
AERAULIC PLANT PRESSURE LOSSES AND SIZING

- NEED TO SET PHYSICAL DIMENSION OF THE PIPES AND THE MACHINE THAT WILL PROVIDE THE MOVEMENT (FAN)
- To size any pipe, the air flow (G) will be needed as input

 $[m^3/s]$ G= S \circ v

SMALL pipe size

PROS	CONS			
Small dimension means small overall cost	High fluid velocity, must take into account vibrations and noise			
Reduced necessary thechnical space and easier positioning	High fluid-duct wall frictions, higher costs to keep the flow moving			

Recommended air velocities in ducts

	Main ducts	Secondary ducts	Air outlet	Return vents
Residential	4 - 5	3 - 4	2 - 3	1,5 - 2
Public buildings, schools	5 - 8	4 - 6	3 - 5	2 - 3
Offices	8 - 11	6 - 8	5 - 8	3 - 4
Industrial buildings	8 - 15	8 - 15 6 - 10		4 - 10

Air velocity [m/s]

To set a fluid in motion a pressure difference between inlet and outlet sections will be needed.

 $\Delta \mathbf{P} = \Delta \mathbf{P}_k + \Delta \mathbf{P}_p + \Delta \mathbf{P}_f$

 ΔP_k : kinetic energy variation

 ΔP_p : potential energy variation

 ΔP_f : friction pressure loss

Friction pressure loss (or pressure loss) is due to two components:

Localised pressure drop: occurs whenever flow meets discontinuity in its path

Continuous pressure drop: occurs because of fluid-wall interactions

CONTINUOUS PRESSURE DROP

$$\frac{\Delta P_c}{L} = \frac{\rho v^2}{2} \frac{f}{D} \quad \left[\frac{Pa}{m}\right]$$

- v mean fluid velocity $\left[\frac{m}{s}\right]$
- f friction factor [/]
- L pipe length [m]
- D pipe diameter [m]

The friction factor ${\bf f}$ is determined either analytically of via appropriate diagrams. It depends on:

- Fluid density, viscosity and velocity
- Duct diameter and roughness

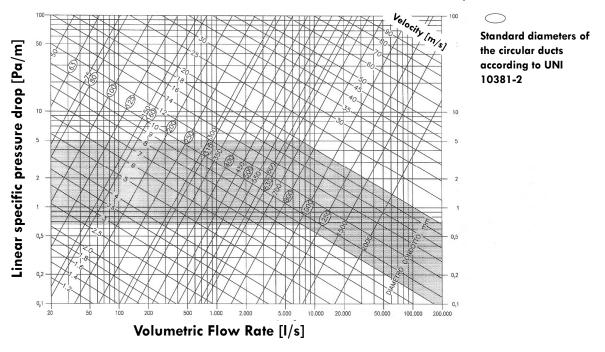
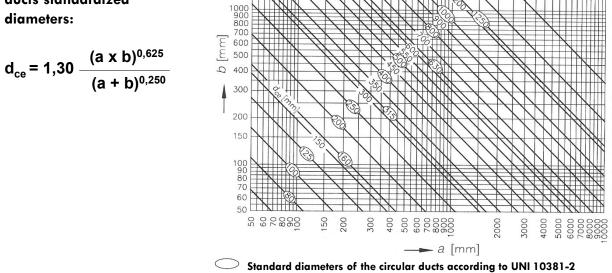



Diagram for distributed losses for quick choice for ϵ = 0.09 mm and ρ = 1.2 kg/m^3

Dimensions of rectangular ducts equivalent to circular ducts standardized diameters:

000

LOCALISED PRESSURE DROP

3000

2000

$$\Delta P_l = \frac{\rho v^2}{2} \xi \text{ [Pa]} - \rho \text{ fluid dencity } \left[\frac{\text{kg}}{\text{m}^3}\right]$$
$$- v \text{ mean fluid velocity } \left[\frac{\text{m}}{s}\right]$$
$$- \xi \text{ localised p.d. coefficient [/]}$$

 ξ coefficient is established on the basis of the particular type of loss, usually tabulated for the most common circuit elements (curves, branches etc.)

7/00	TIPO FIGURA CARATTERISTICHE			PERDITA DI PRESSIONE			
1100	FIGURA	CARATTERISTICHE	с	L/0	L/W		
CURVA A Nº	- Tap	RETTANGOLARE O ROTONDA;CON O SENZA ALETTE	NT'90 X PERDITA DI UNA CURVA UGUALE A 90°				
CURVA A 90° SE ZIONE ROTONDA	0‡ A	GOM/TO R/D = 0,5 0,75 1,0 1,5 2,0	1,30 0,90 0,45 0,33 0,24 0,19	65 23 17 12 10			
CURVA A 90° SEZIONE RETTANGOLARE		H/W D/W 0.5 0.5 0.5 0.75 1.0 1.0 1.0 1.5 1.0 1.5 0.5 0.75 1.0 1.5 1.0 0.5 1.0 1.0 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 4.0 0.75 1.0 1.5 1.0 1.5 4.0 0.75 1.0 1.5	1,25 1,25 0,60 0,37 1,47 1,10 0,28 0,28 0,28 0,28 0,28 0,28 0,02 0,41 1,20 0,02 0,02 0,02 0,02 0,02 0,02 0,0		25 25 12 4 40 16 9 40 16 9 40 21 11 45 21 110 65 43 17 6		
CURVA A 90° SEZIONE RETTANGOLARE CON DEFLETTORI	H Rige	R/w R1/w R2/W GOMTO 0.5 0.5 0.4 0.7 0.6 1.0 1.0 1.0 1.0 1.5 GOMTO 0.5 5.0 0.7 0.6 0.7 0.6 1.0 1.0 1.5 1.5 0.5 0.4 0.5 0.2 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.0 1.0 0.7 1.0 0.7 1.0 1.5 1.3 1.6	0,70 0,13 0,12 0,45 0,12 0,10 0,10 0,15		28 19 12 7.2 22 78		
GOMITO CON- ALETTE	DA LAMIERA AERODINAMICHE	C=0.10 ÷ 0.35 SECONDO LA COSTRUZIONE					
GOMITO A T CON ALETTE T CURVILINEO		CONSIDERARLO UGUALE AD UNA CURVA ANALOGA. PERDITA BASATA SULLA VELOCITA IN ENTRATA					

TIPO	FIGURA	CARATTE = RISTICHE	COEFFICIENTE		TIPO	FIGURA	CARATTE = RISTICHE	COEFFI= CIENTE
ESPANSONE BRUSCA		A1/A2	C1	C2	1	At	A2/A1	C2
	A1	0.1 0.2 0.3 0.4 0.5	0.81 0.64 0.49 0.36 0.25	81 16 5 2,25 1,00	CONTRAZIONE BRUSCA SPIGOLI VIVI	A2	0.0 0.2 0.4 0.6 0.8	0.34 0.32 0.25 0.16 0.06
		0.6 0.7 0.8 0.9	0,16 0,09 0,04 0,01	0.45 0.18 0.06 0.01	CON TRAZIONE GRADUALE	A1 A2	9 30* 45* 60*	0.02 0.04 0.07
	A2		C,				A1=A2	c
ESPANSIONE GRADUALE	5• 7• 10• 20•	0. 0. 0.	22 28 45	TRASFORMAZIONE AD AREA COSTANTE		9 ≤ 14•	0,15	
		30° 40°	0.5			1		с
EFFLUSSO BRUSCO (A2 = ∞)	A1A2		0.73	INGRESSO A FLANGIA		A ≈ ∞	0.34	
	~1/~2=000			INGRESSO A CANALE		A=∞	С	
		A0/A1	C	0	A CANALE			0,85
ORIFIZIO DI	A1	0.0	2.5				A = ∞	С
SPIGOLI VIVI	T	0.4 0.6 0.8	2.2	26 16	INGRESSO GRADUALE			0,03
		10	1,0				A0/A2	CO
SBARRA ATTRAVERSO IL CANALE		E/D 0,10 0,25 0,50	C 0.7 1,4 4,0		ORIFIZIO DI INGRESSO A SPIGOLI VIVI		0,0 0,2 0,4 0,6 0,8	2.50 1.96 1.39 0.95
		E/D	С]	1	1.0	0.61
TUBO ATTRAVERSO IL CANALE	- <u>+</u> 0 0	0,10 0,25 0,50	0.2 0.5 2.0	5		A1= A2	A ₀ /A 0.0	C ₀
SBARRA A PRO.		E/D	C		ORIFIZIO A		0.2	1,86
FILO AERODINA + MICO ATTRAVER+ 50 IL CANALE		0,10 0,25 0,50	0.0 0.2 0.9	3	SPIGOLI VIVI NEL CANALE	^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.4 0.6 0.8 1.0	121 0.64 0.20 0.0

DISTRIBUTION LINE DESIGN

Step n 1

Set up network geometry and its location in the building. Fans and/or the AHU should be placed as cantered to the building as possible in order to restrict the network extension.

Check the weight of the equipment to check the static loads for the building structure.

Analyse the problem of noise and vibrations transmitted to the surroundings.

Step n 2

Decide the flow rate for each section of the plant according to the specifics needs of each room (both extraction and immission).

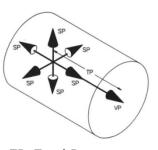
Step n 3

Choice of the pipes size of the whole plant.

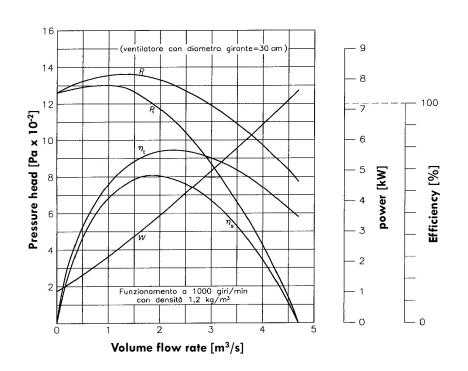
Pressure losses determination (as sum of localised and continuous pressure drops)

The result will most certainly differ for the various sections of the plant; need to equalize the distribution network by adding calibration valves in specific points (main branches, terminals etc).

Step n 4


Choosing the appropriate operating machine (fan) that will provide the requested flow and supply the necessary head pressure to overcome the network pressure losses.

Fan


When dealing with ventilation, the fan has the duty to produce the pressure that will keep the flow moving while facing all the circuit resistances (pressure drops).

The fan produces the TOTAL PRESSURE which is the sum of two components:

- Static pressure (any direction)
- Dynamic pressure (always aligned with the flow)

TP: Total Pressure SP: Static Pressure VP: Dynamic Pressure

Static pressure

It is the pressure the flow will apply all over around the duct it is contained in.

It depends on the fan aerodynamic characteristics and acts equally in all directions; it does not depend on the fluid speed.

Taking the ambient pressure as a reference the static pressure will be:

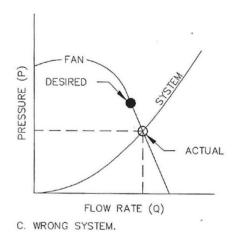
POSITIVE if higher

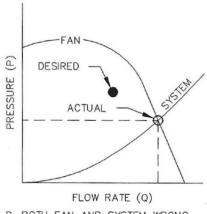
NEGATIVE if lower

Static pressure provides the necessary energy to speed up the air from its quiet and to keep it moving while winning resistances due to friction and turbulence.

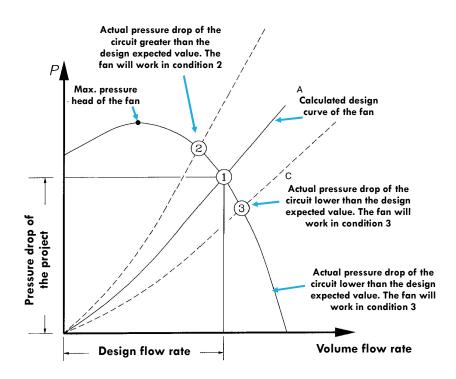
Dynamic Pressure

It is the fluid pressure due to its kinetic energy.


It is created at the cost of static pressure.


It acts in the same direction as the fluid motion and is always considered positive.

It is function of both speed and density of the fluid.


Suction system operating point

Fan curve The desired working point comes out of their intersection System curve FAN PRESSURE (P) PRESSURE (P) DESIRED DESIRED AN ACTUAL FLOW RATE (Q) FLOW RATE (Q) -. A. FAN AND SYSTEM MATCHED B. WRONG FAN.

D. BOTH FAN AND SYSTEM WRONG

