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Hydrologic design is the
process of assessing the
impact of hydrologic
events on a water resource
system and choosing
values for the key variables
of the system so that it will
DGX%‘RT_G,\%’.‘QXM perform adequately.

Larry W. Mays Hydrologic design may be

used to develop plans for a
new structure, or to
develop management
w/ programs for better control
J#A|§ MeSRAWHIL nTERNATIONAL EDITIONS of an existing system.
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The purposes of water resources planning
and management may be grouped
roughly into two categories.

1. water control, (drainage, flood control,
pollution abatement, insect control,
sediment control, and salinity control)

2. water use and management, (domestic
and industrial water supply, irrigation,
hydropower generation, recreation, fish
and wildlife improvement, low-flow
augmentation for water quality
management, and watershed
management).



In either case, the task of the hydrologist is the same,
namely,

to determine a design inflow, to route the flow through the
system, and to check whether the output values are
satisfactory.

The difference between the two cases is that

design for water control is usually concerned with extreme
events of short duration, such as the instantaneous peak
discharge during a flood, or the minimum flow over a period of
a few days during a dry period, while

design for water use is concerned with the complete flow
hydrograph over a period of years.



The optimal magnitude for design is one that
balances the conflicting considerations of cost and
safety



The hydrologic design scale is the range in magnitude of the
design variable (such as the design discharge) within which a
value must be selected to determine the inflow to the system

Its probabilities of occurrence can be estimated adequately
when hydrologic records of sufficient length are available for
frequency analysis.

The probabilistic approach is less subjective and more
theoretically manageable than the deterministic approach.

Probabilistic methods also lead to logical ways of determining
optimum design levels, such as by hydroeconomic and risk
analyses
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The estimated limiting
value (ELV) is defined
as the largest magnitude
possible for a hydrologic
event at a given location,
based on the best
available hydrologic
iInformation.

FIGURE 13.1.1

Hydrologic design scale. Approximate
ranges of the design level for different types
of structures are shown. Design may be
based on a percentage of the ELV or on

a design return period. The values for the
two scales shown in the diagram are illus-
trative only and do not correspond directly
with one another.



TABLE 13.1.1

Generalized design criteria for water-control structures

Type of structure Return period (years) ELV
Highway culverts

Low traffic 5-10 —

Intermediate traffic 10-25 -

High traffic 50-100 —
Highway bridges

Secondary system 10-50 —

Primary system 50-100 -
Farm drainage

Culverts 5-50 —

Ditches 5-50 —
Urban drainage

Storm sewers in small cities 2-25 -

Storm sewers in large cities 25-50 —
Airfields

Low traffic 5-10 —

Intermediate traffic 10-25 -

High traffic 50-100 —
Levees

On farms 2-50 —

Around cities 50200 -
Dams with no likelihood of

loss of life (low hazard)

Small dams 50-100 —

Intermediate dams 100 + —

Large dams - 50-100%
Dams with probable loss of life

(significant hazard)

Small dams 100+ 50%

Intermediate dams — 50-100%

Large dams _ 100%
Dams with high likelihood of considerable

loss of life (high hazard)

Small dams — 50-100%

Intermediate dams — 100%

Large dams — 100%

A hydrologic
design level on
the design scale
Is the magnitude
of the hydrologic
event to be
considered for
the design of a
structure or
project.



Probability of exceedence P
Return period T
Risk of failure R

Life of the structure n

Risk Analysis

Water-control design involves consideration of risks. A water-control structure
might fail if the magnitude for the design return period T is exceeded within the
expected life of the structure. This natural, or inherent, hydrologic risk of failure
can be calculated using Eq. (12.1.4):

R=1—[1-PX=xp)" (13.2.3)

where P(X = xy) = U/T, and n is the expected life of the structure; R represents
the probability that an event x = xy will occur at least once in n years.



Esempio: rischio idraulico di
fallanza di un tombino nella sua
vita utile
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Flow model
Flow Q(x) <> water depth y(x)

OUTLET CONTROL
UNSUBMERGED INLET SUBMERGED INLET
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Design rainfall (x)
Rainfall runoff model x 2> Q(x)

Culvert

Q(x)

Flow Q(x) =
water depth y(x)

(1) MINIMUM FILL OVER TOP OF CULVERT

() MINIMUM CULVERT DIAMETER

(3) MINIMUM WATER DEPTH
ARMORING/REINFORCING AROUND CULVERT
() ROAD BED




Example 13.2.2. A culvert has an expected life of 10 years. If the acceptable
risk of at least one event exceeding the culvert capacity during the design life is 10
percent, what design return period should be used? What is the chance that a culvert

designed for an event of this return period will not have its capacity exceeded for
50 years?

1 10
0.10=1 - (l - E_)

and solving yields T = 935 years.



Elementi rilevanti nell’analisi di
rischio che sono stati trascurati









Safety Factor SF
(fattore di sicurezza, franco idraulico)

Although natural hydrologic uncertainty can be accounted for as above,
other kinds of uncertainty are difficult to calculate. These are often treated using
a safety factor, SF, or a safety margin, SM. Letting the hydrologic design value
be L and the actual capacity adopted for the project be C, the factor of safety is

SF = = (13.2.4)

and the safety margin is
SM=C-1L (13.2.5)

The actual capacity is larger than the hydrologic design value because it has
to allow for other kinds of uncertainty: technological (hydraulic, structural,
construction, operation, etc.), socioeconomic, political, and environmental.



Hydroeconomic Analysis

The optimum design return period can be determined by hydroeconomic analysis
if the probabilistic nature of a hydrologic event and the damage that will result
if it occurs are both known over the feasible range of hydrologic events. As the
design return period increases, the capital cost of a structure increases, but the
expected damages decrease because of the better protection afforded. By summing
the capital cost and the expected damage cost on an annual basis, a design return
period having minimum total cost can be found.



integrating for x > xr (the design level). That is, the expected annual cost D ris

Dr = Jj D(x)f(x)dx

which is the shaded area in Fig. 13.2.2(a).
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which is approximated by

[D(x, 1) + D(x;) ]

AD; = f fx)ds

(13.2.8)
_Dxi-y) + D(xi)

2

[P(x = x;) = P(x < x;—)]

But P(x = JC;) — P(x = xf—l) = [1 - P(I = I;')] - [l - P(x = xf-....l)] —_—

P(x = x;—1) — P(x = x;), so (13.2.8) can be written

D(x;—1) + D(x;)
2

and the annual expected damage cost for a structure designed for return period T
is given by

AD; = |P(x = x;—1) — P(x = x;)| (13.2.9)

Dr= > [D(x"“); DU I px = ;) — Px = )] (13.2.10)
i=1

By adding D7 to the annualized capital cost of the structure, the total cost can
be found; the optimum design return period is the one having the minimum total
Cost.
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(b) Hydroeconomic analysis.

FIGURE 13.2.2
Determination of the optimum design return period by hydroeconomic analysis (Example 13.2.3).
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13.3 FIRST ORDER ANALYSIS OF UNCERTAINTY

Many of the uncertainties associated with hydrologic systems are not quantifiable.
For example, the conveyance capacity of a culvert with an unobstructed entrance
can be calculated within a small margin of error, but during a flood, debris
may become lodged around the entrance to the culvert, reducing its conveyance
capacity by an amount that cannot be predetermined. Hydrologic uncertainty may
be broken down into three categories: natural, .or inherent, uncertainty, which
arises from the random variability of hydrologic phenomena; model uncertainty,
which results from the approximations made when representing phenomena by
equations; and parameter uncertainty, which stems from the unknown nature
of the coefficients in the equations, such as the bed roughness in Manning’s
equation. Inherent uncertainty in the magnitude of the design event is described by
Eq. (13.2.3); in this section, model and parameter uncertainty will be considered.



The first order analysis of uncertainty 18 a procedure for quantifying the
expected variability of a dependent variable calculated as a function of one or
more independent variables (Ang and Tang, 1975; Kapur and Lamberson, 1977,
Ang and Tang, 1984; Yen, 1986). Suppose w is expressed as a function of x:

w = f(x) (13.3.1)



If the true value of x differs from X, the effect of this discrepancy on w can be
estimated by expanding f(x) as a Taylor series around x = X:

I P & | :
w = f(X) + E(}c —-X) + EE(}C —X°+ ... (13.3.3)
where the derivatives df/dx, d’szdxz, . .., are evaluated at x = X. If second and

higher order terms are neglected, the resulting first order expression for the error
in w18
df

Ww—w = a(xﬂ-f) (13.3.4)



The variance of this error is s2, = E[(w — w)?] where E is the expectation operator

2
sﬁ,=E{ [%{(x - .T)] }

ol

is the variance of x.

or
2
52 (13.3.5)

where 52



If w is dependent on several mutually independent variables x,, x7, ... ,
Xn, 1t can be shown by a procedure similar to the above that

2 2 2
si=is§+i3§+...+i3§ (13.3.6)
oxy ! axy | ax,| "

Kapur and Lamberson (1977) show how to extend (13.3.6) to account for the
effect on sﬁ, of correlation between x;, x2, . . ., x,, if any exists.



First-Order Analysis of Manning’s Equation: Depth as the
Dependent Variable

First-Order Analysis of Manning’s Equation: Discharge as
the Dependent Variable



Fattori che influenzano ’analisi di
rischio

Incertezza sulle forzanti idrologiche
Incertezza sul modello

Incertezza sui parametri del modello



Fattori che influenzano ’analisi di
rischio

Incertezza sulle forzanti idrologiche

Incertezza sui parametri del modello



Rational method Q=([)hA/TC

If a rainfall of intensity | begins
Instantaneously and continues
iIndefinitely, the rate of runoff will
Increase until the time of
concentration Tc, when all of the .
watershed is contributing to flow at :1
the outlet. Iy
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watershed area A is the inflow rate |

for the system, 1A, and the ratio of ‘

this rate to the rate of peak

discharge Q (which occurs at time

tc) is termed the runoff coefficient ¢



Q (cfs)

Proposed time

e

of concentration

}Nf?& = 10 minutes

Time (min)

FIGURE 15.4.3

Typical storm water runoff
hydrographs for the modified
rational method with various
rainfall durations.



Incertezza sui parametri del modello

Incertezza sulle forzanti idrologiche

- } .)s?;*ﬂf" x

Esempio: calcolo della portata % VR X r"ﬂf"

di piena in un bacino, I {
assumendo | !j%ldmgrummu di piena

1) Che solo la precipitazione |
sia aleatoria |

2) Che sia la precipitazione
che il coefficiente di
deflusso siano aleatori



Dati

S 100 km2
100000000 m2
TC 12 ore hm 2
!.r Idregramma di piena
43200 s %
0 0,40 ‘ | ‘

Momenti delle precipitazioni massime
annuali di durata Tc

Media:h_ 4 50,4 mm

Scarto quadratico
medio: s, 21,9 mm



Distribuzione di Gumbel (h)  p(py— exp{_ exp—(h_ aﬂ
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Distribuzione di Gumbel (Q)

P(Q(h)) = exp{— exp-— (QTC — a(psﬂ = exp| — exp-— [Q % )
oD

=¢p h AlTc

Gumbel Q

b(Q) 15,82

a(Q) 37,54

Qmed 46.67 Qe =8+ 0577
sQ 20,277778 o _ T,



Analisi del primo ordine 2 sg

If the true value of x differs from X, the effect of this discrepancy on w can be
estimated by expanding f(x) as a Taylor series around x = X:

e df _ 1 dzf )
w = f(xX) + Zr(x - X) + EE(JC -+ ... (13.3.3)
where the derivatives df/dx, d’zﬂdxz, . .., are evaluated at x = X. If second and

higher order terms are neglected, the resulting first order expression for the error
in w18
df

Ww—w = a(xﬂ-f) (13.3.4)



Analisi del primo ordine 2 sg

The variance of this error is s2, = E[(w — w)?] where E is the expectation operator

2
Sﬁ,=E[ [%{(x — T)] }

=

is the variance of x.

or
2
52 (13.3.5)

where 52



Analisi del primo ordine 2 sg

1) Solo la precipitazione sia
aleatoria Qred =

2) Sia la precipitazione che |l = Te

coefficiente di deflusso
siano aleatori \/(
Q



Analisi del primo ordine 2 sg

1) Solo la precipitazione sia

aleatoria 1) 2)
sQ 20,28 50,8
0 057 bQ 15,82 39,69

e = 8o +bq -0, /
] | aQ 37,54 23,76
So =——by yQ 4,60 4,60
V6 Q(Tr) 110,3 206,4
2) Sia la precipitazione che |l
coefficiente di deflusso \

slano aleatori g
P(Q(Tr)) = 1—_|_—1r = exp —exp—[Q_aQ]




Ridotta capacita di portata del tombino—>
ridotta capacita di far fronte al carico Q(x)

Analisi di rischio in caso di carico e
resistenza aleatori



13.4 COMPOSITE RISK ANALYSIS

The previous sections have introduced the concepts of inherent uncertainty due
to the natural variability of hydrologic phenomena, and model and parameter
uncertainty arising from the way the phenomena are analyzed. Composite risk
analysis is a method of accounting for the risks resulting from the various sources
of uncertainty to produce an overall risk assessment for a particular design. The
concepts of loading and capacity are central to this analysis.

The loading, or demand, placed on a system is the measure of the impact of
external events. The demand for water supply is determined by the people who
use the water. The magnitude of a flash flood depends on the characteristics of
the storm producing it and on the condition of the watershed at the time of the
storm. The capacity, or resistance, is the measure of the ability of the system to
withstand the loading or meet the demand.



If loading is denoted by L and capacity by C, then the risk of failure R is
given by the probability that L exceeds C, or

—  C
R=P|— < 1

(L ) (13.4.1)
=P(C—L<0)

The risk depends upon the probability distributions of L and C. Suppose that the
probability density function of L 1s f{L).

The true capacity is not known exactly, but may be considered to have
probability density function g(C), which could be the normal or lognormal distri-
bution arising from the first-order analysis of uncertainty in the system capacity.
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Composite risk analysis, Area
shaded is the risk Rs of

the loading exceeding a fixed
capacity of 5 units. The

risk that the loading will
exceed the capacity when the
capacity is random is given by
R = ji[ J. fiLydL} g(C)dC.
The loading and capacity
shown are both normally

8.0 distributed (Example

13.4.1).

R = J:ﬁ J:f(L)dL (C)dC




The reliability of a system is defined to be the probability that a system will
perform its required function for a specified period of time under stated conditions
(Harr, 1987). Reliability R is the complement of risk, or the probability that the
loading will not exceed the capacity:

R=P(L =C) (13.4.4)

=1-R

or

C
R = J::. M f(L)dL]g(C)dC (13.4.5)



2 elementi in parallelo

ostruiti 4 volte/anno
riabilitati in 20 gg

MTTF 365/4=91,25 gg
MTTR 20 gg




1
MTTF | MTTR —
— a= affidabilith= D0 F _ A _ M
MTTF +MTTR 1 1+
MTBF oA
l1-a= A
L+ A

2 elementi in parallelo

ostruiti 4 volte/anno :
riabilitati in 20 gg

MTBF 111,25
MTTR 20
Affidabilita

(1 elemento) 0,82




Affidabilita del sistema

Solo la precipitazione sia aleatoria

—

b(Q)
a(Q)

15,82
37,54

P(Q) = exp —exp—(Q

P(Q/2)=072

A= P(Q/2)-P[C:

b

Q

J

=099

2 |+P(@)-Plc=al

P(Q/2)-2a(l-a)+P(Q)-a?> =088



Affidabilita del sistema

Solo la precipitazione sia aleatoria

b(Q) 15,82
a(Q) 37,54

1 elemento
ostruito 3 volte/anno
riabilitato in 5 gg

MTBF 126,7
MTTR 5
Affidabilita ' y -
(1 elementO) 0,96 P(Q) = eXp| — exp— Q- s } =0,99
i \ bg _
A=P(Q)-P[C=Q]=P(Q)-a=0,95




13.5 RISK ANALYSIS OF SAFETY MARGINS AND
SAFETY FACTORS

Safety Margin

The safety margin was defined in Eq. (13.2.5) as the difference between the
project capacity and the value calculated for the design loading SM=C — L.

From (13.4.1), the risk of failure R is
R=P(C — L <0)

(13.5.1)
= P(SM < 0)
If C and L are independent random variables, then the mean value of SM is given
by
MSM = MC — ML (13.5.2)
and its variance by
oo = 06 + oF (13.5.3)

so the standard deviation, or standard error of estimate, of the safety margin is

osm = (02 + o2)"” (13.5.4)



