#8 Other Centrality Measures

© 2020 T. Erseghe
Eigenvector and Katz centralities
Eigenvector and Katz centralities

<table>
<thead>
<tr>
<th></th>
<th>with constant term</th>
<th>without constant term</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalized</td>
<td>PageRank $r = c \mathbf{M} r + (1-c) \mathbf{q}$</td>
<td>Degree $r = \mathbf{M} r$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unnormalized</td>
<td>Katz $r = c \mathbf{A} r + 1$</td>
<td>Eigenvector $r = c \mathbf{A} r$</td>
</tr>
</tbody>
</table>

$$r = (I - c \mathbf{A})^{-1} \mathbf{1} = \sum (c \mathbf{A})^k \mathbf{1}$$
Comparison

Degree Eigenvector Katz
Closeness centrality
What is Closeness?

Closeness centrality

From Wikipedia, the free encyclopedia

In a connected graph, **closeness centrality** (or **closeness**) of a node is a measure of **centrality** in a network, calculated as the reciprocal of the sum of the length of the **shortest paths** between the node and all other nodes in the graph. Thus, the more central a node is, the **closer** it is to all other nodes.

Closeness was defined by Bavelas (1950) as the **reciprocal** of the **farness**,\(^1\)[2] that is:

\[
C(x) = \frac{1}{\sum_y d(y, x)}.
\]

where \(d(y, x)\) is the **distance** between vertices \(x\) and \(y\).

Rationale: the node which is the easiest to reach, the one which is the best for spreading information.
Example

count the lengths of the shortest paths leading to Giulia
1 + 2 + 1 + 2 + 1 = 7

Closeness

<table>
<thead>
<tr>
<th>Node</th>
<th>Closeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giulia</td>
<td>0.1429</td>
</tr>
<tr>
<td>Marc</td>
<td>0.1250</td>
</tr>
<tr>
<td>Oliver</td>
<td>0.1250</td>
</tr>
<tr>
<td>Thomas</td>
<td>0.1429</td>
</tr>
<tr>
<td>Sarah</td>
<td>0.1667</td>
</tr>
<tr>
<td>Anna</td>
<td>0.1250</td>
</tr>
</tbody>
</table>

Sarah is the preferred node for spreading information

C(Giulia) = 1/7
= 0.1429
Closeness versus Degree centrality

Closeness

Degree
In disconnected graphs [edit]

When a graph is not strongly connected, a widespread idea is that of using the sum reciprocal of distances, instead of the reciprocal of the sum of distances, with the convention $1/\infty = 0$:

$$H(x) = \sum_{y \neq x} \frac{1}{d(y, x)}.$$

The most natural modification of Bavelas’s definition of closeness is following the general principle proposed by Marchiori and Latora (2000)[3] that in graphs with infinite distances the harmonic mean behaves better than the arithmetic mean. Indeed, Bavelas’s closeness can be described as the denormalized reciprocal of the arithmetic mean of distances, whereas harmonic centrality is the denormalized reciprocal of the harmonic mean of distances.
Closeness versus Harmonic centrality
Betweenness centrality

Freeman, “A set of measures of centrality based on betweenness,” 1977

What is Betweenness?

Betweenness centrality

From Wikipedia, the free encyclopedia

In graph theory, **betweenness centrality** is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for each vertex is the number of these shortest paths that pass through the vertex.

Definition
[edit]

The betweenness centrality of a node v is given by the expression:

$$g(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where σ_{st} is the total number of shortest paths from node s to node t and $\sigma_{st}(v)$ is the number of those paths that pass through v.

Rationale: the node which takes you elsewhere (bridge, broker)
Example

count the # of shortest paths
passing through Sarah
(count a fraction if more than one path)

\[1 + 1 + 0.5 + 0.5 + 0.5 = 3.5 \]

Betweenness

<table>
<thead>
<tr>
<th>Betweenness</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3333</td>
<td>Giulia</td>
</tr>
<tr>
<td>0.3333</td>
<td>Marc</td>
</tr>
<tr>
<td>0</td>
<td>Oliver</td>
</tr>
<tr>
<td>1.5000</td>
<td>Thomas</td>
</tr>
<tr>
<td>3.5000</td>
<td>Sarah</td>
</tr>
<tr>
<td>0.3333</td>
<td>Anna</td>
</tr>
</tbody>
</table>
Closeness versus Betweenness centrality

Minnesota road network

Closeness is a measure of center of gravity (best node from which to spread info)

Betweenness is a measure of brokerage (i.e., being a bridge)
Betweenness versus PageRank centrality
Betweenness versus PageRank centrality
Clustering coefficient
What is the Clustering coefficient?

Local clustering coefficient

The local clustering coefficient of a vertex (node) in a graph quantifies how close its neighbours are to being a clique (complete graph). Duncan J. Watts and Steven Strogatz introduced the measure in 1998 to determine whether a graph is a small-world network.

Rationale: how strongly connected is the network locally / general indication of the graph’s tendency to be organized into clusters
Triadic closure

- A and C are likely to have the opportunity to meet because they have a common friend B.
- The fact that A and C is friends with B gives them the basis of trusting each other.
- B may have the incentive to bring A and C together, as it may be hard for B to maintain disjoint relationships.

Forbidden triad

(A and C are likely to be friends)

Triadic closure

19
A measure for **triadic closure** – node’s view

- **Clustering coefficient** C_i
- Counts the **fraction** of pairs of neighbours which form a triadic closure with node i

$$C_i = \frac{1}{|N_i|(|N_i| - 1)} \sum_{(j,k) \in \mathcal{N}_i^2 \atop j \neq k} t_{C,i,j,k}$$

where $t_{C,ijk} = 1$ if the triplet (i,j,k) forms a triadic closure, and zero otherwise
Examples

not connected neighbourhood

\[C_1 = 0 \]

\[\langle C \rangle = 0 \]

weakly connected neighbourhood

\[C_1 = \frac{1}{2} = \frac{3}{(4 \times 3/2)} \]

\[C_2 = C_3 = \frac{2}{3}, \quad C_4 = C_5 = 1 \]

\[\langle C \rangle = 0.766 \]

strongly connected neighbourhood

\[C_1 = 1 = \frac{6}{(4 \times 3/2)} \]

\[\langle C \rangle = 1 \]
Clustering coeff. versus degree

citation network taken from arXiv’s High Energy Physics / Phenomenology section

when person has many friends, these friends have less edges among them, which is to be expected since a person with many friends is likely to have friends from more diverse communities, and a paper getting cited many times is likely to be cited by papers from more diverse areas
Wrap-up
Take-aways

<table>
<thead>
<tr>
<th>Centrality measure</th>
<th>Technical property</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree (in/out)</td>
<td>Measures number (and quality) of connections</td>
<td>Cohesion
Entrepreneurship</td>
</tr>
<tr>
<td>PageRank (authorities/hubs)</td>
<td>Measures number (and quality) of direct and indirect connections</td>
<td>Cohesion
Entrepreneurship
Closeness/Similarity/Friendship (with a direction)
Dependence</td>
</tr>
<tr>
<td>Closeness</td>
<td>Measures length of min paths</td>
<td>Visual centrality
Significant spreading points
Outliers</td>
</tr>
<tr>
<td>Betweenness</td>
<td>Measures number of min paths</td>
<td>Brokerage
Structural holes
Ostracism</td>
</tr>
<tr>
<td>Clustering coeff.</td>
<td>Measures number of triadic closures</td>
<td>Centrality in a community
Cohesion of the neighbourhood</td>
</tr>
</tbody>
</table>
More on the meaning...

https://reticular.hypotheses.org/1745
How does personality relate to centrality?

Integrating personality and social networks: A meta-analysis of personality, network position, and work outcomes in organizations.
Organization Science, 26(4), 1243-1260.

- **personality**: big5 + self-monitoring
- **network**: in-degree + betweenness centrality
- **performance**: job performance + career success
The big5 model

- Personality traits / dimensions

- An integration of personality research that represents the various personality descriptions in one common framework

- Individual differences in social and emotional life organized into a five-factor model of personality

- “broad abstract level and each dimension summarized a larger number of ... personality characteristics” (Oliver & Srivastava, 1999)
A personality network (Costantini et al, 2015)

The Big5 model relations

Emotionality
- Sincerity
- Fearfulness
- Dependence
- Sentimentality
- Social boldness

Openness
- Inquisitiveness
- Unconventionality
- Aesthetically appreciation
- Creativity
- Social self-esteem

Extraversion
- Anxiety
- Liveliness
- Social self-esteem
- Diligence
- Perfectionism
- Organization

Agreeableness
- Gentleness
- Flexibility
- Patience
- Sociability
- Prudence

Conscientiousness
- Anxiety
- Gentleness
- Forgiveness
- Sociability
- Social self-esteem

Honesty
- Modesty
- Greed-avoidance
- Forgiveness

Negative links are displayed in red
Self-monitoring

This article is about the theory. For recording of one's own activities, see Quantified Self.

Self-monitoring is a concept introduced during the 1970s by Mark Snyder, that shows how much people monitor their self-presentations, expressive behavior, and nonverbal affective displays.[1] Human beings generally differ in substantial ways in their abilities and desires to engage in expressive controls (see dramaturgy).[2] It is defined as a personality trait that refers to an ability to regulate behavior to accommodate social situations. People concerned with their expressive self-presentation (see impression management) tend to closely monitor their audience in order to ensure appropriate or desired public appearances.[3] Self-monitors try to understand how individuals and groups will perceive their actions. Some personality types commonly act spontaneously (low self-monitors) and others are more apt to purposely control and consciously adjust their behavior (high self-monitors).[4] Recent studies suggest that a distinction should be made between acquisitive and protective self-monitoring due to their different interactions with metatraits.[5] This differentiates the motive behind self-monitoring behaviours: for the purpose of acquiring appraisal from others (acquisitive) or protecting oneself from social disapproval (protective).
Instrumental network (job contacts)
Expressive network (friends)
Questions ?