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Recap of sub-module “Is this function a solution of this ODE?”
• a function is a solution of an ODE if it satisfies the equation for all values in its

domain
• initial conditions are necessary to uniquely determine a solution

Modelling in Continuous Time - Is this function a solution of this ODE? 1



Recap of sub-module “which type of ODE is this one?”
• an ODE can be classified based on its structural properties (linearity, autonomy,

time-invariance)
• linearity requires both additivity and homogeneity
• autonomous systems evolve solely based on their state, while non-autonomous

systems depend on external inputs
• time-invariant systems have dynamics that do not explicitly depend on time, while

time-varying systems do
• graphical representations help in identifying these properties visually

Modelling in Continuous Time - which type of ODE is this one? 1



Recap of sub-module “compute the equilibria of the system”
• Equilibria in dynamical systems correspond to points where the system’s state

does not change over time.
• Autonomous time-varying ODEs can have equilibria, but their location may vary

with time.
• Some dynamical systems may not have equilibria, particularly if they involve

unbounded growth.
• Non-autonomous LTI ODEs can have equilibria only if the input u(t) remains

constant over time.

Modelling in Continuous Time - compute the equilibria of the system 1



Recap of sub-module “building and interpreting phase portraits”
• A phase portrait is a graphical representation of a dynamical systems trajectories

in state space.
• Phase portraits provide qualitative insight into system behavior without requiring

explicit solutions.
• First-order systems have a one-dimensional state space, while second-order

systems require two dimensions, etc.

Modelling in Continuous Time - building and interpreting phase portraits 1



Recap of sub-module “what is control”
• designing a controller means designing an algorithm that transforms information

into decision
• there are several types of controllers, each with pros and cons
• taking decisions (i.e., actuating u) means modifying the dynamics of the system

Modelling in Continuous Time - what is control 1



Recap of sub-module “how to linearize an ODE”
• linearization requires following a series of steps (see the summary above)
• the model that one gets in this way is an approximation of the original model
• having a graphical understanding of what means what is essential to remember

how to do things
• better testing a linear controller before a nonlinear one

Modelling in Continuous Time - how to linearize an ODE 1



Recap of sub-module “when is linearizing meaningful”
• be careful when using a linearized system - be always aware of where it comes from

Modelling in Continuous Time - when is linearizing meaningful 1



Recap of sub-module
“what is the superposition principle, and what does it imply”

• superposition principle helps logically separating specific causes into specific effects
• linear ODEs Ô⇒ superposition principle
• superposition principle Ô⇒ "whole = free + forced"
• nonlinear systems WON’T satisfy this principle!

Modelling in Continuous Time - what is the superposition principle, and what does it imply 1



Recap of sub-module “what is an impulse response”
• impulse responses are directly connected to step responses
• actually this connection is valid only if the system is LTI

Modelling in Continuous Time - what is an impulse response 1



Recap of sub-module “1D convolution in continuous time”
• convolution is an essential operator, since it can be used for LTI systems to

compute forced responses
• its graphical interpretation aids interpreting impulse responses as how the past

inputs contribute to current outputs

Modelling in Continuous Time - 1D convolution in continuous time 1



Recap of sub-module
“computing free evolutions and forced responses of LTI systems”

• finding such signals require knowing a couple of formulas by heart
• partial fraction decomposition is king here, one needs to know how to do that

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 1



Recap of sub-module “state space representations”
• a set of variables is a state vector if it satisfies for that model the separation

principle, i.e., the current state vector “decouples” the past with the future
• state space models are finite, and first order vectorial models

Modelling in Continuous Time - state space representations 1



Recap of sub-module “state space from ARMA (and viceversa)”
• one can go from ARMA to state space and viceversa
• we did not see this, but watch out that the two representations are not equivalent:

there are systems that one can represent with state space and not with ARMA,
and viceversa

• typically state space is more interpretable, and tends to be the structure used
when doing model predictive control

Modelling in Continuous Time - state space from ARMA (and viceversa) 1



Recap of sub-module
“Connections between eigendecompositions and free evolution in continuous time LTI state space systems”

• the eigenvalues of the system matrix A give the growth / decay rates of the
modes eαt of the free evolution of the system

• along eigenspaces, the trajectory of the free evolution is “simple”, i.e., aligned
with that eigenspace

• the kernel of the system matrix gives us the equilibria corresponding to u = 0

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 1



Recap of sub-module
“explain and determine the marginal stability of an equilibrium”

• marginal stability / simple stability is the property that answers the question “can
I bound the evolutions, i.e., arbitrarily constrain them to do not get “too far”
from an equilibrium by starting opportunely closeby the original equilibrium?

• an equilibrium is marginally stable or not depending on whether one is able to
‘win’ the ‘choose your neighborhood’ game

• phase portraits are very interpretable, to this regards
• there is a sort of “downgrading” phenomenon that happens here: one has to have

all the trajectories behaving in a good way to have a certain property. One not
behaving is enough for the “downgrading” of the equilibrium

Stability in Continuous Time - explain and determine the marginal stability of an equilibrium 1



Recap of sub-module
“explain and determine the convergence properties of an equilibrium”

• convergence is disconnected from “marginal stability”, since in general one may
have one case and not the other, and viceversa, or both, or none

• the concept of convergence focuses on the limit behavior, ignoring the transient

Stability in Continuous Time - explain and determine the convergence properties of an equilibrium 1



Recap of sub-module “explain what BIBO stability means”
• BIBO stability means “a bounded input must imply a bounded output”
• it is a concept that in general it is disconnected to that of marginal stability /

convergence of an equilibrium

Stability in Continuous Time - explain what BIBO stability means 1



Recap of the module “BIBO stability for LTI systems”
• for LTI systems BIBO stability is equivalent to the absolute integrability of the

impulse response
• for ARMA systems BIBO stability is equivalent to having the impulse response so

that all its exponential terms are vanishing in time
• for nonlinear systems one shall use more advanced tools that will be seen in later

on courses

Stability in Continuous Time - BIBO stability for LTI systems 1



Recap of sub-module
“Is this time series a solution of this recurrence relation?”

• a function is a solution of a RR if it satisfies the equation for all values in its
domain

• initial conditions are necessary to uniquely determine a solution

Modelling in Discrete Time - Is this time series a solution of this recurrence relation? 1



Recap of sub-module “how to get a RR from an ODE”
• there are several ways of solving ODEs in a computer
• Euler is the most simple one, but it does not work well with stiff ODEs
• more advanced schemes have better numerical properties

Modelling in Discrete Time - how to get a RR from an ODE 1



Recap of sub-module “which type of RR is this one?”
• a RR can be classified based on its structural properties (linearity, autonomy,

time-invariance)
• linearity requires both additivity and homogeneity
• autonomous systems evolve solely based on their state, while non-autonomous

systems depend on external inputs
• time-invariant systems have dynamics that do not explicitly depend on time, while

time-varying systems do
• graphical representations help in identifying these properties visually

Modelling in Discrete Time - which type of RR is this one? 1



Recap of sub-module “compute the equilibria of the system”
• Equilibria in dynamical discrete time systems correspond to points where the

system’s state does not change over time.
• Autonomous time-varying RRs can have equilibria, but their location may vary

with time.
• Some dynamical systems may not have equilibria, particularly if they involve

unbounded growth.
• Non-autonomous LTI RRs can have equilibria only if the input u(t) remains

constant over time.

Modelling in Discrete Time - compute the equilibria of the system 1



Recap of sub-module “building and interpreting phase portraits for RRs”
• A phase portrait is a graphical representation of a dynamical systems trajectories

in state space.
• Phase portraits provide qualitative insight into system behavior without requiring

explicit solutions.
• First-order systems have a one-dimensional state space, while second-order

systems require two dimensions, etc.
• The smaller the sampling period T , the closer the discrete-time phase portraits is

to the one one would get from the continuous time version of the system

Modelling in Discrete Time - building and interpreting phase portraits for RRs 1



Recap of sub-module “what is control”
• designing a controller means designing an algorithm that transforms information

into decision
• there are several types of controllers, each with pros and cons
• taking decisions (i.e., actuating u) means modifying the dynamics of the system

Modelling in Discrete Time - what is control 1



Recap of sub-module “how to linearize a RR”
• linearization requires following a series of steps (see the summary above)
• the model that one gets in this way is an approximation of the original model
• having a graphical understanding of what means what is essential to remember

how to do things
• better testing a linear controller before a nonlinear one

Modelling in Discrete Time - how to linearize a RR 1



Recap of sub-module “when is linearizing meaningful”
• be careful when using a linearized system - be always aware of where it comes from

Modelling in Discrete Time - when is linearizing meaningful 1



Recap of sub-module
“what is the superposition principle, and what does it imply”

• superposition principle helps logically separating specific causes into specific effects
• linear RRs Ô⇒ superposition principle
• superposition principle Ô⇒ "whole = free + forced"
• nonlinear systems WON’T satisfy this principle!

Modelling in Discrete Time - what is the superposition principle, and what does it imply 1



Recap of sub-module “what is an impulse response”
• impulse responses are directly connected to step responses
• actually this connection is valid only if the system is LTI

Modelling in Discrete Time - what is an impulse response 1



Recap of sub-module “1D convolution in discrete time”
• convolution is an essential operator, since it can be used for LTI systems to

compute forced responses
• its graphical interpretation aids interpreting impulse responses as how the past

inputs contribute to current outputs

Modelling in Discrete Time - 1D convolution in discrete time 1



Recap of sub-module
“computing free evolutions and forced responses of LTI systems”

• finding such signals require knowing a couple of formulas by heart
• partial fraction decomposition is king here, one needs to know how to do that

Modelling in Discrete Time - computing free evolutions and forced responses of LTI systems 1



Recap of sub-module “state space representations”
• a set of variables is a state vector if it satisfies for that model the separation

principle, i.e., the current state vector “decouples” the past with the future
• state space models are finite, and first order vectorial models

Modelling in Discrete Time - state space representations 1



Recap of sub-module “state space from ARMA (and viceversa)”
• one can go from ARMA to state space and viceversa
• we did not see this, but watch out that the two representations are not equivalent:

there are systems that one can represent with state space and not with ARMA,
and viceversa

• typically state space is more interpretable, and tends to be the structure used
when doing model predictive control

Modelling in Discrete Time - state space from ARMA (and viceversa) 1



Recap of sub-module
“Connections between eigendecompositions and free evolution in discrete time LTI state space systems”

• the eigenvalues of the system matrix A give the growth / decay rates of the
modes λk of the free evolution of the system

• along eigenspaces, the trajectory of the free evolution is “simple”, i.e., aligned
with that eigenspace

• the kernel of the system matrix gives us the equilibria corresponding to u = 0

Modelling in Discrete Time - Connections between eigendecompositions and free evolution in discrete time LTI state space systems 1



Recap of sub-module
“explain and determine the marginal stability of an equilibrium”

• marginal stability / simple stability is the property that answers the question “can
I bound the evolutions, i.e., arbitrarily constrain them to do not get “too far”
from an equilibrium by starting opportunely closeby the original equilibrium?

• an equilibrium is marginally stable or not depending on whether one is able to
‘win’ the ‘choose your neighborhood’ game

• phase portraits are very interpretable, to this regards
• there is a sort of “downgrading” phenomenon that happens here: one has to have

all the trajectories behaving in a good way to have a certain property. One not
behaving is enough for the “downgrading” of the equilibrium

Stability in Discrete Time - explain and determine the marginal stability of an equilibrium 1



Recap of sub-module
“explain and determine the convergence properties of an equilibrium”

• convergence is disconnected from “marginal stability”, since in general one may
have one case and not the other, and viceversa, or both, or none

• the concept of convergence focuses on the limit behavior, ignoring the transient

Stability in Discrete Time - explain and determine the convergence properties of an equilibrium 1



Recap of sub-module “explain what BIBO stability means”
• BIBO stability means “a bounded input must imply a bounded output”
• it is a concept that in general it is disconnected to that of marginal stability /

convergence of an equilibrium

Stability in Discrete Time - explain what BIBO stability means 1



Recap of the module “BIBO stability for LTI systems”
• for LTI systems BIBO stability is equivalent to the absolute summability of the

impulse response
• for ARMA systems BIBO stability is equivalent to having the impulse response so

that all its exponential terms are vanishing in time
• for nonlinear systems one shall use more advanced tools that will be seen in later

on courses

Stability in Discrete Time - BIBO stability for LTI systems 1



Recap of sub-module “The Role of Filtering in Feedback Control Systems”
• Sensors are noisy and have limitations.
• Filtering is used to suppress measurement noise.
• Strong filtering slows down system response.
• Good control design carefully balances filtering strength and responsiveness.

Filtering - The Role of Filtering in Feedback Control Systems 1



Recap of sub-module
“Performance indexes for filtering measurement noise”

• Filters are evaluated using performance indexes.
• Main indexes are: noise reduction efficiency, signal distortion, response delay,

stability, and computational cost.
• Trade-offs between these indexes are inevitable.

Filtering - Performance indexes for filtering measurement noise 1



Recap of sub-module
“Design and implement low-pass and weighted averaging filters”

• Low-pass filters allow smooth signals to pass while reducing noise.
• Weighted averaging filters assign importance to past samples.
• Moving average is the simplest example of a low-pass filter.
• Python makes it easy to simulate and test filters.

Filtering - Design and implement low-pass and weighted averaging filters 1



Recap of sub-module
“Filtering Lab: Noise Reduction and Outlier Rejection”

• Filter choice depends on signal features (noise band, outliers, quantization).
• Always check frequency/impulse responses for unintended effects.
• Non-linear filters (median) handle outliers; linear filters (Butterworth) handle

noise.

Filtering - Filtering Lab: Noise Reduction and Outlier Rejection 1



Recap of sub-module “Introduction to System Identification”
• Model-based control requires accurate models
• System identification builds models from data
• There are several tools to estimate model parameters, in this course we only

scratch the surface

System identification - Introduction to System Identification 1



Recap of sub-module “Least squares estimators”
• Least squares aims to minimize the squared residuals between model predictions

and observed data
• The geometric interpretation views system identification as finding the closest

point on a model manifold to measurement vectors
• Normal equations provide an analytical solution for unconstrained linear least

squares problems through ΦT Φθ = ΦT y
• The pseudoinverse generalizes solutions for rank-deficient systems and connects

with singular value decomposition
• Existence and uniqueness of LS solutions depend on hypothesis space topology

and model structure identifiability
• Constrained LS problems require different approaches than normal equations when

parameters must satisfy domain restrictions

System identification - Least squares estimators 1



Recap of sub-module “Ill conditioning”
• Ill-posed problems may lack a solution, have multiple solutions, or be highly

sensitive to small changes in data
• Ill-conditioned problems have a solution, but it is numerically unstable and highly

sensitive to input errors
• The condition number of a matrix quantifies the degree of ill-conditioning; a high

condition number indicates poor numerical stability
• In system identification, slowly varying or insufficiently rich input signals can lead

to ill-conditioning
• Regularization techniques can mitigate the effects of ill-conditioning by

introducing stability through additional constraints
• Choosing appropriate input signals is critical to ensuring well-posed and

well-conditioned identification problems
• Understanding the structure and properties of the data matrix (e.g., U in least

squares problems) is essential to diagnose ill-conditioning
System identification - Ill conditioning 1



Recap of sub-module “Regularization”
• adding regularization and non-L2 costs noticeably extends capabilities of

estimators, at the cost though of introducing some hyperparameters that need to
be tuned too from the data

System identification - Regularization 1



Recap of module “Visualizing systems with block schemes”
• block representations are alternative representations
• they enable graphical coding, that is used quite a lot in big companies

Control - Visualizing systems with block schemes 1



Recap of module “Introduction to Open-Loop Controller Design”
• open-loop control is structurally simple but not very robust

Control - Introduction to Open-Loop Controller Design 1



Recap of module “Introduction to closed-loop controller design”
• feedback control is more promising, but requires designing more things compared

to open loop

Control - Introduction to closed-loop controller design 1



Recap of sub-module “PID Controllers”
• Pole placement allows us to achieve desired dynamics
• PID gains shift the closed-loop poles
• Match desired characteristic polynomial with actual one
• Use symbolic or numerical tools to solve for KP , KI , KD

Control - PID Controllers 1



Recap of sub-module “Full state feedback control”
• full state feedback enables placing the poles wherever one wants
• with respect to PID it has more flexibility
• this comes with the cost of having a sufficiently accurate model (and that the

model can be written in control canonical form, something that is not always
guaranteed!)

Control - Full state feedback control 1



Recap of sub-module “Introduction to Luenberger observers”
• one may estimate the states of a system by means of making the estimated state

be so that it dynamically matches the measured values
• this strategy though is as valid as the model is, as a description of the system
• the situation is though in practice not as simple as seen here - indeed the here

presented case is for “fully observable” systems (a concept that you’ll see in
systems theory) and thus not applicable all the times (but extensible to!)

Control - Introduction to Luenberger observers 1



Recap of sub-module “Tuning MPC for LTI Systems”
• MPC performance depends on careful parameter selection
• Prediction horizon affects stability and computation
• Weight matrices balance state vs control objectives
• Systematic tuning follows an iterative procedure

Control - Tuning Model Predictive Control for LTI Systems 1
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