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CHAPTER

12

FREQUENCY
ANALYSIS

Hydrologic systems are sometimes impacted by extreme events, such as severe
storms, floods, and droughts. The magnitude of an extreme event is inversely
related to its frequency of occurrence, very severe events occurring less frequently
than more moderate events. The objective of frequency analysis of hydrologic
data is to relate the magnitude of extreme events to their frequency of occurrence
through the use of probability distributions. The hydrologic data analyzed are
assumed to be independent and identically distributed, and the hydrologic system
producing them (e.g., a storm rainfall system) is considered to be stochastic,
space-independent, and time-independent in the classification scheme shown in
Fig. 1.4.1. The hydrologic data employed should be carefully selected so that
the assumptions of independence and identical distribution are satisfied. In prac-
tice, this is often achieved by selecting the annual maximum of the variable being
analyzed (e.g., the annual maximum discharge, which is the largest instantaneous
peak flow occurring at any time during the year) with the expectation that suc-
cessive observations of this variable from year to year will be independent.

The results of flood flow frequency analysis can be used for many engi-
neering purposes: for the design of dams, bridges, culverts, and flood control
structures; to determine the economic value of flood control projects; and to
delineate flood plains and determine the effect of encroachments on the flood
plain.

12.1 RETURN PERIOD

Suppose that an extreme event is defined to have occurred if a random variable
X is greater than or equal to some level x1. The recurrence interval 7 is the time
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FIGURE 12.1.1
Annual maximum discharge of the Guadalupe River near Victoria, Texas.

between occurrences of X = xy. For example, Fig. 12.1.1 shows the record of
annual maximum discharges of the Guadalupe River near Victoria, Texas, from
1935 to 1978, plotted from the data given in Table 12.1.1. If x; = 50,000 cfs,
it can be seen that the maximum discharge exceeded this level nine times during
the period of record, with recurrence intervals ranging from 1 year to 16 years,
as shown in Table 12.1.2.

The return period T of the event X = x7 is the expected value of 7, E(7),
its average value measured over a very large number of occurrences. For the
Guadalupe River data, there are 8 recurrence intervals covering a total period
of 41 years between the first and last exceedences of 50,000 cfs, so the return
period of a 50,000 cfs annual maximum discharge on the Guadalupe River is

TABLE 12.1.1
Annual maximum discharges of the Guadalupe

River near Victoria, Texas, 1935-1978, in cfs
Year 1930 1940 1950 1960 1970

55,900 13,300 23,700 9,190

58,000 12,300 55,800 9,740

56,000 28,400 10,800 58,500

7,710 11,600 4,100 33,100

12,300 8,560 5,720 25,200

38,500 22,000 4,950 15,000 30,200

179,000 17,900 1,730 9,790 14,100

17,200 46,000 25,300 70,000 54,500

25,400 6,970 58,300 44,300 12,700
4,940 20,600 10,100 15,200
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TABLE 12.1.2
Years with annual maximum discharge equaling or exceeding 50,000 cfs on

the Guadalupe River near Victoria, Texas, and corresponding recurrence
intervals

Exceedence

year 1936 1940 1941 1942 1958 1961 1967 1972 1977 Average
Recurrence

interval 4 1 1 16 3 6 5 5 5.1
(years)

approximately 7= 41/8 = 5.1 years. Thus the return period of an event of a given
magnitude may be defined as the average recurrence interval between events
equalling or exceeding a specified magnitude.

The probability p = P(X = x7) of occurrence of the event X = xr7 in
any observation may be related to the return period in the following way. For
each observation, there are two possible outcomes: either “success” X = x7
(probability p) or “failure” X < xy (probability 1 — p). Since the observations are
independent, the probability of a recurrence interval of duration 7 is the product
of the probabilities of 7— 1 failures followed by one success, that is, (1—p)™ Ip,
and the expected value of 7is given by

E@=> 11-p)'p
=1 (12.1.1a)
=p+2(l—-pp+31-pp+40-pip+...

=p[1+20-p)+30-p +41-p3>+...]

The expression within the brackets has the form of the power series expansion

A +x)"=1+nx+[n(n—121x* + [n(n—1)(n—2)/6]x3+ ..., withx=—~(1 -p)
and n = —2, so (12.1.1a) may be rewritten
14
E(n=—0—7"—"—
) [1—(@1-pp?
1 (12.1.1b)
p

Hence E(7) = T = 1/p; that is, the probability of occurrence of an event in any
observation is the inverse of its return period:

1

PX=xp) =

(12.1.2)
For example, the probability that the maximum discharge in the Guadalupe River

will equal or exceed 50,000 cfs in any year is approximately p = 1/7= 1/5.1 =
0.195.
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What is the probability that a T-year return period event will occur at least
once in N years? To calculate this, first consider the situation where no T-year
event occurs in N years. This would require a sequence of N successive “failures,”
so that

P(X < xt each year for N years) = (1 — p)N

The complement of this situation is the case required, so by (11.1.3)

P(X = xg at least once in N years) = 1 — (1 — p)V (12.1.3)
Since p = UT,
LW
P(X = xr at least once in N years) = 1 — (l - }) (12.1.4)

Example 12.1.1. Estimate the probability that the annual maximum discharge Q
on the Guadalupe River will exceed 50,000 cfs at least once during the next three
years.

Solution. From the discussion above, P(Q = 50,000 cfs in any year) = 0.195, so
from Eq. (12.1.3)

P(Q = 50,000 cfs at least once during the next 3 years) =1 - (1 — 0.195)3
=0.48

The problem in Example 12.1.1 could have been phrased, “What is the
probability that the discharge on the Guadalupe River will exceed 50,000 cfs
at least once during the next three years?” The calculation given used only the
annual maximum data, but, alternatively, all exceedences of 50,000 cfs contained
in the Guadalupe River record could have been considered. This set of data is
called the partial duration series. It will contain more than the nine exceedences
shown in Table 12.1.2 if there were two or more exceedences of 50,000 cfs
within some single year of record.

Hydrologic Data Series

A complete duration series consists of all the data available as shown in Fig.
12.1.2(a). A partial duration series is a series of data which are selected so
that their magnitude is greater than a predefined base value. If the base value is
selected so that the number of values in the series is equal to the number of years
of the record, the series is called an annual exceedence series; an example is
shown in Fig. 12.1.2(b). An extreme value series includes the largest or smallest
values occurring in each of the equally-long time intervals of the record. The
time interval length is usually taken as one year, and a series so selected is called
an annual series. Using largest annual values, it is an annual maximum series
as shown in Fig. 12.1.2(c). Selecting the smallest annual values produces an
annual minimum series.
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Hydrologic data arranged by time of
occurrence. (Source: Chow, 1964.
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The annual maximum values and the annual exceedence values of the
hypothetical data in Fig. 12.1.3(a@) are arranged graphically in Fig. 12.1.3() in
order of magnitude. In this particular example, only 16 of the 20 annual maxima
appear in the annual exceedence series; the second largest value in several years
outranks some annual maxima in magnitude. However, in the annual maximum
series, these second largest values are excluded, resulting in the neglect of their
effect in the analysis.

The return period Tr of event magnitudes developed from an annual excee-
dence series is related to the corresponding return period T for magnitudes derived
from an annual maximum series by (Chow, 1964)

T -1
Ty = [m(T_ 1)} (12.1.5)

Although the annual exceedence series is useful for some purposes, it is
limited by the fact that it may be difficult to verify that all the observations are
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FIGURE 12.1.3
Hydrologic data arranged in the order of magnitude. (Source: Chow, 1964. Used with permission.)

independent —the occurrence of a large flood could well be related to saturated
soil conditions produced during another large flood occurring a short time earlier.
As a result, it is usually better to use the annual maximum series for analysis.
In any case, as the return period of the event being considered becomes large,
the results from the two approaches become very similar because the chance that
two such events will occur within any year is very small.

12.2 EXTREME VALUE DISTRIBUTIONS

The study of extreme hydrologic events involves the selection of a sequence of
the largest or smallest observations from sets of data. For example, the study
of peak flows uses just the largest flow recorded each year at a gaging station
out of the many thousands of values recorded. In fact, water level is usually
recorded every 15 minutes, so there are 4 X 24 = 96 values recorded each day,
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and 365 X 96 = 35,040 values recorded each year; so the annual maximum flow
event used for flood flow frequency analysis is the largest of more than 35,000
observations during that year. And this exercise is carried out for each year of
historical data.

Since these observations are located in the extreme tail of the probability
distribution of all observations from which they are drawn (the parent population),
it is not surprising that their probability distribution is different from that of the
parent population. As described in Sec. 11.5, there are three asymptotic forms
of the distributions of extreme values, named Type I, Type II, and Type III,
respectively.

The Extreme Value Type I (EVI) probability distribution function is

F(x) = exp [——exp(—x — u)} —X=x=® (12.2.1)
a
The parameters are estimated, as given in Table 11.5.1, by
6
a= L/_—S (12.2.2)
T
u=x—0.5772«a (12.2.3)

The parameter u is the mode of the distribution (point of maximum probability
density). A reduced variate y can be defined as

y=— (12.2.4)
o
Substituting the reduced variate into (12.2.1) yields
F(x) = exp [—exp(—y)] (12.2.5)
Solving for y:
y= —In [ln(ﬁ)] (12.2.6)

Let (12.2.6) be used to define y for the Type II and Type III distributions.
The values of x and y can be plotted as shown in Fig. 12.2.1. For the EVI
distribution the plot is a straight line while, for large values of y, the corresponding
curve for the EVII distribution slopes more steeply than for EVI, and the curve
for the EVIII distribution slopes less steeply, being bounded from above. Figure
12.2.1 also shows values of the return period T as an alternate axis to y. As
shown by Eq. (12.1.2),

1
7= P(x = x1)

=1-Px<xy)
=1 —F(XT)
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SO
T—
Fxr)y=——
(x7) T
and, substituting into (12.2.6),
1 [l T ] (12.2.7)
= —In{ln 2.
yr T—1
For the EVI distribution, x7 is related to y7 by Eq. (12.2.4), or
xr =u+ ayr (12.2.8)
y

Extreme value distributions have been widely used in hydrology. They
form the basis for the standardized method of flood frequency analysis in Great
Britain (Natural Environment Research Council, 1975). Storm rainfalls are most
commonly modeled by the Extreme Value Type I distribution (Chow, 1953;
Tomlinson, 1980), and drought flows by the Weibull distribution, that is, the
EVIII distribution applied to —x (Gumbel, 1954, 1963).

Example 12.2.1. Annual maximum values of 10-minute-duration rainfall at
Chicago, Illinois, from 1913 to 1947 are presented in Table 12.2.1. Develop a
model for storm rainfall frequency analysis using the Extreme Value Type I distri-
bution and calculate the 5-, 10-, and 50-year return period maximum values of 10-
minute rainfall at Chicago.

Solution. The sample moments calculated from the data in Table 12.2.1 are x =
0.649 in and s = 0.177 in. Substituting into Eqs. (12.2.2) and (12.2.3) yields

V6's

a=—

w
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_\6x0.177
T

=0.138

u=x-—0.5772a
=0.649 — 0.5772 X 0.138
=0.569

The probability model is
F(x) = exp[—exp(—iﬁ%@)]

To determine the values of x7 for various values of return period 7, it is convenient
to use the reduced variate y7. For T = 5 years, Eq. (12.2.7) gives

W=_mb4Tf1ﬂ
=—mb%551ﬂ

=1.500

and Eq. (12.2.8) yields
xr=u + ayr
=0.569 + 0.138 X 1.500
=0.78 in

So the 10-minute, 5 year storm rainfall magnitude at Chicago is 0.78 in. By the
same method, the 10- and 50-year values can be shown to be 0.88 in and 1.11 in,

TABLE 12.2.1
Annual maximum 10-minute rainfall

in inches at Chicago, Illinois, 1913-
1947

Year 1910 1920 1930 1940

0 0.53 0.33 0.34
1 0.76 0.96 0.70
2 0.57 0.94 0.57
3 0.49 0.80 0.80 0.92
4 0.66 0.66 0.62 0.66
5 0.36 0.68 0.71 0.65
6 0.58 0.68 1.11 0.63
7 0.41 0.61 0.64 0.60
8 0.47 0.88 0.52

9 0.74 0.49 0.64

Mean = 0.649 in

Standard deviation = 0.177 in
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respectively. It may be noted from the data in Table 12.2.1 that the 50-year return
period rainfall was equaled once in the 35 years of data (in 1936), and that the 10-
year return period rainfall was equaled or exceeded four times during this period,
so the frequency of occurrence of observed extreme rainfalls is approximately as
predicted by the model.

12.3 FREQUENCY ANALYSIS USING FREQUENCY
FACTORS

Calculating the magnitudes of extreme events by the method outlined in Example
12.2.1 requires that the probability distribution function be invertible, that is,
given a value for T or [F(x7) = T/(T — 1)], the corresponding value of xr can
be determined. Some probability distribution functions are not readily invertible,
including the Normal and Pearson Type III distributions, and an alternative
method of calculating the magnitudes of extreme events is required for these
distributions.

The magnitude x7 of a hydrologic event may be represented as the mean u
plus the departure Axy of the variate from the mean (see Fig. 12.3.1):

xr=um+ AXT (1231)

The departure may be taken as equal to the product of the standard deviation o and
a frequency factor Kr; that is, Axy = K7o. The departure Ax7 and the frequency
factor K7 are functions of the return period and the type of probability distribution
to be used in the analysis. Equation (12.3.1) may therefore be expressed as

xr = pu+ Kro (12.3.2)
which may be approximated by
xr=XxX+ KTS (1233)

In the event that the variable analyzed is y = logx, then the same method is
applied to the statistics for the logarithms of the data, using

yr =1y + Krsy (12.3.4)

and the required value of xr is found by taking the antilog of yr.

The frequency factor equation (12.3.2) was proposed by Chow (1951), and
it is applicable to many probability distributions used in hydrologic frequency
analysis. For a given distribution, a K-T relationship can be determined between
the frequency factor and the corresponding return period. This relationship can
be expressed in mathematical terms or by a table.

Frequency analysis begins with the calculation of the statistical parameters
required for a proposed probability distribution by the method of moments from
the given data. For a given return period, the frequency factor can be determined
from the K-T relationship for the proposed distribution, and the magnitude x 7
computed by Eq. (12.3.3), or (12.3.4).

The theoretical K-T relationships for several probability distributions com-
monly used in hydrologic frequency analysis are now described.
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= | -
PX 2 xp) = 4 = [f(0)ds
' g FIGURE 12.3.1
The magnitude of an extreme
- event xy expressed as a deviation
u xr Kro from the mean u, where K7
X is the frequency factor.

NORMAL DISTRIBUTION. The frequency factor can be expressed from Eq.
(12.3.2) as

(12.3.5)

This is the same as the standard normal variable z defined in Eq. (11.2.9).
The value of z corresponding to an exceedence probability of p (p = 1/T)
can be calculated by finding the value of an intermediate variable w:

1/2
w = [m(—z)] 0<p=0.5) (12.3.6)
p

then calculating z using the approximation

w— 2.515517 + 0.802853w + 0.010328w?
1 + 1.432788w + 0.189269w? + 0.001308w3

When p- > 0.5, 1 — p is substituted for p in (12.3.6) and the value of z computed
by (12.3.7) is given a negative sign. The error in this formula is less than 0.00045
in z (Abramowitz and Stegun, 1965). The frequency factor K1 for the normal
distribution is equal to z, as mentioned above.

For the lognormal distribution, the same procedure applies except that it is
applied to the logarithms of the variables, and their mean and standard deviation
are used in Eq. (12.3.4).

z= (12.3.7)

Example 12.3.1. Calculate the frequency factor for the normal distribution for an
event with a return period of 50 years.

Solution. For T = 50 years, p = 1/50 = 0.02. From Eq. (12.3.6)

=[]
= [l“(o.ézz )}“2

=2.7971
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Then, substituting w into (12.3.7)

Kr=z
—2.7971 — 2.51557 + 0.80285 X 2.7971 + 0.01033 X (2.7971)?
' 1 + 1.43279 X 2.7971 + 0.18927 X (2.7971)2 + 0.00131 X (2.7971)3
=2.054

EXTREME VALUE DISTRIBUTIONS. For the Extreme Value Type 1 distribu-
tion, Chow (1953) derived the expression

T
Kr = _Y8f4 5770 4 ln[ln ] (12.3.8)
T T-1
To express T in terms of K7, the above equation can be written as
T= ! (12.3.9)

el o]

where y = 0.5772. When xy = u, Eq. (12.3.5) gives Kr = 0 and Eq. (12.3.8)
gives T = 2.33 years. This is the return period of the mean of the Extreme Value
Type I distribution. For the Extreme Value Type II distribution, the logarithm of
the variate follows the EVI distribution. For this case, (12.3.4) is used to calculate
yr, using the value of K7y from (12.3.8).

Example 12.3.2. Determine the 5-year return period rainfall for Chicago using
the frequency factor method and the annual maximum rainfall data given in Table
12.2.1.

Solution. The mean and standard deviation of annual maximum rainfalls at Chicago
are x = 0.649 in and s = 0.177 in, respectively. For T=35, Eq. (12.3.8) gives

L0572 + n| L |

_ _\/?5{0.5772 +1In [‘n(s i 1)”

=0.719

KT= -

By (12.3.3),
xr=x + Krs
=0.649 + 0.719 X 0.177
=0.78 in
as determined in Example 12.2.1.

LOG-PEARSON TYPE III DISTRIBUTION. For this distribution, the first step
is to take the logarithms of the hydrologic data, y = log x. Usually logarithms to
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base 10 are used. The mean y, standard deviation s, and coefficient of skewness
C, are calculated for the logarithms of the data. The frequency factor depends
on the return period T and the coefficient of skewness C;. When C; = 0, the
frequency factor is equal to the standard normal variable z. When C; 5 0,K7is

approximated by Kite (1977) as

1 1
Kr=z+@E-Dk+ 5(23 —62)k% — (22— D> + zk* + 5k5 (12.3.10)

where k = C,/6.

TABLE 12.3.1

Kr values for Pearson Type III distribution (positive skew)

Return period in years

2 5 10 25 50 100 200

Skew Exceedence probability

coefficient :

Csor C, 0.50 0.20 0.10 0.04 0.02 0.01 0.005
3.0 -0.396  0.420 1.180 2278  3.152  4.051 4.970
2.9 -0.390  0.440 1.195 2277 3.134  4.013  4.909
2.8 -0.384 0.460 1.210 2.275 3.114 3.973 4.847
2.7 -0.376 0479 1.224 2272 3.093 3.932 4.783
2.6 -0.368  0.499 1.238 2267 3.071 3.889 4718
2.5 -0.360 0.518 1.250 2.262 3.048 3.845 4.652
2.4 -0.351  0.537 1.262 2256  3.023 3.800 4.584
2.3 -0.341  0.555 1.274 2248 2997 3.753  4.515
22 -0.330 0.574 1.284 2240 2970 3.705 4.444
2.1 -0.319  0.592 1.294 2230 2942 3.656 4.372
2.0 -0.307 0.609 1.302 2219 2912 3.605 4.298
1.9 -0.294  0.627 1.310 2207  2.881 3.553 4,223
1.8 -0.282 0.643 1.318  2.193  2.848 3.499 4.147
1.7 ~-0.268  0.660 1.324 2179 2815 3.444  4.069
1.6 -0.254  0.675 1.329  2.163 2780  3.388  3.990
1.5 -0.240  0.690 1.333 2,146 2743 3330 3.910
1.4 -0.225 0.705 1.337 2.128 2706  3.271 3.828
1.3 -0.210 0.719 1.339 2.108 2.666 3.211 3.745
1.2 -0.195 0.732  1.340  2.087 2.626 3.149  3.661
1.1 -0.180° 0.745 1.341 2.066 2.585  3.087 3.575
1.0 -0.164  0.758 1.340 2,043 2542 3.022  3.489
0.9 -0.148 0.769 1.339 2.018 = 2.498 2.957 3.401
0.8 -0.132  0.780 1.336 1.993 2453  2.891 3.312
0.7 -0.116  0.790 1.333 1.967 2407 2.824  3.223
0.6 -0.099  0.800 1.328 1.939 2359 2755 3.132
0.5 -0.083  0.808 1.323 1.910  2.311 2.686  3.041
0.4 -0.066 0816 1.317 1.880  2.261 2,615  2.949
0.3 ~0.050 0.824 1.309 1.849 2211 2.544  2.856
0.2 ~0.033  0.830 1.301 1.818 2159 2472  2.763
0.1 ~0.017 0.836 1.292 1.785 2.107 2.400 2.670
0.0 0 0.842 1.282 1.751  2.054 2326  2.576
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The value of z for a given return period can be calculated by the procedure
used in Example 12.3.1. Table 12.3.1 gives values of the frequency factor for
the Pearson Type III (and log—Pearson Type III) distribution for various values
of the return period and coefficient of skewness.

Example 12.3.3. Calculate the 5- and 50-year return period annual maximum
discharges of the Guadalupe River near Victoria, Texas, using the lognormal and
log-Pearson Type III distributions. The data from 1935 to 1978 are given in Table
12.1.1.

TABLE 12.3.1 (cont.)
K7 values for Pearson Type III distribution (negative skew)

Return period in years

2 5 10 25 50 100 200
Skew Exceedence probability

coefficient
C; or Cy, 0.50 0.20 0.10 0.04 0.02 0.01 0.005

-0.1 0.017 0.846 1.270 1.716  2.000 2.252  2.482
-0.2 0.033  0.850 1.258 1.680 1.945 2.178 2.388
-0.3 0.050  0.853 1.245 1.643 1.890  2.104 2294
-0.4 0.066  0.855 1.231 1.606 1.834  2.029 2.201
-0.5 0.083  0.856 1.216 1.567 1.777 1.955 2.108
-0.6 0.099  0.857 1.200 1.528 1.720 1.880 2.016
-0.7 0.116  0.857 1.183 1.488 1.663 1.806 1.926
-0.8 0.132  0.856 1.166 1.448 1.606 1.733 1.837
-0.9 0.148  0.854 1.147 1.407 1.549 1.660 1.749
-1.0 0.164  0.852 1.128 1.366 1.492 1.588 1.664
-1.1 0.180  0.848 1.107 1.324 1.435 1.518 1.581
-1.2 0.195 0.844 1.086 1.282 1.379 1.449 1.501
-1.3 0.210  0.838 1.064 1.240 1.324 1.383 1.424
-1.4 0.225  0.832 1.041 1.198 1.270 1.318 1.351
-1.5 0.240  0.825 1.018 1.157 1.217 1.256 1.282
-1.6 0.254 0.817  0.994 1.116 1.166 1.197 1.216
-1.7 0.268  0.808  0.970 1.075 1.116 1.140 1.155
-1.8 0282  0.799 0.945 1.035 1.069 1.087 1.097
-1.9 0.294 0.788  0.920  0.996 1.023 1.037 1.044
-2.0 0.307 0.777 0.895 0959 0980 0.990 0.995
-2.1 0319 0.765 0.869 0923 0939 0946 0.949
-2.2 0.330 0.752 0.844 0.888 0900  0.905 0.907
-2.3 0.341 0.739 0.819 0.855 0.864 0.867 0.869
-2.4 0.351 0.725 0.795 0.823 0.830 0.832  0.833
2.5 0.360  0.711 0.771 0.793 0798 0.799  0.800
-2.6 0.368 0.696 0.747 0.764 0.768 0.769  0.769
-2.7 0.376  0.681 0.724  0.738  0.740  0.740  0.741
-2.8 0.384 0.666 0.702 0.712 0714 0.714 0.714
-2.9 0.390  0.651 0.681 0.683  0.689  0.690  0.690
-3.0 0.396 0.636 0.666 0.666 0.666 0.667  0.667

Source: U. S. Water Resources Council (1981).



394

APPLIED HYDROLOGY

Solution. The logarithms of the discharge values are taken and their statistics
calculated: y = 4.2743, 5, = 0.4027,C; = —0.0696.

Lognormal distribution. The frequency factor can be obtained from Eq.
(12.3.7), or from Table 12.3.1 for coefficient of skewness 0. For T = 50 years, Kr
was computed in Example 12.3.1 as K59 = 2.054; the same value can be obtained
from Table 12.3.1. By (12.3.4)

yr=y + Krs,
ys0=4.2743 + 2.054 x 0.4027
=5.101
Then
Xso= (10)5‘101
=126, 300 cfs
Similarly, K5 = 0.842 from Table 12.3.1, y5 = 4.2743 4+ 0.842 X 0.4027 = 4.6134,
and x5 = (10)*513% = 41,060 cfs.

Log—Pearson Type Il distribution. For C; = —0.0696, the value of Ksg is
obtained by interpolation from Table 12.3.1 or by Eq. (12.3.10). By interpolation
with T = 50 yrs:

(2.00 — 2.054)
(—=0.1-0)
So yso =¥ + Ksos, = 4.2743 + 2.016 x 0.4027 = 5.0863 and xsp = (10)>%363 =

121,990 cfs. By a similar calculation, K5=0.845,y5=4.6146, and xs=41, 170 cfs.
The results for estimated annual maximum discharges are:

Kso = 2.054 + (—0.0696 — 0) = 2.016

Return Period

S years 50 years

Lognormal 41,060 126,300
(C;=0)

Log-Pearson Type Il 41,170 121,990
(Cs = —0.07)

It can be seen that the effect of including the small negative coefficient of skewness
in the calculations is to alter slightly the estimated flow with that effect being more
pronounced at T = 50 years than at T = 5 years. Another feature of the results
is that the 50-year return period estimates are about three times as large as the 5-
year return period estimates; for this example, the increase in the estimated flood
discharges is less than proportional to the increase in réturn period.

12.4 PROBABILITY PLOTTING

As a check that a probability distribution fits a set of hydrologic data, the data
may be plotted on specially designed probability paper, or using a plotting scale
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that linearizes the distribution function. The plotted data are then fitted with a
straight line for interpolation and extrapolation purposes.

Probability Paper

The cumulative probability of a theoretical distribution may be represented graph-
ically on probability paper designed for the distribution. On such paper the ordi-
nate usually represents the value of x in a certain scale and the abscissa represents
the probability P(X = x) or P(X < x), the return period T, or the reduced variate
yr. The ordinate and abscissa scales are so designed that the data to be fitted are
expected to appear close to a straight line. The purpose of using the probability
paper is to linearize the probability relationship so that the plotted data can be
easily used for interpolation, extrapolation, or comparison purposes. In the case
of extrapolation, however, the effect of various errors is often magnified; there-
fore, hydrologists should be warned against such practice if no consideration is
given to this effect.

Plotting Positions

Plotting position refers to the probability value assigned to each piece of data to be
plotted. Numerous methods have been proposed for the determination of plotting
positions, most of which are empirical. If n is the total number of values to be
plotted and m is the rank of a value in a list ordered by descending magnitude,
the exceedence probability of the mth largest value, x,, is, for large n,

P(X = x,) = % (12.4.1)

However, this simple formula (known as California’s formula) produces a prob-
ability of 100 percent for m = n, which may not be easily plotted on a probability
scale. As an adjustment, the above formula may be modified to

PX =x,) = —m;l (12.4.2)

While this formula does not produce a probability of 100 percent, it yields a zero
probability (for m = 1), which may not be easily plotted on probability paper
either.

The above two formulas represent the limits within which suitable plotting
positions should lie. One compromise of the two formulas is

m—0.5
n

PX = x,) =

(12.4.3)

which was first proposed by Hazen (1930). Another compromising formula
(known as Chegodayev’s) widely used in the U.S.S.R. and Eastern European
countries is

m—0.3

PX=xn) =" 04

(12.4.4)
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The Weibull formula is a compromise with more statistical justification. If
the n values are distributed uniformly between 0 and 100 percent probability,
then there must be n + 1 intervals, n — 1 between the data points and 2 at the
ends. This simple plotting system is expressed by the Weibull formula:

m
PX = = — 12.4.

(X = xn) = —— (12.4.5)
indicating a return period one year longer than the period of record for the largest
value.

In practice, for a complete duration series (employing all the data, not just
selected extreme values), Eq. (12.4.1) is used, with n referring to the number of
items in the data rather than to the number of years. For annual maximum series,
Eq. (12.4.5), which is equivalent to the following formula for return period, was
adopted as the standard plotting position method by the U. S. Water Resources
Council (1981): :

T= (12.4.6)

where n refers to the number of years in the record.
Most plotting position formulas are represented by the following form:
m-—>b
= [ —

P(X = x,,) T+ 1= (12.4.7)
where b is a parameter. For example, b = 0.5 for Hazen’s formula, » = 0.3 for
Chegodayev’s, and b = 0 for Weibull’s. Also, for some other examples b = 3/8 .
for Blom’s formula, 1/3 for Tukey’s, and 0.44 for Gringorten’s (see Chow, 1964).

Cunnane (1978) studied the various available plotting position methods
using criteria of unbiasedness and minimum variance. An unbiased plotting
method is one that, if used for plotting a large number of equally sized samples,
will result in the average of the plotted points for each value of m falling on
the theoretical distribution line. A minimum variance plotting method is one that
minimizes the variance of the plotted points about the theoretical line. Cunnane
concluded that the Weibull plotting formula is biased and plots the largest values
of a sample at too small a return period. For normally distributed data, he found
that the Blom (1958) plotting position (b = 3/8) is closest to being unbiased,
while for data distributed according to the Extreme Value Type I distribution, the
Gringorten (1963) formula (b = 0.44) is the best. For the log—Pearson Type 111
distribution, the optimal value of b depends on the value of the coefficient of
skewness, being larger than 3/8 when the data are positively skewed and smaller
than 3/8 when the data are negatively skewed. The same plotting positions can
be applied to the logarithms of the data, when using the lognormal distribution,
for example.

Once the data series is identified and ranked, and the plotting positions
calculated, a graph of magnitude (x) vs. probability [(P(X > x), P(X < x), or T)]
can be plotted to graphically fit a distribution. Alternatively, an analytical fit can
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be made using the method of moments, and the resulting fitted line compared

with the sample data.

Example 12.4.1. Perform a probability plotting analysis of the annual maximum
discharges of the Guadalupe River near Victoria, Texas, given in Table 12.1.1.
Compare the plotted data with the lognormal distribution fitted to them in Example
12.3.3.

Solution. First the data are ranked from largest (m = 1), to smallest im =n =44), as
shown in columns 1 and 2 of Table 12.4.1. Blom’s plotting formula is used, since
the logarithms of the data are being fitted to a normal distribution. Blom’s formula
uses b = 3/8 in Eq. (12.4.7). For example, for m = 1, the exceedence probability
P(Q = 179,000 cfs) = (m — 3/8)/(n + 1 —6/8) = (1 —3/8)/(44 + 1/4) = 0.014, as
shown in column 3 of Table 12.4.1. The corresponding value of the standard normal
variable z is determined using p = 0.014 in Egs. (12.3.6) and (12.3.7) in the manner
shown in Example 12.3.1; the result, z = 2.194, is listed in column 4 of the table.
The event magnitude with the same exceedence probability in the fitted lognormal
distribution is found using the frequency factor method with y=4.2743, s,=0.4027,
and K7 = z = 2.194; the result is log Q = 4.2743 + 2.194 X 0.4027 = 5.158
(column 5). This value is compared with log Q from the observed data, that is log
(179,000) = 5.253, as shown in column 6. The observed data are plotted against
the fitted curve in Fig. 12.4.1, in which the value of the standard normal variable
is used as the horizontal axis to linearize the plot; this is equivalent to using normal
probability plotting paper. The plot shows that the fitted line is consistent with the
observed data, even including the largest value of 179,000 cfs, which looks quite
different from the rest of the data in Fig. 12.1.1.

TABLE 12.4.1

Probability plotting using the normal distribution and Blom’s formula for

the annual maximum discharges of the Guadalupe River near Victoria,
Texas (Example 12.4.1)

Column: 1 2 3 4 5 6
Discharge = Rank  Exceedence Standard Log Q Log Q
probability normal from from data
m—3/8 variable lognormal
Q (cfs) m n +1/4 z distribution
179,000 1 0.014 2.194 5.158 5.253
70,000 2 0.037 1.790 4.995 4.845
58,500 3 0.059 1.561 4.903 4.767
58,300 4 0.082 1.393 4.835 4.766
58,000 5 0.105 1.256 4.780 4.763
5,720 40 0.895 -1.256 3.768 3.757
4,950 41 0.918 -1.393 3.714 3.695
4,940 42 0.941 -1.561 3.646 3.694
4,100 43 0.963 -1.790 3.553 3.613

1,730 44 0.986 -2.194 3.391 3.238
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FIGURE 12.4.1
Annual maximum discharge for the Guadalupe River near Victoria, Texas, plotted using Blom’s
formula on a probability scale for the lognormal distribution.

12.5 WATER RESOURCES COUNCIL METHOD

The U. S. Water Resources Council* recommended that the log—Pearson Type
HI distribution be used as a base distribution for flood flow frequency studies
(U. S. Water Resources Council, 1967, 1976, 1977, and 1981; Benson, 1968).
Their decision was an attempt to promote a consistent, uniform approach to flood
flow frequency determination for use in all federal planning involving water and
related land resources. The choice of the log—Pearson Type III distribution is,
however, subjective to some extent, in that there are several criteria that may be
employed to select the best distribution, and no single probability distribution is
the best under all criteria.

Determination of the Coefficient of Skewness

The coefficient of skewness used in fitting the log—Pearson Type III distribution
is very sensitive to the size of the sample and, in particular, is difficult to estimate

*The U.S. Water Resources Council was abolished in 1981. The Council’s work on guidelines for
determining flood flow frequency was taken over by the Interagency Advisory Committee on Water
Data, U.S. Geological Survey, Reston, Virginia.
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accurately from small samples. Because of this, the Water Resources Council
recommended using a generalized estimate of the coefficient of skewness, C,,
based upon the equation

C, = WCs + (1 = W)Cp, (12.5.1)

where W is a weighting factor, C; is the coefficient of skewness computed using
the sample data, and C,, is a map skewness, which is read from a map such as
Fig. 12.5.1. The weighting factor W is calculated so as to minimize the variance
of C,,, as explained next.

The estimates of the sample skew coefficient and the map skew coefficient
in Eq. (12.5.1) are assumed to be independent with the same mean and different
variances, V(C,) and V(C,,). The variance of the weighted skew, V(C,), can be
expressed as

VC,,) = WPVCy) + (1 — W)2WC ) (12.5.2)

The value of W that minimizes the variance C,, can be determined by differenti-
ating (12.5.2) with respect to W and solving d[VC,,)]/dW = 0 for W to obtain

Cm)

= 05 TS (12.5.3)

The second derivative

d*V(C,)
dw?

is greater than zero, confirming that the weight given by (12.5.3) minimizes the
variance of the skew, V(C,,).

Determination of W using Eq. (12.5.3) requires knowledge of VC,,) and
WCs). ICy) is estimated from the map of skew coefficients for the United States
as 0.3025. Alternatively, WC,) can be derived from a regression study relating
the skew to physiographical and meteorological characteristics of the basins (Tung
and Mays, 1981).

By substituting Eq. (12.5.3) into Eq. (12.5.1), the weighted skew C,, can
be written

= 2[Cy) + UC,)] (12.5.4)

_ V(C)Cs + CH)C
© Cn) + VCy)

Cy (12.5.5)

The variance of the station skew C; for log—Pearson Type III random
variables can be obtained from the results of Monte Carlo experiments by Wallis,
Matalas, and Slack (1974). They showed that V(C;) of the logarithmic station
skew is a function of record length and population skew. For use in calculating
C,,, this function can be approximated with sufficient accuracy as

WC,) = 104~ B logio(/10) (12.5.6)
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where
A= —0.33 + 0.08|C,| if |C4 = 0.90 (12.5.7a)
or A = —0.52 + 0.30|C] if |C4 > 0.90 (12.5.7b)
B = 0.94-0.26/Cy| if |Cy| = 1.50 (12.5.7¢)
or B= 0.55 if |Cs] > 1.50 (12.5.7d)

in which |Cy| is the absolute value of the station skew (used as an estimate of
population skew) and # is the record length in years.

Example 12.5.1. Determine the frequency curve comprising the estimated flood
magnitudes for return periods of 2, 5, 10, 25, 50, and 100 years using the Water
Resources Council method for data from Walnut Creek at Martin Luther King Blvd.
in Austin, Texas, as listed in Table 12.5.1.

Solution. The sample data shown in columns 1 and 2 of Table 12.5.1 cover n = 16
years, from 1967 to 1982.

Step 1. Transform the sample data, x;, to their logarithmic values, y;; that is,
lety; =log x;fori =1, ...,n, as shown in column 3 of the table.

TABLE 12.5.1
Calculation of statistics for logarithms of annual
maximum discharges for Walnut Creek (Example

12.5.1)
Column: 1 2 3 4 5
Flow x
Year  (cfs) y=logx (¢-y»* -y’
1967 303 2.4814 1.3395 -1.5502
1968 5,640 3.7513 0.0127 0.0014
1969 1,050 3.0212 0.3814 -0.2356
1970 6,020 3.7796 0.0198 0.0028
1971 3,740 3.5729 0.0043 -0.0003
1972 4,580 3.6609 0.0005 0.0000
1973 5,140 3.7110 0.0052 0.0004
1974 10,560 4.0237 0.1481 0.0570
1975 12,840 4.1086 0.2207 0.1037
1976 5,140 3.7110 0.0052 0.0004
1977 2,520 3.4014 0.0564 -0.0134
1978 1,730 3.2380 0.1606 -0.0644
1979 12,400 4.0934 0.2067 0.0940
1980 3,400 3.5315 0.0115 -0.0012
1981 14,300 4.1553 0.2668 0.1378
1982 9,540 3.9795 0.1161 0.0396
Total 58.2206 2.9555 -1.4280

n=16 y= 36388
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Step 2. Compute the sample statistics. The mean of log—transformed values
is
n
1 58.22

F= =D g = 2 23,63
YEpL? 16 ?

Using column 4 of the table, the standard deviation is
2

n
1 —
Sy = n~lz(yi—y)2
i=1

1 172
(Lassss)
(15 9555

=0.4439

Using column 5 of the table, the skew coefficient is

”ZO’:’ -9’
= 16 X (—1.4280)

p=— = = —1.244
G G D —2s 1514 X (0.4439)°

Step 3. Compute the weighted skew. The map skew is —0.3 from Fig. 12.5.1
at Austin, Texas. The variance of the station skew can be computed by Eq. (12.5.6)
as follows. From (12.5.7b) with |C > 0.90

A= -0.52+0.30| — ].244| = —0.147
From (12.5.7¢) with |C| < 1.50
B =0.94 — 0.26| — 1.244| = 0.617
Then using (12.5.6)
V(C,) = (10)~0147-0617 log6/10) _ 533

The variance of the generalized skew is V(C,,) = 0.303. The weight to be applied
to C;is W = WC,)/[C,) + UCy] = 0.303/(0.303 + 0.533) = 0.362, and the
complementary weight to be applied to C,,is 1 — W =1 —0.362 = 0.638. Then,
from (12.5.1)

C,=WC; + (1 —W)C,
=0.362 X (—1.244) + 0.638 X (—0.3)
=—-0.64

Step 4. Compute the frequency curve coordinates. The log-Pearson Type
III frequency factors K7 for skew coefficient values of —0.6 and —0.7 are found
in Table 12.3.1. The values for C,, = —0.64 are found by linear interpolation
as in Example 12.3.3, with results presented in column 2 of Table 12.5.2. The
corresponding value of yr is found from Eq. (12.3.4), and its antilogarithm is
taken to determine the estimated flood magnitude. For example, for T = 100 years,
K7 = 1.850 and
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TABLE 12.5.2
Results of frequency analysis using the Water Resources

Council method (Examples 12.5.1 and 12.5.2)

Column: 1 2 3 4 5
Return Frequency Flood
period factor Estimates
T Kr logQr Or or
(years) (cfs) (cfs)
2 0.106 3.686 4,900 5,500
5 0.857 4.019 10,500 10,000
10 1.193 4.169 14,700 13,200
25 1.512 4.310 20,400 17,600
50 1.697 4.392 24,700 20,900
100 1.850 4.460 28,900 24,200

The values in column 4 are those computed without adjustment for outliers and those
in column 5 after outlier adjustment.

yT:; + KTsy
=3.639 + 1.850 X 0.4439
=4.460

and Qr = (10)*4% = 28,900 cfs, as shown in columns 3 and 4 of the table. Similarly
computed flood estimates for the other required return periods are also shown.

As was shown in Example (12.3.3), the increase in flood magnitude is less
than directly proportional to the increase in return period. For example, increasing
the return period from 10 years to 100 years approximately doubles the estimated
flood magnitude in the table. As stated previously, flood magnitudes estimated using
the log-Pearson Type III distribution are very sensitive to the value of the skew
coefficient. The flood magnitudes for the longer return periods (50 and 100 years)
are difficult to estimate reliably from only 16 years of data.

Testing for Outliers

The Water Resources Council method recommends that adjustments be made for
outliers. Qutliers are data points that depart significantly from the trend of the
remaining data. The retention or deletion of these outliers can significantly affect
the magnitude of statistical parameters computed from the data, especially for
small samples. Procedures for treating outliers require judgment involving both
mathematical and hydrologic considerations. According to the Water Resources
Council (1981), if the station skew is greater than +0.4, tests for high outliers
are considered first; if the station skew is less than —0.4, tests for low outliers
are considered first. Where the station skew is between *0.4, tests for both
high and low outliers should be applied before eliminating any outliers from the
data set.
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The following frequency equation can be used to detect high outliers:
YH =Y+ Kysy (12.5.8)

where yy is the high outlier threshold in log units and K, is as given in Table
12.5.3 for sample size n. The K, values in Table 12.5.3 are used in one-sided tests
that detect outliers at the 10-percent level of significance in normally distributed
data. If the logarithms of the values in a sample are greater than yy in the
above equation, then they are considered high outliers. Flood peaks considered
high outliers should be compared with historic flood data and flood information
at nearby sites. Historic flood data comprise information on unusually extreme
events outside of the systematic record. According to the Water Resources Council
(1981), if information is available that indicates a high outlier is the maximum
over an extended period of time, the outlier is treated as historic flood data and
excluded from analysis. If useful historic information is not available to compare
to high outliers, then the outliers should be retained as part of the systematic
record.
A similar equation can be used to detect low outliers:

y=y- Knsy (12.5.9)

where y; is the low outlier threshold in log units. Flood peaks considered low
outliers are deleted from the record and a conditional probability adjustment
described by the Water Resources Council (1981) can be applied.

Example 12.5.2. Using the data for the Walnut Creek example (Table 12.5.1),
determine if there are any high or low outliers for the sample. If so, omit them
from the data set and recalculate the flood frequency curve.

TABLE 12.5.3

Outlier test K, values

Sample Sample Sample Sample

size n K, size n K, size n K, size n K,
10 2.036 24 2.467 38 2.661 60 2.837
11 2.088 25 2.486 39 2.671 65 2.866
12 2.134 26 2.502 40 2.682 70 2.893
13 2.175 27 2.519 41 2.692 75 2.917
14 2.213 28 2.534 42 2.700 80 2.940
15 2.247 29 2.549 43 2.710 85 2.961
16 2.279 30 2.563 44 2.719 90 2.981
17 2.309 31 2.577 45 2.727 95 3.000
18 2.335 32 2.591 46 2.736 100 3.017
19 2.361 33 2.604 47 2.744 110 3.049
20 2.385 34 2.616 48 2.753 120 3.078
21 2.408 35 2.628 49 2.760 130 3.104
22 2.429 36 2.639 50 2.768 140 3.129
23 2.448 37 2.650 55 2.804

Source: U.S. Water Resources Council, 1981. This table contains one-sided 10-percent significance
level K, values for the normal distribution.
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Solution.

Step 1. Determine the threshold value for high outliers. From Table 12.5.3,
K, =2.279 for n = 16 data. From Eq. (12.5.8) using y and s, from Example 12.5.1

yu=y + K,s, = 3.639 + 2.279(0.4439) = 4.651
Then
Qn=(10)*%" = 44,735 cfs
The largest recorded value (14,300 cfs in Table 12.5.1) does not exceed the thresh-
old value, so there are no high outliers in this sample.
Step 2. Determine the threshold value for low outliers. The same K, value is
used:
yL=y — Ks, = 3.639 — 2.279(0.4439) = 2.627
QL = (10)*%" = 424 cfs

The 1967 peak flow of 303 cfs is less than Q; and so is considered a low outlier.

Step 3. The low outlier is deleted from the sample and the frequency analysis
is repeated using the same procedure as in Example 12.5.1. The statistics for the
logarithms of the new data set, now reduced to 15 values, are y = 3.716, s, =
0.3302, and C; = —0.545. It can be seen that the omission of the 303 cfs value
has significantly altered the calculated skewness value (from the —1.24 found in
Example 12.5.1). The map skewness remains at —0.3 for Austin, Texas, and the
revised weighted skewness is C,, = —0.41. Values of K7 are interpolated from Table
12.3.1 at the required return periods, and the corresponding flood flow estimates
computed as Qf, listed in column 5 of Table 12.5.2. By comparing these values
with those given in column 4 for the full data set, it can be seen that the effect of
removing the low outlier in this example is to decrease the flood estimates for the
longer return periods.

Computer Program HECWRC

The computer program HECWRC (U. S. Army Corps of Engineers, 1982) per-
forms flood flow frequency analysis of annual maximum flood series according to
the U. S. Water Resources Council Bulletin 17B (1981). This program is avail-
able from the U. S. Army Corps of Engineers Hydrologic Engineering Center in
Davis, California, in both a mainframe computer version and a microcomputer
version.

12.6 RELIABILITY OF ANALYSIS

The reliability of the results of frequency analysis depends on how well the
assumed probabilistic model applies to a given set of hydrologic data.

Confidence Limits

Statistical estimates are often presented with a range, or confidence interval,
within which the true value can reasonably be expected to lie. The size of the
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confidence interval depends on the confidence level 3. The upper and lower
boundary values of the confidence interval are called confidence limits (Fig.
12.6.1).
Corresponding to the confidence level B is a significance level a, given by
1 -
PO Nl - (12.6.1)
2
For example, if B = 90 percent, then & = (1 — 0.9)/2 = 0.05, or 5 percent.
For estimating the event magnitude for return period 7, the upper limit Ur ,
and lower limit Ly, may be specified by adjustment of the frequency factor
equation:

Ura =y + K7, (12.6.2)
and
Lro =5+ 5K, (12.6.3)

where K% o and K%',a are the upper and lower confidence limit factors, which can
be determined for normally distributed data using the noncentral ¢ distribution
(Kendall and Stuart, 1967). The same factors are used to construct approximate
confidence limits for the Pearson Type III distribution. Approximate values for
these factors are given by the following formulas (Natrella, 1963; U. S. Water

Resources Council, 1981):
Kr + VK% —ab

Ki .= - (12.6.4)
Kr— VK% —ab
K} = — (12.6.5)

Variate
X

Uy

a |

- g S S S

Ltg Probability p = 1 -2«

Control curves

Frequency curve

S FIGURE 12.6.1
Return period 7 Definition of confidence limits.
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in which
= Zg‘ 12.6.6
a -1 (12.6.6)
and
2
b=K2% - — (12.6.7)

The quantity z, is the standard normal variable with exceedence probability a.

Example 12.6.1. Determine the 90-percent confidence limits for the 100-year dis-
charge for Walnut Creek, using the data presented in Example 12.5.1. The log-
arithmic mean, standard deviation, and skew coefficient are 3.639, 0.4439, and
—0.64, respectively, for 16 years of data.

Solution. For B = 0.9, a = 0.05 and the required standard normal variable z , has
exceedence probability 0.05, or cumulative probability 0.95. From Table 11.2.1,
the required value is z, = 1.645. The frequency factor Kr for T = 100 years was
calculated in Example 12.5.1 as K90 = 1.850. Hence, by Egs. (12.6.4) to (12.6.7)

2

2y (1.645)?
=1 - —2%— =1 - =" = 0.9098
a4 2n—1) 206—1) 090
Ze (1.645)?
b=K%- — = (1.850)* — '1—6 = 3.253
2
o Kr+ JKr—ab 1 850 + [(1.850)2 — 0.9098 x 3.253]12
100,0.05 ™ a 0.9098
=2.781
— 2
K Kr Ky = ab _ 1.850 — [(1.850)> — 0.9098 X 3.253]'2
100,0.05 a 0.9098
=1.286

The confidence limits are computed using Eqgs. (12.6.2) and (12.6.3):
Ui0,0.05 =Y + $,Ki00,0.05
=3.639 + 0.4439 x 2.781
=4.874
Ligoo.0s =¥ + $,Kin0.0.05
=3.639 + 0.4439 x 1.286
=4.210

The corresponding discharges for the upper and lower limits are (10)*%74 = 74, 820
cfs, and (10)*21% = 16,200 cfs, respectively, as compared to an estimated event
magnitude of 28,900 cfs from Table 12.5.2. The confidence interval is quite wide
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in this case because the sample size is small. As the sample size increases, the width
of the confidence interval around the estimated flood magnitude will diminish.

Standard Error

The standard error of estimate s, is a measure of the standard deviation of event
magnitudes computed from samples about the true event magnitude. Formulas
for the standard error of estimate for the normal and Extreme Value Type I
distributions are (Kite, 1977):

Normal
+ 2\1/2
5o = [2E2 ) s (12.6.8)
n
Extreme Value Type I
) 12
Se = [;(1 + 1.1396K7 + 1.1000K§)] s (12.6.9)

where s is the standard deviation of the original sample of size n. Standard errors
may be used to construct confidence limits in a similar manner to that illustrated
in Example 12.6.1, except that in this case the confidence limits for significance
level « are defined as x7 * 5.2,4.

Example 12.6.2. Determine the standard error of estimate and the 90 percent con-
fidence limits of the 5S-year-return-period, 10-minute-duration rainfall at Chicago,
Ilinois. From Example 12.3.2, the estimated 5-year depth is x7 = 0.78 in; also,
s =0.177 in, Ky = 0.719, and n = 35.

Solution. The standard error is computed for the Extreme Value Type I distribution
using Eq. (12.6.9)
1 12
5. = [;(1 + 1.1396K7 + 1.10001{;)} s

35
=0.046 in

12
={ —1—[1 + 1.1396 x 0.719 + 1.1000 X (0.719)2|} x 0.177

The 90 percent confidence limits, with z, = 1.645 for a = 0.05, are x7 £ 5,2, =
0.78 = 0.046 X 1.645 = 0.70 and 0.86 in. Thus the 5 year, 10-minute rainfall
estimate in Chicago is 0.78 in with 90 percent confidence limits [0.70, 0.86] in.

Expected Probability

Expected probability is defined as the average of the true exceedence probabilities
of all magnitude estimates that might be made from successive samples of a
specified size for a specified flood frequency (Beard, 1960; U. S. Water Resources



FREQUENCY ANALYSIS 409

Council, 1981). The flood magnitude estimate computed for a given sample is
approximately the median of all possible estimates; that is, there is an approxi-
mately equal chance that the true magnitude will be either above or below the
estimated magnitude. But the probability distribution of the estimate is positively
skewed, so the average of the magnitudes computed from many samples is larger
than the median. The skewness arises because flood magnitude has a lower bound
at zero but no upper bound.

The consequence of the discrepancy between the median and the mean flood
estimate is that, if a very large number of estimates of flood magnitude are made
over a region, on average more 100-year floods will occur than expected (Beard,
1978). The expected probability of occurence of flood events in any year can be
estimated for events of nominal return period T by the following formulas, which
are derived for the normal distribution, and apply approximately to the Pearson
Type I distribution (Beard, 1960; Hardison and Jennings, 1972).

The expected probability for the normal distribution is expressed for a
sample size of n as

no\l2

E(P) = P|ty > o ——] (12.6.10)
n+1

where z is the standard normal variable for the desired probability of exceedence

and t,—; is the student’s #-statistic with n — 1 degrees of freedom. Calculation

can be performed using the appropriate tables for 7,—; and z. These computations

can also be carried out using the following equations (U. S. Water Resources
Council, 1981; U. S. Army Corps of Engineers, 1972).

T (years) Exceedence probability Expected probability E(P,)
1000 0.001 0.001)1.0+ 280 (12.6.11a)
n1,55
26
100 0.01 0.01|1.0+ (12.6.11b)
n1.16
6
20 0.05 0.05{1.0+ (12.6.11¢)
n1.04
3
10 0.10 0.10(1.0+ ) (12.6.114d)
nl.04
3.33 0.30 0.30(1.0+ 0.46 (12.6.11¢)
n0.925
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Example 12.6.3. Determine the expected probability for the 100-year discharge for
the Walnut Creek data given in Example 12.5.1 (n = 16).

Solution. For T = 100 years, use Eq. (12.6.11b) to obtain

26
E(P,,)=0.01(1 0 ﬁ)

=0.01(1+ 26 )

(16)1-16
=0.020

The 100-year discharge according to the above adjustment has an expected
probability of 0.02 (not 0.01) or a return period of 1/0.02 = 50 years.
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PROBLEMS

12.1.1 Estimate the return period of an annual maximum discharge of 40,000 cfs from
the data given in Table 12.1.1.

12.1.2 Estimate the return period of annual maximum discharges of 10,000, 20,000,
30,000, 40,000 and 50,000 cfs for the Guadalupe River at Victoria, Texas, from
the data given in Table 12.1.1. Plot a graph of flood discharge vs. return period
from the results.

12.1.3 Calculate the probability that a 100-year flood will occur at a given site at least
once during the next 5, 10, 50, and 100 years. What is the chance that a 100-
year flood will not occur at this site during the next 100 years?

12.1.4 What is the probability that a five-year flood will occur (a) in the next year, (b)
at least once during the next five years, and (c) at least once during the next 50
years?

12.2.1 Calculate the 20-year and 100-year return period rainfall of 10 minutes duration
at Chicago using the data given in Table 12.2.1. Use the Extreme Value Type I
distribution.

12.3.1 (a) For the annual maximum series given below, determine the 25-, 50-, and

100-year peak discharges using the Extreme Value Type I distribution.

Year 1 2 3 4 5 6 7
Peak discharge (cfs) 4,780 1,520 9,260 17,600 4,300 21,200 12,000

Year 8 9 10 11 12 13 14
Peak discharge 2,840 2,120 3,170 3,490 3,920 3,310 13,200
Year 15 16 17 18 19 20 21
Peak discharge 9,700 3,380 9,540 12,200 20,400 7,960 15,000
Year 22 23 24 25 26 27

Peak discharge 3,930 3,840 4,470 16,000 6,540 4,130
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(b) Determine the risk that a flow equaling or exceeding 25,000 cfs will occur
at this site during the next 15 years.

(c) Determine the return period for a flow rate of 15,000 cfs.

The maximum discharges as recorded at a river gaging station are as follows:

Date of Occurrence  Discharge = Date of Occurrence  Discharge

(cfs) (cfs)
1940 June 23 908 1944 Feb. 26 1610
1941 Feb. 13 1930 1944 March 13 4160
1941 March 20 3010 1945 May 14 770
1941 May 31 2670 1946 Jan. 5 5980
1941 June 3 2720 1946 Jan. 9 2410
1941 June 28 2570 1946 March 5 1650
1941 Sept. 8 1930 1947 March 13 1260
1941 Oct. 23 2270 1948 Feb. 28 4630
1942 June 3 1770 1948 March 15 2690
1942 June 10 1770 1948 March 19 4160
1942 June 11 1970 1949 Jan. 4 1680
1942 Sept. 3 1570 1949 Jan. 15 1640
1942 Dec. 27 3850 1949 Feb. 13 2310
1943 Feb. 20 2650 1949 Feb. 18 3300
1943 March 15 2450 1949 Feb. 24 3460
1943 June 2 1290 1950 Jan. 25 3050
1943 June 20 1200 1950 March 5 2880
1943 Aug. 2 1200 1950 June 2 1450
1944 Feb. 23 1490

Select the annual maximum series from this data set. By fitting the annual
maximum data to an Extreme Value Type I distribution, determine the flood
flow for 10-, 50-, and 100-year return periods.

Select the annual exceedence series from the data set given in Prob. 12.3.2 and
calculate the 10-, 50-, and 100-year discharge values from these data using the
Extreme Value Type 1 distribution. Compare the computed values with those
obtained in Prob. 12.3.2.

Solve Prob. 12.3.2 using the lognormal distribution.

Solve Prob. 12.3.2 using the log—Pearson Type III distribution.

The record of annual peak discharges at a stream gaging station is as follows:

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969
Discharge (m¥s) 453 27.5 16.9 41.1 312 199 227 59.0 354

Determine using the lognormal distribution

(a) The probability that an annual flood peak of 42.5 m¥s will not be exceeded.
(b) The return period of a discharge of 42.5 m¥/s.

(c) The magnitude of a 20-year flood.

Show that the frequency factor for the Extreme Value Type I distribution is
given by
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Kr = —ﬁ 0.5772+1n(1n T )
T T-1

Plot the annual maximum discharge data from Walnut Creek given in Table
12.5.1 on a lognormal probability scale using Blom’s plotting formula.

Solve Prob. 12.4.1 using the Weibull plotting formula and compare the results
of the two plotting formulas.

Plot the data given in Prob. 12.3.1 on an Extreme Value Type I probability scale
using the reduced variate y as the horizontal axis and discharge as the vertical
axis. Use the Gringorten plotting formula.

Solve Prob. 12.4.3 using the Weibull plotting formula and compare the results
of the two plotting formulas.

Perform a frequency analysis for the annual maximum discharge of Walnut
Creek using the data given in Table 12.5.1, employing the log—Pearson Type III
distribution without the U. S. Water Resources Council corrections for skewness
and outliers. Compare your results with those given in Table 12.5.2 for the 2-,
5-, 10-, 25-, 50-, and 100-year events.

Using the log—Pearson Type III distribution and the hydrologic data in the fol-
lowing table, compute the 2-, 5-, 10-, 25-, 50-, and 100-year annual maximum
floods at Leaf River, Illinois. Use the U. S. Water Resources Council method
for skewness and check for outliers. The map skew for Leaf River is —0.4.

Annual maximum discharges for Leaf River, Illinois

Year 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
Discharge (cfs) 2160 3210 3070 4000 3830 978 6090 1150 6510 3070 3360

Using the annual maximum flows given below for Mills Creek near Los Molinos,
California, determine the 2-, 10-, 25-, 50-, and 100-year flood peaks using
the log—Pearson Type III distribution with the U. S. Water Resources Council
skewness adjustment. The map skewness at Los Molinas is C,, = 0.

Year 1929 1930 1931 1932 1933 1934 1935 1936
Discharge (efs) 1,520 6,000 1,500 5,440 1,080 2,630 4,010 4,380

Year 1937 1938 1939 1940 1941 1942 1943 1944
Discharge 3,310 23,000 1,260 11,400 12,200 11,000 6,970 3,220
Year 1945 1946 1947 1948 1949 1950 1951 1952
Discharge 3,230 6,180 4,070 7,320 3,870 4,430 3,870 5,280
Year 1953 1954 1955 1956 1957 1958

Discharge 7,710 4,910 2,480 9,180 6,150 6,880

The statistics of the logarithms to base 10 of these data are: mean 3.6656, standard
deviation 0.3031, coefficient of skewness —0.165.
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The station record for Fishkill Creek at Beacon, New York, has a mean of the
tranformed flows (log Q) of 3.3684, a standard deviation of transformed flows
of 0.2456, and a skew coefficient of the tranformed flows of 0.7300. The station
record is in cfs and is based upon 24 values.

(a) Determine the flood discharge for 2-, 20-, and 100-year return periods using
the lognormal distribution.

(b) Determine the flood discharges for the same return periods using the sample
skew for the log—Pearson III distribution.

(¢) Determine the flood discharges using the procedure as recommended by the
U. S. Water Resources Council. The map skew is 0.6. Compare the results
obtained in parts (a), (b), and (c).

Use the U. S. Water Resources Council method to determine the 2-, 10-, 25-,

50-, and 100-year peak discharges for the station record of the San Gabriel River

at Georgetown, Texas. The map skew is —0.3.

Year 1935 1936 1937 1938 1939 1940 1941 1942
Discharge (cfs) 25,100 32,400 16,300 24,800 903 34,500 30,000 18,600

Year 1943 1944 1945 1946 1947 1948 1949 1950
Discharge 7,800 37,500 10,300 8,000 21,000 14,000 6,600 5,080
Year 1951 1952 1953 1954 1955 1956 1957 1958
Discharge 5,350 11,000 14,300 24,200 12,400 5,660 155,000 21,800
Year 1959 1960 1961 1962 1963 1964 1965 1966
Discharge 3,080 71,500 22,800 4,040 858 13,800 26,700 5,480
Year 1967 1968 1969 1970 1971 1972 1973

Discharge 1,900 21,800 20,700 11,200 9,640 4,790 18,100

Solve Prob. 12.5.5 using the U. S. Army Corps of Engineers computer program
HECWRC for flood flow frequency analysis with the log—Pearson III distribution.
Use the U. S. Water Resources Council method to determine the 2-, 10-, 25-,
50-, and 100-year peak discharges for the station record (Table 12.1.1) for the
Guadalupe River at Victoria, Texas. The map coefficient of skewness is —0.3.
Solve Prob. 12.5.7 using the U. S. Army Corps of Engineers computer program
HECWRC for flood flow frequency analysis with the log—Pearson III distribution.
Plot the 90-percent confidence limits of the flood flow frequency curve for the
Walnut Creek data given in Table 12.5.1. Consider the 2-, 10-, 25-, 50-, and
100-year return periods.

Piot the 90-percent confidence limits of the flood flow frequency curve for the
Los Molinos, California station record (Prob. 12.5.3). Consider the 2-, 10-, 25-,
50-, and 100-year return periods.

Plot the 90-percent confidence limits of the flood flow frequency curve for the
San Gabriel River at Georgetown, Texas (Prob. 12.5.5). Consider the 2-, 10-,
25-, 50-, and 100-year return periods.
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Plot the 90-percent confidence limits of the flood flow frequency curve for the
Guadalupe River at Victoria, Texas (Prob. 12.5.7).

Determine the expected probability of a 10-year event for the Walnut Creek data
(Table 12.5.1).

Determine the expected probability of a 10-year and a 100-year flood on the
Guadalupe River at Victoria, Texas (data given in Table 12.1.1).

Determine the expected probability of a 10-year and a 100-year flood discharge
estimated for the San Gabriel River at Georgetown, Texas (Prob. 12.5.5).
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CHAPTER

13

HYDROLOGIC
DESIGN

Hydrologic design is the process of assessing the impact of hydrologic events on a
water resource system and choosing values for the key variables of the system so
that it will perform adequately. Hydrologic design may be used to develop plans
for a new structure, such as a flood control levee, or to develop management
programs for better control of an existing system, for example, by producing
a flood plain map for limiting construction near a river. There are many factors
besides hydrology that bear on the design of water resource systems; these include
public welfare and safety, economics, aesthetics, legal issues, and engineering
factors such as geotechnical and structural design. While the central concern of
the hydrologist is on the flow of water through a system, he or she must also be
aware of these other factors and of how the hydrologic operation of the system
might affect them. In this sense hydrologic design is a much broader subject than
hydrologic analysis as covered in previous chapters.

13.1 HYDROLOGIC DESIGN SCALE

The purposes of water resources planning and management may be grouped
roughly into two categories. One is water control, such as drainage, flood con-
trol, pollution abatement, insect control, sediment control, and salinity control.
The other is water use and management, such as domestic and industrial water
supply, irrigation, hydropower generation, recreation, fish and wildlife improve-
ment, low-flow augmentation for water quality management, and watershed
management. In either case, the task of the hydrologist is the same, namely,
to determine a design inflow, to route the flow through the system, and to check

416
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whether the output values are satisfactory. The difference between the two cases
is that design for water control is usually concerned with extreme events of short
duration, such as the instantaneous peak discharge during a flood, or the minimum
flow over a period of a few days during a dry period, while design for water use
is concerned with the complete flow hydrograph over a period of years.

The hydrologic design scale is the range in magnitude of the design variable
(such as the design discharge) within which a value must be selected to determine
the inflow to the system (see Fig. 13.1.1). The most important factors in selecting
the design value are cost and safety. It is too costly to design small structures
such as culverts for very large peak discharges; however, if a major hydraulic
structure, such as the spillway on a large dam, is designed for too small a flood,
the result might be a catastrophe, such as a dam’s failure. The optimal magnitude
for design is one that balances the conflicting considerations of cost and safety.

Estimated Limiting Value

The practical upper limit of the hydrologic design scale is not infinite, since the
global hydrologic cycle is a closed system; that is, the total quantity of water
on earth is essentially constant. Some hydrologists recognize no upper limit, but
such a view is physically unrealistic. The lower limit of the design scale is zero in
most cases, since the value of the design variable cannot be negative. Although
the true upper limit is usually unknown, for practical purposes an estimated upper
limit may be determined. This estimated limiting value (ELV) is defined as the
largest magnitude possible for a hydrologic event at a given location, based on
the best available hydrologic information. The range of uncertainty for the ELV
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depends on the reliability of information, technical knowledge, and accuracy of
analysis. As information, knowledge, and analysis improve, the estimate better
approximates the true upper limit, and its range of uncertainty decreases. There
have been cases in which observed hydrologic events exceeded their previously
estimated limiting values.

The concept of an estimated limiting value is implicit in the commonly
used probable maximum precipitation (PMP) and the corresponding probable
maximum flood (PMF). The probable maximum precipitation is defined by the
World Meteorological Organization (1983) as a “quantity of precipitation that is
close to the physical upper limit for a given duration over a particular basin.”
Based on worldwide records, the PMP can have a return period of as long as
500,000,000 years, corresponding approximately to a frequency factor of 15.
However, the return period varies geographically. Some would arbitrarily assign
a return period, say 10,000 years, to the PMP or PMF, but this suggestion has
no physical basis.

Probability-Based Limits

Because of its unknown probability, the estimated limiting value is used
deterministically. Lower down on the design scale, a probability- or frequency-
based approach is commonly adopted. The magnitudes of hydrologic events at
this level are smaller, usually within or near the range of frequent observations.
As a result, their probabilities of occurrence can be estimated adequately when
hydrologic records of sufficient length are available for frequency analysis. The
probabilistic approach is less subjective and more theoretically manageable than
the deterministic approach. Probabilistic methods also lead to logical ways of
determining optimum design levels, such as by hydroeconomic and risk analyses,
which will be discussed in Sec. 13.2.

For a densely populated area, where the failure of water-control works
would result in loss of life and extensive property damage, a design using the
ELV might be justified. In a less populous area where failure would result only
in minor damage, a design for a much smaller degree of protection is reasonable.
Between these extremes on the hydrologic design scale, varying conditions exist
and varying design values are required. When the probabilistic behavior of a
hydrologic event can be determined, it is usually best to use the event magnitude
for a specified return period as a design value.

Based on past experience and judgment, some generalized design criteria
for water-control structures have been developed, as summarized in Table 13.1.1.
According to the potential consequence of failure, structures are classified as
major, intermediate and minor; the corresponding approximate ranges on the
design scale are shown in Fig. 13.1.1. The criteria for dams in Table 13.1.1
pertain to the design of spillway capacities, and are taken from the National
Academy of Sciences (1983). The Academy defines a small dam as having 50—
1000 acre-ft of storage or being 2540 ft high, an intermediate dam as having
1000-50,000 acre-ft of storage or being 40—100 ft high, and a large dam as having
more than 50,000 acre-ft of storage or being more than 100 ft high. In general,
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TABLE 13.1.1
Generalized design criteria for water-control structures

Type of structure Return period (years) ELV
Highway culverts

Low traffic 5-10 -

Intermediate traffic 10-25 —

High traffic 50-100 —
Highway bridges

Secondary system 10-50 —

Primary system 50-100 -
Farm drainage

Culverts 5-50 -

Ditches 5-50 -
Urban drainage

Storm sewers in small cities 2-25 -

Storm sewers in large cities 25-50 —_
Airfields

Low traffic 5-10 —

Intermediate traffic 10-25 —

High traffic 50-100 —
Levees

On farms 2-50 —

Around cities 50-200 —

Dams with no likelihood of
loss of life (low hazard)

Small dams 50-100 —
Intermediate dams 100+ -
Large dams — 50-100%

Dams with probable loss of life
(significant hazard)

Small dams 100+ 50%
Intermediate dams — 50-100%
Large dams —_ 100%

Dams with high likelihood of considerable
loss of life (high hazard)

Small dams — 50-100%
Intermediate dams — 100%
Large dams — 100%

there would be considerable loss of life and extensive damage if a major structure
failed. In the case of an intermediate structure, a small loss of life would be
possible and the damage would be within the financial capability of the owner.
For minor structures, there generally would be no loss of life, and the damage
would be of the same magnitude as the cost of replacing or repairing the structure.

Design for Water Use

The above discussion applies to the hydrologic design for the control of excessive
waters, such as floods. Design for water use is handled similarly, except that
insufficient rather than excessive water is the concern. Because of the long time
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span of droughts, there are fewer of them in historical hydrologic records than
there are extreme floods. It is therefore more difficult to determine drought design
levels through frequency analysis, especially if the design event lasts several
years, as is sometimes the case in water supply design. A common basis for
the design of municipal water supply systems is the critical drought of record,
that is, the worst recorded drought. The design is considered satisfactory if it
will supply water at the required rate throughout an equivalent critical period.
The limitation of the critical-period approach is that the risk level associated
with basing the design on this single historical event is unknown. To overcome
this limitation, methods of synthetic streamflow generation have been developed
using computers and random number generation to prepare synthetic streamflow
records that are statistically equivalent to the historical record. Together with the
historical record, the synthetic records provide a probabilistic basis for design
against drought events (Hirsch, 1979; Salas, et al., 1980).

Hydrologic design for water use is closely regulated by the legal framework
of water rights, especially in arid regions. The law specifies which users will
have their allocations reduced in the event of a shortage. In an effort to protect
the fish and wildlife of a stream, methods have been developed in recent years
to quantify their need for instream flow (Milhous and Grenney, 1980). Unlike
flood control and water supply, for which sufficient hydrologic information is
provided by flow rate and water level, instream flow needs are influenced also
by turbidity, temperature, and other water quality variables in a complex manner
varying from one species to another. Water resources systems are subject to the
demands of competing users, the need to maintain instream flow, and competing
demands related to flood control. Hydrologic design must specify the appropriate
design level for each of these factors.

13.2 SELECTION OF THE DESIGN LEVEL

A hydrologic design level on the design scale is the magnitude of the hydrologic
event to be considered for the design of a structure or project. As it is not always
economical to design structures and projects for the estimated limiting value,
the ELV is often modified for specific design purposes. The final design value
may be further modified according to engineering judgment and the experience
of the designer or planner. Three approaches are commonly used to determine a
hydrologic design value: an empirical approach, risk analysis, and hydroeconomic
analysis.

Empirical Approach

During the early years of hydraulic engineering practice, around the early 1900s,
a spillway designed to pass a flood 50 to 100 percent larger than the largest
recorded in a period of perhaps 25 years was considered adequate. This design
criterion is no more than a rule of thumb involving an arbitrary factor of safety. As
an example of the inadequacies of this criterion, the Republican River in Nebraska
in 1935 experienced a flood over 10 times as large as any that had occurred on
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that river during 40 prior years of record. This design practice was found to be
entirely inadequate, and hydrologists and hydraulic engineers searched for better
methods.

As an empirical approach the most extreme event among past observations
is often selected as the design value. The probability that the most extreme event
of the past N years will be equaled or exceeded once during the next n years can
be estimated as

n
N+n

P(N,n) = (13.2.1)
Thus, for example, the probability that the largest flood observed in N years will
be equaled or exceeded in N future years is 0.50.

If a drought lasting m years is the critical event of record over an N-year
period, what is the probability P(N, m, n) that a worse drought will occur within
the next n years? The number of sequences of length m in N years of record is
N—m + 1, and in n years of record n — m + 1. Thus the chance that the worst
event over the past and future spans combined will be contained in the n future
years is given approximately by

m—m+1)
N-m+1D+m—m+1)

PN, m,n)=

(13.2.2)
n—m+1

=N+n—2m+2

(n=m)

which reduces to (13.2.1) when m = 1.

Example 13.2.1. If the critical drought of record, as determined from 40 years of
hydrologic data, lasted 5 years, what is the chance that a more severe drought will
occur during the next 20 years?

Solution. Using Eq. (13.2.2),

20-5+1
40+20-2X5+2

= 0.308

P(40,5,20) =

Risk Analysis

Water-control design involves consideration of risks. A water-control structure
might fail if the magnitude for the design return period T is exceeded within the
expected life of the structure. This natural, or inherent, hydrologic risk of failure
can be calculated using Eq. (12.1.4):

R=1-[1-PX=xp) (13.2.3)

where P(X = x7) = /T, and n is the expected life of the structure; R represents
the probability that an event x = x7 will occur at least once in n years. This
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FIGURE 13.2.1
Risk of at least one exceedence of the design event during the design life.

relationship is plotted in Fig. 13.2.1. If, for example, a hydrologist wants to be
approximately 90 percent certain that the design capacity of a culvert will not be
exceeded during the structure’s expected life of 10 years, he or she designs for
the 100-year peak discharge of runoff. If a 40-percent risk of failure is acceptable,
the design return period can be reduced to 20 years or the expected life extended
to 50 years.

Example 13.2.2. A culvert has an expected life of 10 years. If the acceptable
risk of at least one event exceeding the culvert capacity during the design life is 10
percent, what design return period should be used? What is the chance that a culvert
designed for an event of this return period will not have its capacity exceeded for
50 years?

Solution. By Eq. (13.2.3)

or
1 10
0.10=1 - (l - —)
T

and solving yields T = 95 years.
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If T = 95 years, the risk of failure over n = 50 years is

_ 1\
R=1—(1——)
95

=0.41

So the probability that the capacity will not be exceeded during this 50-year period
is 1 —0.41 = 0.59, or 59 percent.

It can be seen in Fig. 13.2.1 that, for a given risk of failure, the required
design return period T increases linearly with the design life n, as T and n become
large. Under these conditions, what is the risk of failure if the design return period
is equal to the design life, that is, T = n? By expanding Eq. (13.2.3) as a power
series, it can be shown that for large values of n, 1 — (1 = /)" =1 —e¢ —nlT
so, for T = n, the risk is 1 — e ~! = 0.632. For example, there is approximately
a 63-percent chance that a 100-year event will be exceeded at least once during
the next 100 years.

Although natural hydrologic uncertainty can be accounted for as above,
other kinds of uncertainty are difficult to calculate. These are often treated using
a safety factor, SF, or a safety margin, SM. Letting the hydrologic design value
be L and the actual capacity adopted for the project be C, the factor of safety is

SF = — (13.2.4)

and the safety margin is
SM=C-L (13.2.5)

The actual capacity is larger than the hydrologic design value because it has
to allow for other kinds of uncertainty: technological (hydraulic, structural,
construction, operation, etc.), socioeconomic, political, and environmental.

For a specified hydrologic risk R and design life n of a structure,
Eq. (13.2.3) can be used to compute the relevant return period 7. The hydro-
logic event magnitudé L corresponding to this exceedence probability is found
by a frequency analysis of hydrologic data. The design value C is then given by
L multiplied by an assigned factor of safety, or by L plus an added margin of
safety. For example, it is customary to design levees with a safety margin of one
to three feet, that is, one to three feet of freeboard above the calculated maximum
water surface elevation.

Hydroeconomic Analysis

The optimum design return period can be determined by hydroeconomic analysis
if the probabilistic nature of a hydrologic event and the damage that will result
if it occurs are both known over the feasible range of hydrologic events. As the
design return period increases, the capital cost of a structure increases, but the
expected damages decrease because of the better protection afforded. By summing
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the capital cost and the expected damage cost on an annual basis, a design return
period having minimum total cost can be found.

Figure 13.2.2(a) shows the damage that would result if an event, such as
a flood, having the specified return period were to occur. If the design event
magnitude is x7, the structure will prevent all damages for events with x < xr
but none for x > x7, so the expected annual damage cost is found by taking
the product of the probability f(x)dx that an event of magnitude x will occur
in any given year, and the damage D(x) that would result from that event, and

Return period (years)

Minimum total cost
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(b) Hydroeconomic analysis.

FIGURE 13.2.2
Determination of the optimum design return period by hydroeconomic analysis (Example 13.2.3).
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integrating for x > xr (the design level). That is, the expected annual cost D ris

Dr = JwD(x)f(x)dx (13.2.6)

which is the shaded area in Fig. 13.2.2(a).

The integral (13.2.6) is evaluated by breaking the range of x > x7 into
intervals and computing the expected annual damage cost for events in each
interval. For x;—; = x = x;,

AD; = JAI D) f(x)dx (13.2.7)

which is approximated by

AD,»=[D—(’C"‘1)2+ D(x")”i foxydx

_ D(xi—1) + D(x;)
B 2

But Px = x;) —Px = xi—)D=[1-Px =x)]—- 1 —Px = x;-1] =
P(x = x;—1) — P(x = x;), so (13.2.8) can be written

D(xi—1) + D(x;)
2

and the annual expected damage cost for a structure designed for return period T
is given by

Dr=3 [D(xi—l) + D(x;)

(13.2.8)
[P(x = x;) = P(x = x;-y)]

AD,' = [P(x = x,~_1) - P(x = )C,')J (1329)

5 ][P(x = x;—1) — P(x = x;)| (13.2.10)

i=1

By adding D7 to the annualized capital cost of the structure, the total cost can
be found; the optimum design return period is the one having the minimum total
cost.

Example 13.2.3. For events of various return periods at a given location, the
damage costs and the annualized capital costs of structures designed to control the
events, are shown in columns 4 and 7, respectively, of Table 13.2.1. Determine
the expected annual damages if no structure is provided, and calculate the optimal
design return period.

Solution. For each return period shown in column 2 of Table 13.2.1, the annual
exceedence probability is P(x = x7) = 1/T. The corresponding damage cost AD is
found using Eq. (13.2.9). For example, for the interval i = 1 between T = 1 year
and T = 2 years,

D(x1) + D(xa)

5 ][P(x = x) ~ P(x = x))]

o
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TABLE 13.2.1
Calculation of the optimum design return period by hydroeconomic

analysis (Example 13.2.3)

Column: 1 2 3 4 5 6 7 8
Incre- Return Annual Damage Incremental Damage Capital Total
ment period exceedence expected risk cost cost
i T probability damage cost

(years) ® ($/year) ($/year) ($/year) ($/year)

1 1.000 0 49,098 0 49,098
1 2 0.500 20,000 5,000 44,098 3,000 47,098
2 5 0.200 60,000 12,000 32,098 14,000 46,098
3 10 0.100 140,000 10,000 22,098 23,000 45,098
4 15 0.067 177,000 5,283 16,815 25,000 41,815
5 20 0.050 213,000 3,250 13,565 27,000 40,565
6 25 0.040 250,000 2,315 11,250 29,000 40,250
7 50 0.020 300,000 5,500 5,750 40,000 45,750
8 100 0.010 400,000 3,500 2,250 60,000 62,250
9 200 0.005 500,000 2,250 0 80,000 80,000

Annual expected damage = $49,098

_(0 + 20,000
B 2

=$5, 000/year

as shown in column 5 of the table. Summing these incremental costs yields an annual
expected damage cost of $49,098/year if no structure is built. This represents the
average annual cost of flood damage over many years, assuming constant economic
conditions. This amount is the damage risk cost corresponding to no structure, and
is shown in the first line of column 6 of the table.

The damage risk costs diminish as the design return period of the control
structure increases. For example, if T = 2 years were selected, the damage risk cost
would be 49,098 —AD = 49,098 — 5,000 = $44,098/year. The values of damage
risk cost and capital cost (column 7) are added to form the total cost (column 8);
the three costs are plotted in Fig. 13.2.2(b). It can be seen from the table and the
figure that the optimum design return period, the one having minimal total cost, is
25 years, for which the total cost is $40,250/year. Of this amount, $29,000/year
(72 percent) is capital cost and $11,250/year (28 percent) is damage risk cost.

)(1.0 —-0.5)

Hydroeconomic analysis has been applied to the design of flood control
reservoirs, levees, channels, and highway stream crossings (Corry, Jones, and
Thompson, 1980). For a flood damage study, the duration and extent of flooding
must be determined for events of various return periods and economic surveys
must be taken to quantify damages for each level of flooding. The social costs of
flooding are difficult to quantify. The U. S. Army Corps of Engineers Hydrologic
Engineering Center in Davis, California, has available the following computer
programs for hydroeconomic analysis (U. S. Army Corps of Engineers, 1986):
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DAMCAL (Damage Reach Stage-Damage Calculation), EAD (Expected Annual
Flood Damage Computation), SID (Structure Inventory for Damage Analysis),
AGDAM (Agricultural Flood Damage Analysis), and SIPP (Interactive Nonstruc-
tural Analysis Package).

13.3 FIRST ORDER ANALYSIS OF UNCERTAINTY

Many of the uncertainties associated with hydrologic systems are not quantifiable.
For example, the conveyance capacity of a culvert with an unobstructed entrance
can be calculated within a small margin of error, but during a flood, debris
may become lodged around the entrance to the culvert, reducing its conveyance
capacity by an amount that cannot be predetermined. Hydrologic uncertainty may
be broken down into three categories: natural, or inherent, uncertainty, which
arises from the random variability of hydrologic phenomena; model uncertainty,
which results from the approximations made when representing phenomena by
equations; and parameter uncertainty, which stems from the unknown nature
of the coefficients in the equations, such as the bed roughness in Manning’s
equation. Inherent uncertainty in the magnitude of the design event is described by
Eq. (13.2.3); in this section, model and parameter uncertainty will be considered.
The first order analysis of uncertainty is a procedure for quantifying the
expected variability of a dependent variable calculated as a function of one or
more independent variables (Ang and Tang, 1975; Kapur and Lamberson, 1977;
Ang and Tang, 1984; Yen, 1986). Suppose w is expressed as a function of x:

w = f(x) (13.3.1)

There are two sources of error in w: first, the function f, or model, may be
incorrect; second, the measurement of x may be inaccurate. In the following
analysis it is assumed that there is no model error, or bias. Kapur and Lamberson
(1977) show how to extend the analysis when there is model error. Assuming,
then, that f(-) is a correct model, a nominal value of x, denoted ¥, is selected as
a design input and the corresponding value of w calculated:

w = f(x) (13.3.2)
If the true value of x differs from X, the effect of this discrepancy on w can be
estimated by expanding f(x) as a Taylor series around x = Xt

4 1dF
w=f(x)+a(x—x)+2—!E

where the derivatives df/dx, d*f/dx?, . . . , are evaluated at x = ¥. If second and
higher order terms are neglected, the resulting first order expression for the error
inwis

=%+ ... (13.3.3)

w—w= %(x - X) (13.3.4)

The variance of this error is sfv = E[(w— w)?] where E is the expectation operator
[see Eq. (11.3.3)]; that is,
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or

2
si=(gx’f) s? (13.3.5)

where 52 is the variance of x.

Equation (13.3.5) gives the variance of a dependent variable w as a function
of the variance of an independent variable x, assuming that the functional rela-
tionship w = f(x) is correct. The value s,, is the standard error of estimate of w.

If w is dependent on several mutually independent variables x, x3, . ..,
Xn, it can be shown by a procedure similar to the above that

2 2 2
s2 = (i) s2 + (i 24+ + (—df—) s (13.3.6)
ox ] oxy

X2 8xn Xn
Kapur and Lamberson (1977) show how to extend (13.3.6) to account for the
effect on sfv of correlation between x;, xa, . . . , X, if any exists.

First-Order Analysis of Manning’s Equation: Depth as the
Dependent Variable

Manning’s equation is widely applied in hydrology to determine depths of flow
for specified flow rates, or to determine discharges for specified depths of flow,
taking into account the resistance to flow in channels arising from bed roughness.
A common application, such as in channel design or flood plain delineation, is
to calculate the depth of flow y in the channel, given the flow rate Q, roughness
coefficient n, and the shape and slope of the channel as determined by design or by
surveys. Once the depth of flow (or elevation of the water surface) is known, the
values of the design variables are determined, such as the channel wall elevation
or the flood plain extent. The hydrologist faced with this task is conscious of the
uncertainties involved, especially in the selection of the design flow and Manning
roughness. Although it is not so obvious, there is also uncertainty in the value of
the friction slope Sy, depending on how it is calculated, ranging from the simplest
case of uniform flow (S, = §y) to more complex cases of steady nonuniform
flow or unsteady nonuniform flow [see Eq. (9.2.1)]. The first-order analysis of
uncertainty can be used to estimate the effect on y of uncertainty in Q, n, and § -

Consider, first, the effect on flow depth of variation in the flow rate Q.
Manning’s equation is written in English units as

1.
0 = “Espar (13.3.7)

where A is the cross-sectional area and R the hydraulic radius, both dependent on
the flow depth y. If variations in y are dependent only on variations in Q, then,
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by (13.3.5),

$2 = (ﬂ)zsz (13.3.8)
y dQ o i

where dy/dQ is the rate at which the depth changes with changes in Q. Now, in
Chap. 5, it was shown [Eq. (5.6.15)] that the inverse of this derivative, namely
dQ/dy, is given for Manning’s equation by
a0 [ 2 dR + ld—A] (13.3.9)
Table 5.6.1 gives formulas for the channel shape function (2/3R}dR/dy) +
(1/A)(dA/dy) for common channel cross sections. Substituting into (13.3.8),
2 5
5= 13.3.10
Y [24dR L Laa 2 ( )
Q 3Rdy ~ Ady
But 5o/Q = CV, the coefficient of variation of the flow rate (see Table 11.3.1),
s0 (13.3.10) can be rewritten

CV2
52 = 9 > (13.3.11)
2dR  1dA
3Rdy ~ Ady

which specifies the variance of the flow depth as a function of the coefficient of
variation of the flow rate and the value of the channel shape function. To take
into account also the uncertainty in Manning’s roughness # and the friction slope
S, it may be similarly shown, using Eq. (13.3.6), that

P CV + CV, + (1/4)CVE,
Y 2 dR 1dA\?
(ﬁ @ Zd_y)
giving the variance of the flow depth y as a function of the coefficients of variation
of flow rate, Manning’s n and friction slope, and the channel shape function.

(13.3.12)

Example 13.3.1. A 50-foot wide rectangular channel has a bed slope of one
percent. A hydrologist estimates that the design flow rate is 5000 cfs and that the
roughness is n = 0.035. If the coefficients of variation of the flow estimate and the
roughness estimate are 30 percent and 15 percent, respectively, what is the standard
error of estimate of the flow depth y? If houses are built next to this channel with
floor elevation one foot above the water surface elevation calculated for the design
event, estimate the chance that these houses will be flooded during the design event
due to uncertainties involved in calculating the water level. Assume uniform flow.

Solution. For a width of 50 feet, A = 50y and R = 50y/(50 + 2y); the flow depth
for the base case is calculated from Manning’s equation:
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1.49 112y po3
= —25V2AR
Q=—"-5
1.49 50y ¥
00 = ———(0.01)"%(50 ( )
5000 = 57035 00D OS5
which is solved using Newton’s iteration technique (see Sec. 5.6) to yield

y="7.37ft

The standard error of the estimate is s, calculated by Eq. (13.3.12) with CVy =
0.30, CV,, = 0.15, and Cst = 0. From Table 5.6.1, for a rectangular channel,
(28R, LdA)_ 3816
3Rdy Ady/ 3yB + 2y
_ 5X50+6x17.37
T 3% 7.37(50 + 2 X 7.37)

=0.206

So 2 2 2
,_ CVp + OV, + 4TV,

Sy 2
(2R, 1d4)
3Rdy " Aady
_ 0.30)% + (0.15)?
(0.206)?

or s, = 1.63 ft.

If the houses are built with their floors one foot above the calculated water
surface elevation, they will be flooded if the actual depth is greater than 7.37 +
1.00 = 8.37 ft. If the water surface elevation y is normally distributed, then the
probability that they will be flooded is evaluated by converting y to the standard
normal variable z by subtracting the mean value of y (7.37 ft) from both sides of
the inequality and dividing by the standard error (1.63 ft):

y—17.37 _ 837 — 7.37)

>

> 8.37)=
Ply>8.37) P( 1.63 1.63

y—1.37 )
= —_—— > (),
( 1.63 0.613

=P(z > 0.613)
=1 - F,(0.613)

where F is the standard normal distribution function. Using Table 11.2.1 or the
method employed in Example 11.2.1, the result is F,(0.613) = 0.73, so P(y >
8.37) = 1 — 0.73 = 0.27. There is approximately a 27 percent chance that the
houses will be flooded during the design event due to uncertainties in calculating
the water level for that event.

This example has treated only parameter uncertainty in the calculations. The
true probability that the houses will be flooded is greater than that calculated
here, because the critical flood may exceed the design magnitude (due to natural
uncertainty).
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It is clear from Example 13.3.1 that reasonable amounts of uncertainty in
the estimation of Q and n can produce significant uncertainty in flow depth. A
15-percent error in estimating n = 0.035 is an error of 0.035 X 0.15 = 0.005.
This would be indicated from a measurement of 0.035 = 0.005, which is about
as accurate as an experienced hydrologist can get from observation of an existing
channel. A 30-percent error in estimating Q is 5000 X 0.30 = 1500 cfs. An
estimate of Q = 5000 = 1500 cfs may also reflect the correct order of uncertainty,
especially if the design return period is large (e.g., 7 = 100 years).

The use of the channel shape function (2/3R)(dR/dy) + (1/A)(dA/dy) in
(13.3.12) depends on knowledge of dR/dy and dA/dy, which may be difficult to
obtain for irregularly shaped channels. Also, the assumption that y depends on
Q alone may not be valid. In such cases, Eq. (13.3.6) can be used to obtain s,
treating y as a function of Q and #n, and a computer program simulating flow in
the channel can be used to estimate the required partial derivatives dy/dQ and
dyl dn by rerunning the program for various values of Q and n and reading off the
computed values of flow depth or water surface elevation. Figure 13.3.1 shows
the results of such a procedure for the channel and conditions given in Example
13.3.1. The gradients dy/dQ and dy/dn are approximately linear for this example;
this validates the use of only first-order terms in the analysis of uncertainty (if
the lines were significantly curved, analysis would require keeping the second-
order terms in the Taylor-series expansion).

Example 13.3.2. For the same conditions as in Example 13.3.1 (B = 50 ft, Q =
5000 cfs, S, = 0.01, n = 0.035), the variation of flow rate with flow depth at the
base case level has been found from Fig. (13.3.1) to be dQ/dy = 1028 cfs/ft, and
the variation of n with flow depth, én/dy = 0.0072 ft *. If CVyo= 0.30 and CV , =
0.15, calculate the standard error of y.

Solution. From Eq. (13.3.6),

2 2
2 _ ﬂ) 2 (iy) 2
sy (L?Q 5o + on Sy,

In this case, sg = 5000 X 0.30 = 1500, s, = 0.035 X 0.15 = 0.0053; also, dy/9Q =
1/1028, dy/én = 1/0.0072. Thus,

s2 = (L)Z X (1500)% + ( )2 X (0.0053)?

Y 1028 0.0072
or s, = 1.63 ft as computed in Example 13.3.1.

First-Order Analysis of Manning’s Equation: Discharge as
the Dependent Variable

Another application of Manning’s equation is the calculation of the discharge or
capacity C of a stream channel or other conveyance structure for a given depth,
roughness coefficient n, bottom slope, and cross-sectional geometry. Manning’s
equation (13.3.7) can be expressed using R = A/P as
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FIGURE 13.3.1

Variation of the flow depth with flow rate and with Manning’s n. Rectangular channel with width
50 ft, bed slope 0.01. Uniform flow assumed. (Example 13.3.2).

1.49 - ‘
C=0=—- S/2A%pT23 (13.3.13)
in which P is the wetted perimeter. Performing first-order analysis on (13.3.13),
the coefficient of variation of the capacity can be expressed as

1
CVg = CV, + JCV§, (13.3.14)

assuming CV,4 =~ 0 and CVp =~ 0.
Manning’s equation for a channel and flood plain (overbank) can also be
expressed as (Chow, 1959)

1 snp-os , 2 ,53p-
Q =149 —A°P. 7 + =Aj"Py 2/3)5}/2 (13.3.15)
ne np

in which n. and n;, are the roughness coefficients for the channel and the flood-
plain, respectively and A., P., Ap, and P, are the cross-sectional areas and
the wetted perimeters of the channel and the overbank flow. Equation (13.3.15)
assumes that the cross-sectional shape of the channel and the flood plain are both
symmetrical about the channel center line. This equation can be used to evaluate
levee capacity (the flow rate the levee can carry without overtopping). The levee
capacity can be considered a random variable related to the independent random
variables n, np, and Sy. Applying first-order analysis, the coefficient of variation
of the capacity is (Lee and Mays, 1986)

1
w2

I —

1 2
CVy = icvgf + —CV2 + ( ) cv? (13.3.16)
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where CV, , CVp,, CVy,,, and CVp, have been assumed negligible, and

5/3 2/3
ne \[Ap P,
— || — — 13.3.17
nb)(AC) (Pb) ( )

In studies of flood data on the Ohio River, Lee and Mays (1986) concluded
that uncertainties in the roughness coefficients and the friction slope account
for 95 percent of the uncertainties in computing the capacity. They presented a
method for determining the uncertainty in the friction slope using the observed
flood hydrograph of the river.

V=1+2

13.4 COMPOSITE RISK ANALYSIS

The previous sections have introduced the concepts of inherent uncertainty due
to the natural variability of hydrologic phenomena, and model and parameter
uncertainty arising from the way the phenomena are analyzed. Composite risk
analysis is a method of accounting for the risks resulting from the various sources
of uncertainty to produce an overall risk assessment for a particular design. The
concepts of loading and capacity are central to this analysis.

The loading, or demand, placed on a system is the measure of the impact of
external events. The demand for water supply is determined by the people who
use the water. The magnitude of a flash flood depends on the characteristics of
the storm producing it and on the condition of the watershed at the time of the
storm. The capacity, or resistance, is the measure of the ability of the system to
withstand the loading or meet the demand.

If loading is denoted by L and capacity by C, then the risk of failure R is
given by the probability that L exceeds C, or

- C
R=Pl= <1

(L ) (13.4.1)
=P(C—-L<0)

The risk depends upon the probability distributions of L and C. Suppose that the
probability density function of L is f{L). This function could be, for example, an
Extreme Value or log—Pearson Type III probability density function for extreme
values, as described earlier. Given f{L), the chance that the loading will exceed
a fixed and known capacity C* is (see Fig. 13.4.1)

P(L>C*) = Jj*f(L)dL (13.4.2)

The true capacity is not known exactly, but may be considered to have
probability density function g(C), which could be the normal or lognormal distri-
bution arising from the first-order analysis of uncertainty in the system capacity.
For example, if Manning’s equation has been used to determine the capacity of a
hydraulic structure, the uncertainty in C can be evaluated by first-order analysis
as described above. The probability that the capacity lies within a small range
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dC around a value C is g(C)dC. Assuming that L and C are independent random
variables, the composite risk is evaluated by calculating the probability that

loading will exceed capacity at each value in the range of feasible capacities,
and integrating to obtain

R= Ew J:f(L)dL (C)dc (13.4.3)

The reliability of a system is defined to be the probability that a system will
perform its required function for a specified period of time under stated conditions
(Harr, 1987). Reliability R is the complement of risk, or the probability that the
loading will not exceed the capacity:

R=P(L =C) (13.4.4)
=1-R
or
C
R= J: UO f(L)dL]g(C)dC (13.4.5)

Example 13.4.1. During the coming year, a city’s estimated water demand is three
units, with a standard deviation of one unit. Calculate (a) the risk of demand
exceeding supply if the city’s water supply system has an estimated capacity of 5
units; (b) the risk of failure if the estimate of the capacity has a standard error of
0.75 units. Assume that loading and capacity are both normally distributed.

Solution. (a) The loading is normally distributed with u; = 3 and o = 1. Its
probability function, from Eq. (11.2.5), is
1

N2moy

e ~uL)20%

fi)=
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|
- e~ L=312
N2

The risk R is evaluated using (13.4.2) with C*= 5:

®

R= L*f(L)dL

=J 1 e—(L—a)Z/zdL
5 2w
or

5
R=1- j L -e-singy

—x\/ﬁ

The integral is evalutated by converting the variable of integration to the standard
normal variable: u = (L — pug)or = (L —3)/1 = L —3,s0dL = du, and L =

Sbecomesu =5—3 =2; L = —o becomes u = —, and then
2
- 1
R=1- J e 2 du
> \2m
=1-F(2)

where F. is the standard normal distribution function. From Table 11.2.1, F (2) =
0.977, and

R=1-0.977
=0.023

The chance that demand will exceed supply for a fixed capacity of 5 is approximately
2 percent.

(b) The capacity now has a normal distribution with uc = 5 and o¢ = 0.75.
Hence, its probability density is

g(C)= eT(CmerRE
2mwoc
_ —l—e —(C—5)42%(0.75)%
V21(0.75)
_ 1.333 . —(C-5)2/1.125
V2

and the risk of failure is given by Eq. (13.4.3), with f(L) as before:

}ézj U f(L)dL}g(C)dC

C

___f J 1 e~ L= yp 1'333e“(c_5)2/“25dc
—*|7C¢ 2w N2
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The integral is evaluated by computer using numerical integration to yield R =0.052.
Thus, the chance that the city’s water demand will exceed its supply during the
coming year, assuming the capacity to be normally distributed with mean 5 and
standard deviation 0.75 is approximately 5 percent; compare this with the result of
2 percent when the capacity was considered fixed at 5 units.

It is clear from Example 13.4.1 that calculation of the composite risk of
failure can be a complicated exercise requiring the use of a computer to perform
the necessary integration. This is especially true when more realistic distributions
for the loading and capacity are chosen, such as the Extreme Value or log—Pearson
Type III distributions for loading, and the lognormal distribution for capacity. Yen
and co-workers at the University of Illinois (Yen, 1970; Tang and Yen, 1972;
Yen, et al., 1976) and Mays and co-workers at the University of Texas at Austin
(Tung and Mays, 1980; Lee and Mays, 1986) have made detailed risk analysis
studies for various kinds of open-channel and pipe-flow design problems.

The composite risk analysis described here is a static analysis, which means
that it estimates the risk of failure under the single worst case loading on the
system during its design life. A more complex dynamic risk analysis considers
the possibility of a number of extreme loadings during the design life, any one
of which could cause a failure; the total risk of failure includes the chance of
multiple failures during the design life (Tung and Mays, 1980; Lee and Mays
1983).

13.5 RISK ANALYSIS OF SAFETY MARGINS AND
SAFETY FACTORS

Safety Margin

The safety margin was defined in Eq. (13.2.5) as the difference between the
project capacity and the value calculated for the design loading SM=C — L.
From (13.4.1), the risk of failure R is

R=P(C - L <0)
=P(SM < 0)

If C and L are independent random variables, then the mean value of SM is given
by

(13.5.1)

MsM = Mc — ML (13.5.2)
and its variance by

oo = 0 + of (13.5.3)
so the standard deviation, or standard error of estimate, of the safety margin is
2)1/2 (13.5.4)

OsM = (O'é + op
If the safety margin is normally distributed, then (SM— pgv)/ osm is a standard
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normal variate z. By subtracting usy from both sides of the inequality in (13.5.1)
and dividing both sides by ogy;, it can be seen that

— SM — —
R=P( Hsm ,U«SM)

OsMm Tsm
=P(z < —M) (13.5.5)
OsM
=FZ(_@4_)
OsMm

where F; is the standard normal distribution function.

Example 13.5.1. Calculate the risk of failure of the water supply system in Example
13.4.1, assuming that the safety margin is normally distributed, and that uc = 5
units, oc = 0.75 units, g; = 3 units, and o, = 1 unit.

Solution. From Eq. (13.5.2), psm = mc— ur =5 —3 =2. From (13.5.4), oy =
(0% + a2)¥? = (12 + 0.75%)12 = 1.250. Using (13.5.5),

R= FZ(_“S_M
JsM

which is evaluated using Table 11.2.1 to yield R = 0.055, which is very close
to the value obtained in Example 13.4.1 by numerical integration (an inherently

approximate procedure). The risk of failure under the stated conditions is R =0.055,
or 5.5%.

Note that this method of analysis assumes that the safety margin is normally
distributed but does not specify what the distributions of loading and capacity must
be. Ang (1973) indicates that, provided R > 0.001, R is not greatly influenced by
the choice of distributions for L and C, and the assumption of a normal distribution
for SM is satisfactory. For lower risk than this (e.g., R = 0.00001), the shapes
of the tails of the distributions for L and C become critical, and in this case, the
full composite risk analysis described in Sec. 13.4 should be used to evaluate the
risk of failure. '

Safety Factor

The safety factor SF is given by the ratio C/L and the risk of failure can be
expressed as P(SF < 1). By taking logarithms of both sides of this inequality
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R=P(SF< 1)
= P(In(SF) < 0) (13.5.6)
C
=P(ln T <0
T
If the capacity and loading are independent and lognormally distributed, then the
risk can be expressed (Huang, 1986)

e[ CVE 1z
ML\1 + CVZ

[ In [(1 +CVE)1 +CVH]}

R=F (13.5.7)

7
2l

Example 13.5.2. Solve Example 13.5.1 assuming capacity and loading are both
lognormally distributed.

Solution. From Example 13.5.1, wc=S5 and 0¢=0.75, and hence CV =0.75/5=
0.15. Likewise, u; =3 and o7 =1, so CV, = 1/3 =0.333. Hence, by Eq. (13.5.7),

the risk is
172
_ml 3|l (0.333)
31 1 4 (0.15)?

[In[(1 +(0.15)(1 + (0.333)))|}

172

=F,(—1.5463) = 0.061

The risk of failure under the above assumptions, then, is 6.1 percent. For the same
problem (Example 13.5.1) assuming that the safety margin was normally distributed,
the risk was found to be 5.5 percent; the risk level has not changed greatly with
use of the lognormal instead of the normal distribution.

Risk-Safety Factor—Return Period Relationship

A common design practice is to choose a return period and determine the corre-
sponding loading L as the design capacity of a hydraulic structure. The safety
factor is inherently built into the choice of the return period. Alternatively, the
loading value can be multiplied by a safety factor SF; then the structure is designed
for capacity C = SF X L. As discussed in this chapter, there are various kinds
of uncertainty associated both with L and with the capacity C of the structure as
designed. By composite risk analysis, a risk of failure can be calculated for the
selected return period and safety factor. The result of such a calculation is shown
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FIGURE 13.5.1

The risk-safety factor-return period relationship for culvert design on the Glade River near Reston,
Virginia. The probability distribution for loading used to develop this figure was the Extreme Value
Type I distribution of annual maximum floods. A lognormal distribution for the culvert capacity was
developed using first-order analysis of uncertainty. The risk level for given return period and safety
factor was determined using composite risk analysis. (Source: Tung and Mays, 1980.)

in Fig. 13.5.1, which shows a risk chart applying to culvert design on the Glade
River near Reston, Virginia. The risk values in the chart represent annual prob-
abilities of failure. For example, if the return period is 100 years and the safety
factor 1.0, the risk of failure is 0.015 or 1.5 percent in any given year, while if
the safety factor is increased to 2, the risk of failure is reduced to R = 0.006, or
0.6 percent in any given year.

Current hydrologic design practice copes with the inherent uncertainty of
hydrologic phenomena by the selection of the design return period, and with
model and parameter uncertainty by the assignment of arbitrary safety factors or
safety margins. The risks and uncertainties can be evaluated more systematically
using the procedures provided by first-order analysis of uncertainty and composite
risk analysis as presented here. However, it must be borne in mind that just as
any function of random variables is itself a random variable, the estimates of risk
and reliability provided by these methods also have uncertainty associated with
them, and their true values can never be determined exactly.

REFERENCES

Ang, A. H.-S., Structural risk analysis and reliability—based design, J. Structural Div., Am. Soc.
Civ. Eng., vol. 99, no. ST9, pp. 1891-1910, 1973.

Ang, A. H.-S., and W. H. Tang, Probability Concepts in Engineering Planning and Design, vol.
I, Basic Principles, and vol. II, Decision, Risk and Reliability, Wiley, New York, 1975 and
1984, respectively.



440 APPLIED HYDROLOGY

Chow, V. T., Open-channel Hydraulics, McGraw-Hill, New York, 1959.

Corry, M. L., J. S. Jones, and P. L. Thompson, The design of encroachments on flood plains using
risk analysis, hydraulic engineering circular no. 17, Federal Highway Administration, U. S.
Department of Transportation, 1980.

Harr, M. E., Reliability-based Design in Civil Engineering, McGraw-Hill, New York, 1987.

Huang, K.-Z., Reliability analysis on hydraulic design of open channel, in Stochastic and Risk Anal-
ysis in Hydraulic Engineering, ed. by B. C. Yen, Water Resources Publications, Littleton,
Colo., p. 60, 1986.

Hirsch, R. M., Synthetic hydrology and water supply reliability, Water Resour. Res., vol. 15, no.
6, pp. 1603-1615, December 1979.

Kapur, K. C., and L. R. Lamberson, Reliability in Engineering Design, Wiley, New York, 1977.

Lee, H.-L., and L. W. Mays, Improved risk and reliability model for hydraulic structures, Warer
Resour. Res., vol, 19, no. 6, pp. 1415-1422, 1983.

Lee, H.-L., and L. W. Mays, Hydraulic uncertainties in flood levee capacity, J. Hyd. Div., Am.
Soc. Civ. Eng., vol. 112, no. 10, pp. 928-934, 1986.

Milhous, R. T., and W. J. Grenney, The quantification and reservation of instream flows, Prog.
Wat. Tech., vol. 13, pp. 129-154, 1980.

National Academy of Sciences, Safety of Existing Dams: Evaluation and Improvement, National
Academy Press, Washington, D. C., 1983.

Salas, J. D., et al., Applied modelling of hydrologic time series, Water Resources Publications,
Littleton, Colo., 1980.

Tang, W. H., and B. C. Yen, Hydrologic and hydraulic design under uncertainties, Proceedings,
International Symposium on Uncertainties in Hydrologic and Water Resources Systems,
Tucson, Ariz., vol. 2, pp. 868-882, 1972.

Tung, Y.-K., and L. W. Mays, Risk analysis for hydraulic design, J. Hyd. Div., Am. Soc. Civ.
Eng., vol. 106, no. HYS, pp. 893-913, 1980.

U. S. Army Corps of Engineers Hydrologic Engineering Center, computer program catalog, Davis,
Calif., August 1986.

World Meteorological Organization, Guide to Hydrological Practices, vol. II, Analysis, forecasting,
and other applications, WMO no. 168, 4th ed., Geneva, Switzerland, 1983.

Yen, B. C., Risks in hydrologic design of engineering projects, J. Hyd. Div., Am. Soc. Civ. Eng.,
vol. 96, no. HY4, proc. paper 7229, pp. 959-966, April 1970.

Yen, B. C., H. G. Wenzel, L. W. Mays, and W. H. Tang, Advanced methodologies for design of
storm sewer systems, research report no. 112, Water Resources Center, University of Illinois
at Urbana-Champaign, August 1976.

Yen, B. C., ed., Stochastic and Risk Analysis in Hydraulic Engineering, Water Resources Publica-
tions, Littleton, Colo., 1986.

PROBLEMS

13.2.1 The critical drought of record as determined from 30 years of hydrologic data is
considered to have lasted for 3 years. If a water supply design is based on this
drought and the design life is 50 years, what is the chance that a worse drought
will occur during the design life?

13.2.2 In Prob. 13.2.1, what is the chance that a worse drought will occur during the
first 10 years of the design life? The first 20 years?

13.2.3 What is the chance that the largest flood observed in 50 years of record will be
exceeded during the next 10 years? The next 20 years?

13.2.4 If a structure has a design life of 15 years, calculate the required design return
period if the acceptable risk of failure is 20 percent (a) in any year, (b) over the
design life.
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A flood plain regulation prevents construction within the 25-year flood plain.
What is the risk that a structure built just on the edge of this flood plain will be
flooded during the next 10 years? By how much would this risk be reduced if
construction were limited to the edge of the 100-year flood plain?

A house has a 30-year design life. What is the chance it will be flooded during
its design life if it is located on the edge of the 25-year flood plain? The 100-
year flood plain?

Determine the optimum scale of development (return period) for the flood-control
measure considered in Example 13.2.3 if the annual capital costs given in Table
13.2.1 are doubled. Use the same damage costs as in Table 13.2.1.

Determine the optimum scale of development (return period) for the flood-control
measure considered in Example 13.2.3, if the damage costs are doubled. Annual
capital costs remain the same as in Table 13.2.1.

Determine the optimum scale of development (return period) for the flood control
measure considered in Example 13.2.3, if the damage costs and the annual capital
costs are both doubled.

A rectangular channel is 200 feet wide, has bed slope 0.5 percent, an estimated
Manning’s n of 0.040, and a design discharge of 10,000 cfs. Calculate the design
flow depth. If the coefficient of variation of the design discharge is 0.20 and of
Manning’s n is 0.15, calculate the standard error of estimate of the flow depth.

What is the probability that the actual water level will be more than 1 foot deeper
than the expected value? Within what range can the water level for the design
event be expected in 70 percent of events?

In Prob. 13.3.1, calculate dy/dQ and 8y/dn for the conditions given (Q = 10, 000
cfs and n = 0.040) and solve the problem using these derivatives.

Solve Prob. 13.3.1 if the channel is trapezoidal with bottom width 150 ft and
side slopes 1 vert. = 3 hor.

Flow in a natural stream channel has been modeled by a computer program and
found to have a depth of 15 ft for a flow rate of 8000 cfs and Manning’s n value
of 0.045. Rerunning the program shows that changing the design discharge by
1000 cfs changes the water surface elevation by 0.8 ft, and changing Manning’s
n by 0.005 changes the water surface elevation by 0.6 ft. If the design discharge
is assumed to be accurate to = 30 percent and Manning’s n to * 10 percent,
calculate the corresponding error in the flow depth (or water surface elevation).

Suppose for the conditions given in Example 13.3.1, solved in the text, that the
channel wall height adopted is 8.4 ft, that is, the calculated depth of 7.4 ft plus
a 1.0 ft freeboard, or safety margin. What safety factor SF is implied by this
choice? What would the safety factor be if the true Manning’s roughness were
0.045 instead of the 0.035 assumed? Is this a safe design?

Using the first-order analysis of uncertainty for Manning’s equation, show that the
coefficient of variation of the discharge Q is given by CVZQ = CV,2l + (1/4)CV ﬁf.
What assumptions about the variables in Manning’s equation are implied by this
equation for CVp?

In some instances, flood plain studies are made using channel cross sections
determined from topographic maps instead of ground surveys. Extend the first-
order analysis of uncertainty for water level in Sec. 13.3 to include uncertainty
in the cross-sectional area A and wetted perimeter P. If these variables can be



442  APPLIED HYDROLOGY

13.4.1

13.4.2
13.4.3

13.4.4

13.4.5

13.5.1

13.5.2

13.5.3

determined with coefficients of variation of 20 percent from topographic maps,
calculate the additional risk that the houses in Example 13.3.1 will flood during
the design event, resulting from the use of channel cross sections from topographic
maps, instead of ground surveys, to delineate the flood plain.

A hydrologic design has a loading with mean value 10 units and standard deviation
2 units. Calculate the risk of failure if the capacity is 12 units. Assume normal
distribution for the loading.

Solve Prob. 13.4.1 if the loading is lognormally distributed.

In Prob. 13.4.1, assume that the capacity is normally distributed with mean 12
units and standard deviation 1 unit. Recompute the risk of failure, assuming that
the loading is also normally distributed.

About half the total water supply for southern California is provided by long-
distance water transfers from northern California and from the Colorado River.
The annual demand for these transfers was estimated to be 1.48 MAF (million
acre-feet) in 1980, and is projected to rise linearly to 1.77 MAF in 1990. Study
of observed annual demands from 1980 to 1985 indicates that the coefficient of
variation of observed annual demands around those expected is approximately 0.1
(this variability is due to year-to-year variations in weather and other factors).
Estimate the annual demand level that has a 70 percent chance of being equaled
or exceeded in 1986 and in 1990. Calculate the chance that observed demands
will exceed 2.0 MAF/year in 1986, and in 1990. Assume that the annual demands
are normally distributed.

In Prob. 13.4.4, calculate the chance that a limit of 2.0 MAF in water transfers
will be exceeded at least once from 1986 to 1990. Assume annual demands are
independent from one year to the next.

If capacity and loading are both lognormally distributed, show that risk can be
calculated by Eq. (13.5.7):

2\ 112
o (1 CV
MLl + CVg

R=F,

([ + Vi +cvh]}

where F, denotes the standard normal distribution function.
If capacity and loading are both lognormally distributed, show that risk can be
approximated by

In (ur/pc)
Tev? + cvi)”?

where F, denotes the standard normal distribution function.

Calculate the risk of failure of an open channel, assuming that the safety margin is
normally distributed: Manning’s equation is used to compute the capacity, and a
first-order analysis is used to determine the coefficient of variation of the capacity
C. The mean loading is 5000 cfs and the coefficient of variation of loading is



HYDROLOGIC DESIGN 443

0.2. The slope of the channel is 0.01 with a coefficient of variation CVs, = 0.10.
The Manning’s roughness factor is 0.035 and has a coefficient of variation of
CV, = 0.15. The channel cross-section is rectangular with width 50 ft and wall
height 9 ft. Failure is assumed to occur if the walls are overtopped.

13.5.4 Rework Prob. 13.5.3 to compute the risk of failure, assuming the capacity and
loading to be lognormally distributed.

13.5.5 Use the risk analysis of safety margins method to determine the probability that
the houses will be flooded in Example 13.3.1 in the text.



