fits these annual
precipitation data very well.

To check the goodness of fit, the x? test statistic is calculated by (11.4.4),
For i = 4,

nlf(x) — p@a))® _ 69 X(0.20290 — 0.15777)?

p(xs) 0.15777
=0.891

as shown in column 8 of Table 11.4.1. The total of the values in column 8 is y_=
2.377. The value of 2 ,_, for a cumulative probability of 1—a=0.95 and degrees of
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freedomv=m—p—1=10—2—-1=71s X7 0.9s = 14.1 (Abramowitz and Stegun,
1965). Since this value is greater than x?, ‘the null hypothesis (the distribution
fits the data) cannot be rejected at the 95 percent confidence level; the fit of the
normal distribution to the College Station annual precipitation data is accepted. If
the distribution had fitted poorly, the values of f(x;) and p(x;) would have been
quite different from one another, resulting in a value of x?2 larger than 14.1, in
which case the null hypothesis would have been rejected.

11.5 PROBABILITY DISTRIBUTIONS FOR
HYDROLOGIC VARIABLES

In Sec. 11.4, the normal distribution was used to describe annual precipitation at
College Station, Texas. Although this distribution fits this set of data particularly
well, observations of other hydrologic variables follow different distributions. In
this section, a selection of probability distributions commonly used for hydrologic
variables is presented, and examples of the types of variables to which these
distributions have been applied are given. Table 11.5.1 summarizes, for each
distribution, the probability density function and the range of the variable, and
gives equations for estimating the distribution’s parameters from sample moments.

Normal Distribution

The normal distribution arises from the central limit theorem, which states that if
a sequence of random variables X; are independently and identically distributed
with mean u and variance o2, then the distribution of the sum of # such random
variables, ¥ = X 7_, X;, tends towards the normal distribution with mean nu and
variance no? as n becomes large. The important point is that this is true no matter
what the probability distribution function of X is. So, for example, the probability
distribution of the sample mean ¥ = 1/n 2 /_, x; can be approximated as normal
with mean w and variance (1/n)?n0? = ¢*/n no matter what the distribution of x
is. Hydrologic variables, such as annual precipitation, calculated as the sum of
the effects of many independent events tend to follow the normal distribution. The
main limitations of the normal distribution for describing hydrologic variables are
that it varies over a continuous range [—, o], while most hydrologic variables
are nonnegative, and that it is symmetric about the mean, while hydrologic data
tend to be skewed.

Lognormal Distribution

If the random variable Y = log X is normally distributed, then X is said to be
lognormally distributed. Chow (1954) reasoned that this distribution is applicable
to hydrologic variables formed as the products of other variables since if X =
XiXoX3 ... X,, then Y =log X =23X7_, log X; = 2 _,Y;, which tends to
the normal distribution for large n provided that the X; are independent and
identically distributed. The lognormal distribution has been found to describe
the distribution of hydraulic conductivity in a porous medium (Freeze, 1975),
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the distribution of raindrop sizes in a storm, and other hydrologic variables. The
lognormal distribution has the advantages over the normal distribution that it is
bounded (X > 0) and that the log transformation tends to reduce the positive
skewness commonly found in hydrologic data, because taking logarithms reduces
large numbers proportionately more than it does small numbers. Some limitations
of the lognormal distribution are that it has only two parameters and that it requires
the logarithms of the data to be symmetric about their mean.

Exponential Distribution

Some sequences of hydrologic events, such as the occurrence of precipitation,
may be considered Poisson processes, in which events occur instantaneously and
independently on a time horizon, or along a line. The time between such events,
or interarrival time, is described by the exponential distribution whose parameter
A is the mean rate of occurrence of the events. The exponential distribution is
used to describe the interarrival times of random shocks to hydrologic systems,
such as slugs of polluted runoff entering streams as rainfall washes the pollutants
off the land surface. The advantage of the exponential distribution is that it 1s
easy to estimate A from observed data and the exponential distribution lends itself
well to theoretical studies, such as a probability model for the linear reservoir
(A = 1/k, where k is the storage constant in the linear reservoir). Its disadvantage
is that it requires the occurrence of each event to be completely independent of
its neighbors, which may not be a valid assumption for the process under study —
for example, the arrival of a front may generate many showers of rain—and
this has led investigators to study various forms of compound Poisson processes,
in which A is considered a random variable instead of a constant (Kavvas and
Delleur, 1981; Waymire and Gupta, 1981).

Gamma Distribution

The time taken for a number 8 of events to occur in a Poisson process is described
by the gamma distribution, which is the distribution of a sum of 8 independent and
identical exponentially distributed random variables. The gamma distribution has
a smoothly varying form like the typical probability density function illustrated
in Fig. 11.2.1 and is useful for describing skewed hydrologic variables without
the need for log transformation. It has been applied to describe the distribution of
depth of precipitation in storms, for example. The gamma distribution involves the
gamma function I'($8), which is given by I'(B)=(B8—1)! =(B—~1)}8-2)...3-2-1
for positive integer 3, and in general by

B = Euﬁ‘fe‘" du (11.5.1)

(Abramowitz and Stegun, 1965). The two-parameter gamma distribution (param-
eters 3 and A) has a lower bound at zero, which is a disadvantage for application
to hydrologic variables that have a lower bound larger than zero.



HYDROLOGIC STATISTICS 375

Pearson Type III Distribution

The Pearson Type III distribution, also called the three-parameter gamma distri-
bution, introduces a third parameter, the lower bound e, so that by the method
of moments, three sample moments (the mean, the standard deviation, and the
coefficient of skewness) can be transformed into the three parameters A, 3, and
€ of the probability distribution. This is a very flexible distribution, assuming a
number of different shapes as A, 8, and € vary (Bobee and Robitaille, 1977).

The Pearson system of distributions includes seven types; they are all
solutions for f(x) in an equation of the form

A@) _ - d)
dx Co + Cix + Cyx?

where d is the mode of the distribution (the value of x for which f(x) 1s a maximum)
and Cy, Cy, and C» are coefficients to be determined. When C, = 0, the solution
of (11.5.2) is a Pearson Type III distribution, having a probability density function
of the form shown in Table 11.5.1. For C; = C, = 0, a normal distribution
is the solution of (11.5.2). Thus, the normal distribution is a special case of
the Pearson Type III distribution, describing a nonskewed variable. The Pearson
Type III distribution was first applied in hydrology by Foster (1924) to describe
the probability distribution of annual maximum flood peaks. When the data are
very positively skewed, a log transformation is used to reduce the skewness.

(11.5.2)

Log-Pearson Type III Distribution

If log X follows a Pearson Type HI distribution, then X is said to follow a
log—Pearson Type III distribution. This distribution is the standard distribution
for frequency analysis of annual maximum floods in the United States (Benson,
1968), and its use is described in detail in Chap. 12. As a special case, when log
X is symmetric about its mean, the log—Pearson Type III distribution reduces to
the lognormal distribution. |

The location of the bound € in the log—Pearson Type III distribution depends
on the skewness of the data. If the data are positively skewed, then log X = € and

TABLE 11.5.2
Shape and mode location of the log—Pearson Type III distribution

as a function of its parameters

Shape parameter 8 A < —In 10 —In 10 < A<0 A> 0

o< B <1 No mode Minimum mode No mode
J-shaped U-shaped Reverse J-shaped

B>1 Unimodal No mode Unimodal

Reverse J-shaped

Source: Bobee, 1975.
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€ is a lower bound, while if the data are negatively skewed, log X =< € and €is an
upper bound. The log transformation reduces the skewness of the transformed data
and may produce transformed data which are negatively skewed from original data
which are positively skewed. In that case, the application of the log—Pearson Type
III distribution would impose an artificial upper bound on the data. Depending
on the values of the parameters, the log—-Pearson Type III distribution can assume
many different shapes, as shown in Table 11.5.2 (Bobee, 1975).

As described previously, the log—Pearson Type III distribution was devel-
oped as a method of fitting a curve to data. Its use is justified by the fact that it
has been found to yield good results in many applications, particularly for flood
peak data. The fit of the distribution to data can be checked using the x? test, or
by using probability plotting as described in Chap. 12.

Extreme Value Distribution

Extreme values are selected maximum or minimum values of sets of data. For
example, the annual maximum discharge at a given location is the largest recorded
discharge value during a year, and the annual maximum discharge values for each
year of historical record make up a set of extreme values that can be analyzed
statistically. Distributions of the extreme values selected from sets of samples
of any probability distribution have been shown by Fisher and Tippett (1928) to
converge to one of three forms of extreme value distributions, called Types I,
II, and III, respectively, when the number of selected extreme values is large.
The properties of the three limiting forms were further developed by Gumbel
(1941) for the Extreme Value Type 1 (EVI) distribution, Frechet (1927) for the
Extreme Value Type II (EVII), and Weibull (1939) for the Extreme Value Type
I (EVII).

The three limiting forms were shown by Jenkinson (1955) to be special cases
of a single distribution called the General Extreme Value (GEV) distribution. The
probability distribution function for the GEV is

— )\ Uk
F(x) = exp [—(1 —kxa”) J (11.5.3)
where k, u, and « are parameters to be determined.

The three limiting cases are (1) for £ = 0, the Extreme Value Type I
distribution, for which the probability density function is given in Table 11.5.1,
(2) for k < 0, the Extreme Value Type II distribution, for which (11.5.3) applies
for (u + awk) = x = o, and (3) for £k > 0, the Extreme Value Type III
distribution, for which (11.5.3) applies for —> = x = (¥ + a/k). In all three
cases, a is assumed to be positive.

For the EVI distribution x is unbounded (Table 11.5.1), while for EVII, x
is bounded from below (by u + «/k), and for the EVIII distribution, x is similarly
bounded from above. The EVI and EVII distributions are also known as the
Gumbel and Frechet distributions, respectively. If a variable x is described by
the EVIII distribution, then —x is said to have a Weibull distribution.
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PROBLEMS

11.1.1 The annual precipitation data for College Station, Texas, from 1911 to 1979 are
given in Table 11.1.1. Estimate from the data the probability that the annual
precipitation will be greater than 50 in in any year. Calculate the probability that
annual precipitation will be greater than 50 in in two successive years (a) by
assuming annual precipitation is an independent process; (b) directly from the
data. Do the data suggest there is any tendency for years of precipitation > 50
in to follow one another in College Station?

11.1.2 Solve Prob. 11.1.1 for precipitation less than 30 in. Is-there a tendency for years
of precipitation less than 30 in to follow each other more than independence of
events from year to year would suggest?

11.3.1 Calculate the mean, standard deviation, and coefficient of skewness for College
Station annual precipitation from 1960 to 1969. The data are given in Table
11.1.1.
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11.3.2

11.4.1

11.4.2

11.4.3

11.4.4

11.4.5

11.4.6

11.5.1

11.5.2
11.5.3

Calculate the mean, standard deviation, and coefficient of skewness for College
Station annual precipitation for the six 10-year periods beginning in 1920, 1930,
1940, 1950, 1960, 1970 (e. g., 1920-1929). Compare the values of these statistics
for the six samples. Calculate the mean and standard deviation of the six sample
means and their coefficient of variation. Repeat this exercise for the six sample
standard deviations and the six coefficients of skewness. As measured by the
coefficient of variation of each sample statistic, which of these three sample
statistics (mean, standard deviation, or coefficient of skewness) varies most from
sample to sample?

Prove that the mean w of the exponential distribution f(x) = Ae " is given by
pm= 1A

Show that the maximum likelihood estimates of the parameters of the normal
distribution are given by

,u=;1;§n:x,- and 02=%'§::1(x,-—f)2

i=1

Calculate the value of the maximum likelihood estimates of the parameters of
the normal distribution fitted to College Station annual precipitation from 1970 to
1979. Use the formulas given in Prob. 11.4.2 above and the data given in Table
11.1.1. Compare the result with the moment estimates given in Example 11.3.1.
Calculate the value of the log-likelihood function of College Station annual
precipitation from 1970 to 1979 with u = 40.17 in and o = 10.63 in. Holding w
constant, recompute and plot the value of the log-likelihood function by varying
o in increments of 0.1 from 9.5 to 11.5. Determine the value of ¢ that maximizes
the log-likelihood function.

Solve Example 11.1.1 in the text using the probabilities for events A and B
calculated from a normal distribution with x = 39.77 in and o = 9.17 in (as
fitted to the College Station precipitation data in Example 11.4.3). Compare the
results you obtain with those in Example 11.1.1. Which method do you think is
more reliable? :

A reservoir system near College Station, Texas, is experiencing a drought and it
is determined that if next year’s annual precipitation in the reservoir watershed
is less than 35 in, a reduction in the reservoir water supplied for irrigation will
be required during the following year. If the annual precipitation is less than 35
in for each of the next two years, a reduction in municipal water supply will
also be required. Using the normal distribution fitted to the precipitation data
in Example 11.4.3, calculate the probability that these supply reductions will be
necessary. Do you think these probabilities are sufficiently high to justify warning
the irrigation and municipal water users of possible supply reductions?

The Pearson system of distributions obeys the equation d[f(x)l/dx =
[f()x — d)(Co + Cix + Cax?) where d is the mode of the distribution [the
value of x where f(x) is maximized] and Cy, C,, and C, are coefficients. By
setting C, = 0, show that the Pearson Type III distribution is obtained.

In Prob. 11.5.1, set C; = C, =0 and show that the normal distribution is obtained.
The demand on a city’s water treatment and distribution system is rising to near
system capacity because of a long period of hot, dry weather. Rainfall will avert
a situation where demand exceeds system capacity. If the average time between
rainfalls in this city at this time of year is 5 days, calculate the chance that
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there will be no rain (a) for the next 5 days, (b) 10 days, (c) 15 days. Use the
exponential distribution.

Data for the annual maximum discharge of the Guadalupe River at Victoria,
Texas, are presented in Table 12.1.1. The statistics for the logarithms to base
10 of these data are y = 4.2743 and s, = 0.3981. Fit the lognormal distribution
to these data. Plot the relative frequency and incremental probability functions,
and the cumulative frequency and probability distribution functions of the data
as shown in Fig. 11.4.3 (use a log scale for the Guadalupe River discharges).
Data for inflow to the site of the proposed Justiceburg reservoir are given in Table
15.P.5. Calculate the mean, standard deviation, and coefficient of skewness of
the annual total inflows and fit a probability distribution to the data.



