

Catharsis

How to make Renewable Energy Projects acceptable

Realistic Solutions to the Social Unacceptance of Renewable Energy Projects

Andrea Giuliano

Socio-Political Aspects Team: Ngosa Bwalya, Tommaso Benedetti

Supervisors: Enrico Dal Cin, Gianluca Carraro, Piero Danieli, Gabriele Volpato, Sergio Rech, Andrea Lazzaretto

Index

- Against Renewables
- Acceptance & Acceptability
- Barriers and Drivers

- About Hydroelectric Power
- About Wind Power
- About Solar Power
- About Geothermal Power
- Culture Influence
- Conclusions
- Bibliography

Against Renewables

Renewable technologies are not always welcome nor accepted.

Why? Barriers in the Market, Politics, Community.

What can we do?

Understand the reasons,
Listen to the people,
Adapt their needings,
Educate.

1. Acceptability

Designing a project to be well received by consumers and adopted widely Accessibility, Eco-design, Marketability

2. Acceptance

The project is widely accepted by the market, the communities, sociopolitical parties

PIMBY, Standards, Support

A project must be accepted to be successful.

How?

- Educating people to the sustainability of renewable energies
- Developing <u>easy-to-use</u> <u>systems</u> for anyone
- Lowering the costs and incentivizing the consumer and the producer

Barriers and Drivers

NIMBY

Lack of Know-How

Market not ready

High costs

Hostile culture

Unreliability

Information campaign, conferences, public hearings

Training of skilled workforce, **Research** and Development, Stimulus by the government

Feedback from local communities and Adapting the systems accordingly

Smart grids, **storage**, **flexibility**, wide energy mix...



EVERY PROJECT IS SITE-SPECIFIC AND DIFFERS IN BARRIERS AND DRIVERS

Hydroelectric

Most projects **require a dam**. Ecosystem at risk. In developed countries it's already well exploited and can't grow more. In developing countries villages need water for irrigation and subsistence.

The energy company must earn the community trust and the community must be respected and included in the project. The companies are asked:

Certificate of Non-Objection

MANDATORY

- Road improvement
- Grid and Energy Access
- Healthcare
- Education
- New Jobs

Only if negotiated (almost never fulfilled)

Wind

- Ruin the landscape and the ecosystem
- Affect the health of people nearby fake, but people still believe it
- Uncertain impacts on local tourism, agriculture and income generation

High cost of installment

Your Wind Farm will succeed if:

- It's "away from sight, away from mind"
- Locals personally believed, invested in the project and will earn from it
- The company is a trusted local (multinationals are hated)

Solar

Large works not required

Develop horizontally (low visibility)

Can be easily installed on roofs ---- direct benefit for the user

Low efficiency solved with big scale plants (CSP)

How to fail a Solar Power Plant:

- Do not use accurate data when choosing the site
- Employ unskilled workforce with no training
- Rely on <u>foreign</u> technologies, production and know-how instead of developing a local market

Congratulations, you scared all the investors!

1% global energy production

Geothermal (Heat Pumps)

Heating and cooling through soil or underground water at a fixed temperature

Yes,

Silent
Hidden underground
Without combustion = safer, cleaner
Lower the peak time demand

So? <

But:

No standards and guidelines yet

Hard and expensive to install on existing
buildings, better for new buildings

Tenant or Landlord, who pays? Lack of skilled personnel = higher costs Low consumer awareness

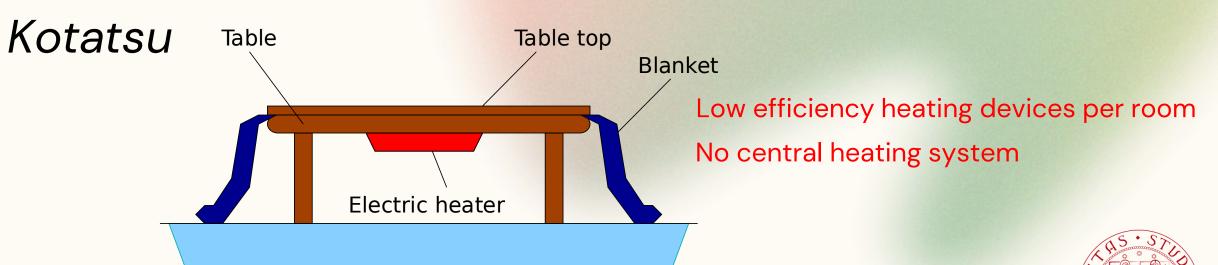
Educate, train, provide financial **incentives**, develop a regulatory framework, define guidelines and **certificates** in the sector, invest in **research**, improve installation methods.

Culture influencing

Wasting energy in every language

Underdeveloped countries:

Norwegian:


Chinese:

Japanese:

Inefficient wood and coal stoves due to religious and social reasons

koslighet ("coziness") → heat every room Good for heat pumps?

tong feng ("airing the room") → even in winter AC nightmare!!

Wrapping up:

The Key for Acceptance

Trial-and-error process

Feedbacks

Involve people in the decision making

Education

Training

Build trust

Respect the environment and the community

Gather data

Protect ethnic minorities

Finance research and development

Boost domestic market

Design standards

Co-create projects

Invest more resources in educating and raising awareness of people rather than in the efficiency of technologies that is already advanced.

Questions & Answers Session

What would YOU do?

Thanks for listening!

Bibliography

- Alexandre, B., Reynaud, E., Francois, O., & Navarro, J. (2018).
 Acceptance and acceptability criteria: a literature review.
 Cognition, Technology & Work, 165–177.
- Rosso-Ceron, A., & Viatcheslav, K. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 103–110.
- Sharpton, T., Lawrence, T., Hall, M., (2020). Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States. Renewable and Sustainable Energy Reviews, 109826.
- Crootof, A., Shrestha, R., Albrecht, T., Ptak, T., & Scott, C. A. (2021).
 Sacrificing the local to support the national: Politics,
 sustainability, and governance in Nepal's hydropower paradox.
 Energy Research & Social Science, 102206.

- Linnerud, K., Aakre, S., & Leiren, M. (2018). Technical and Socio Economic Conditions a Literature Review of Social Acceptance of Wind Energy Development, and an Overview of the Technical, Socioeconomic and Regulatory Starting Conditions in the Wind Energy Scarce Target Regions.
- Shirole, A. (2020). Status of Concentrated Solar Power in India. International Research Journal of Engineering and Technology (IRJET)
- Karytsas, S., & Choropanitis, I. (2017). Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems. Renewable and Sustainable Energy Review, 252-271.
- Sovacool, B., & Griffiths, S. (2020). The cultural barriers to a low carbon future: A review of six mobility and energy transitions across 28 countries. Renewable and Sustainable Energy Reviews, 109569.

Università

DEGLI STUDI

DI PADOVA