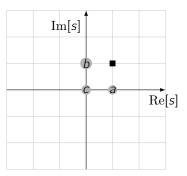

Where will the sequence of the powers of the complex number \blacksquare , i.e., \blacksquare^k for $k \to +\infty$, converge?

Potenziali risposte:

1: a

II: b


III: c

IV: it will diverge

V: I do not know

Domanda 2

Where will the sequence of the powers of the complex number \blacksquare , i.e., \blacksquare^k for $k \to +\infty$, converge?

Potenziali risposte:

l: a

II: b

III: c

IV: it will diverge

V: I do not know

Domanda 3

One may use the concept of "impulse response" to describe a nonlinear system.

I: true

II: false

III: it depends on the nonlinear system

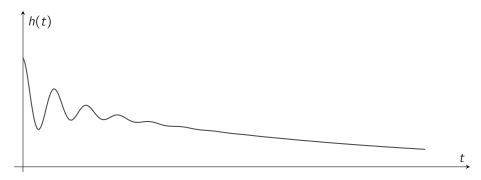
IV: I do not know

Domanda 4

One may use the concept of "transfer function" to describe a nonlinear system. .

Potenziali risposte:

I: true


II: false

III: it depends on the nonlinear system

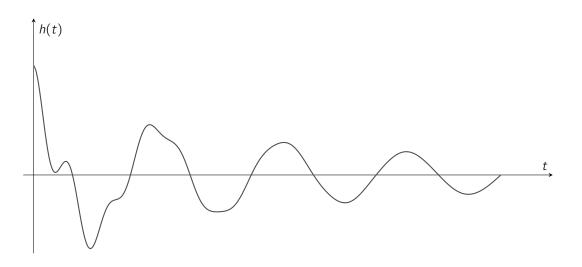
IV: I do not know

Domanda 5

Which type of LTI system may produce the impulse response h(t) represented in the picture?

Potenziali risposte:

I: first order


II: second order

III: at least third order

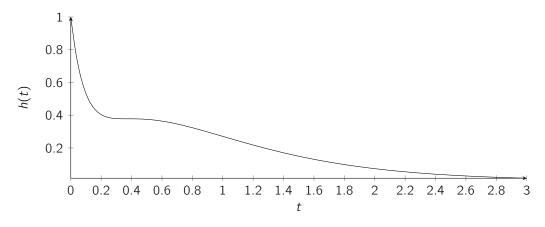
IV: I do not know

Domanda 6

Which type of LTI system may produce the impulse response h(t) represented in the picture?

I: first order

II: second order


III: third order

IV: at least fourth order

V: I do not know

Domanda 7

Which type of LTI system may produce the impulse response h(t) represented in the picture?

Potenziali risposte:

I: first order

II: second order

III: at least third order

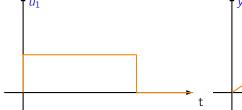
For which value of a are the equilibria of the continuous-time autonomous LTI system $\dot{y} = ay$ asymptotically stable?

Potenziali risposte:

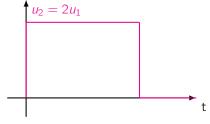
I: a < 0

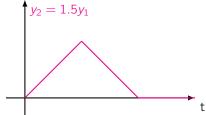
II: $a \le 0$

III: a = 0


IV: $a \ge 0$

V: a > 0


VI: I do not know


Domanda 9

Consider a dynamical system whose response to the input u_1 below, starting from null initial conditions, is the output y_1 . Consider also that the response of this system to the input u_2 below, again starting from null initial conditions, is the output u_2 . Is this dynamical system an LTI one?

Potenziali risposte:

I: yes

II: no

III: it depends on the actual values of u_1 and y_1

IV: I do not know

Domanda 10

The impulse response associated to the system $\dot{y} = -0.5y + 3u$ is equal to . . .

I: $e^{0.5t}$

II: $e^{-0.5t}$

III: $0.5e^{0.5t}$

IV: $-0.5e^{-0.5t}$

V: 3*e*^{0.5}t

VI: $3e^{-0.5t}$

VII: $e^{0.5t}$ for $t \ge 0$, 0 otherwise

VIII: $e^{-0.5t}$ for $t \ge 0$, 0 otherwise

IX: $0.5e^{0.5t}$ for $t \ge 0$, 0 otherwise

X: $-0.5e^{-0.5t}$ for $t \ge 0$, 0 otherwise

XI: $3e^{0.5t}$ for $t \ge 0$, 0 otherwise

XII: $3e^{-0.5t}$ for $t \ge 0$, 0 otherwise

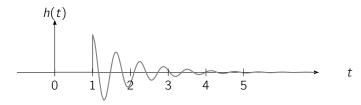
XIII: I do not know

Domanda 11

The impulse response of a LTI system contains all the information that is needed to compute the trajectories of that system for every input u and initial condition y_0 .

Potenziali risposte:

I: true


II: false

III: it depends

IV: I do not know

Domanda 12

Consider the impulse response h(t) given by the plot below, where the distance between consecutive marks in the axes indicate one unit.

Assume that for t < 0 the LTI system characterized by this impulse response is in equilibrium, i.e., that y(t) = 0 for t < 0, and that and also u(t) = 0 for t < 0. Assume then u(t) to be a Dirac delta centered in t - 10, i.e., $u(t) = \delta(t - 10)$. Then the output of the system at time 10.0001 is . . .

I: y(10.0001) < 0

II: y(10.0001) = 0

III: y(10.0001) > 0

IV: I do not know

Domanda 13

The convolution of a rectangular signal with itself leads to . . .

Potenziali risposte:

I: another rectangle

II: a triangle

III: a trapezoid

IV: it depends on the length of the rectangle

V: I do not know

Domanda 14

Convolution is a nonlinear operator.

Potenziali risposte:

I: true

II: false

III: it depends on the actual signals that are convolved

IV: I do not know

Domanda 15

The equilibria of the system

$$\dot{x} = f(x) = x^2 - 2x - 3$$

are . . .

Potenziali risposte:

l: -1

II: 3

III: both -1 and 3

The origin (u, y) = (0, 0) is always an equilibrium for a LTI system of the type $\dot{y} = Ay + Bu$.

Potenziali risposte:

I: true

II: false

III: it depends

IV: I do not know

Domanda 17

The origin is always an equilibrium for a generic system of the type $\dot{y} = f(y, u)$.

Potenziali risposte:

I: true

II: false

III: it depends

IV: I do not know

Domanda 18

Is the continuous time LTI system characterized by the impulse response

$$h(t) = \begin{cases} e^{-2t} & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

BIBO stable?

Potenziali risposte:

I: yes

II: no

III: it depends

IV: I don't know

Domanda 19

Is the continuous time LTI system characterized by the impulse response

$$h(t) = \begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

BIBO stable?

I: yes

II: no

III: it depends

IV: I don't know

Domanda 20

Is the continuous time LTI system characterized by the impulse response

$$h(t) = \begin{cases} \frac{1}{t+1} & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

BIBO stable?

Potenziali risposte:

I: yes

II: no

III: it depends

IV: I don't know

Domanda 21

Is the transfer function corresponding to the impulse response

$$h(t) = \begin{cases} \frac{1}{t+1} & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

a rational transfer function?

Potenziali risposte:

I: yes

II: no

III: it depends

IV: I don't know

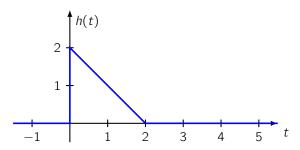
Domanda 22

Is the transfer function corresponding to the impulse response

$$h(t) = \begin{cases} \frac{1}{t+1} & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

a rational transfer function?

I: yes


II: no

III: it depends

IV: I don't know

Domanda 23

Consider a continuous time LTI system with impulse response h(t) is equal to

and the input signal u(t) equal to

The forced response of the system at t = 5 is then equal to ...

Potenziali risposte:

l: 1

II: 1/6

III: 6

IV: I don't know

Domanda 24

Can a delayed LTI system (i.e., a LTI system whose impulse response contains a delay) be BIBO stable?

Potenziali risposte:

I: yes

II: no

III: it depends

Can a non-causal LTI system be BIBO stable?

Potenziali risposte:

I: yes

II: no

III: it depends

IV: I do not know

Domanda 26

Can a continuous time LTI system whose transfer function have some poles on the imaginary axis be BIBO stable?

Potenziali risposte:

I: yes

II: no

III: it depends

IV: I do not know

Domanda 27

Consider a continuous time input output LTI system of order 4 for which all the poles of its transfer function are distinct. Must the associated impulse response comprise at least one mode of the type $e^{\lambda t}$ with $\lambda \in \mathbb{R}$?

Potenziali risposte:

I: yes

II: no

III: it depends

IV: I don't know

Domanda 28

Consider a continuous time input output LTI system of order 3 for which all the poles of its transfer function are distinct. Must the associated impulse response comprise at least one mode of the type $e^{\lambda t}$ with $\lambda \in \mathbb{R}$?

Potenziali risposte:

I: yes

II: no

III: it depends

How would one Laplace-transform the ODE $\ddot{y} = \dot{y} + u$, assuming that all the initial conditions are 0?

Potenziali risposte:

I:
$$s^{-3}Y = s^{-1}Y + U$$

II:
$$s^3Y = sY + U$$

III: I do not know

Domanda 30

To what does $\frac{1}{s}$ correspond, from an intuitive perspective, if we consider Laplace transforms of continuous time signals?

Potenziali risposte:

I: a derivative

II: an integrator

III: a multiplication in frequency

IV: I do not know

Domanda 31

What is the time constant associated to the continuous time LTI system whose transfer function is $\frac{1}{s+3}$?

Potenziali risposte:

I: 0.3

II: 3

III: 1/3

IV: undefined

V: I do not know

Domanda 32

$$\mathcal{L}(\ddot{x}) = ?$$

Potenziali risposte:

I:
$$s^2X(s) + sx(0) + \dot{x}(0)$$

II:
$$s^2X(s) - sx(0) - \dot{x}(0)$$

III:
$$s^2X(s) + s\dot{x}(0) + x(0)$$

IV:
$$s^2X(s) - s\dot{x}(0) - x(0)$$

$$\mathcal{L}(t^n e^{at}) = ?$$

Potenziali risposte:

1:
$$\frac{n!}{(s-a)^n}$$

II:
$$\frac{n!}{(s-a)^{n+1}}$$

III:
$$\frac{n!}{(s+a)^n}$$

IV:
$$\frac{n!}{(s+a)^{n+1}}$$

Domanda 34

Consider writing the free evolution of a continuous time LTI system as a sum of modes, i.e.,

$$y_{\mathrm{fe}}(t) = \sum_{i} c_i t^{m_i} \exp(\alpha_i t) \cos(\omega_i t + \phi_i).$$

Which of the various parameters above may change with the initial conditions (i.e., y(0), $\dot{y}(0)$, $\ddot{y}(0)$, ...) of the system?

Potenziali risposte:

I: only the residuals c_i and the phase shifts ϕ_i

II: only the orders of the modes m_i

III: only the time constants $\left|\frac{1}{\alpha_i}\right|$

IV: only the frequencies ω_i

V: I do not know

Domanda 35

Which measurement unit is associated to s in a Laplace transform of a signal y(t)?

Potenziali risposte:

I: seconds

II: seconds⁻¹

III: hours

 $IV: hours^{-1}$

V: none of the above

VI: I do not know

Domanda 36

The number of potentially different modes that compose the impulse response of a continuous time LTI system is . . .

- I: equal to the number of zeros of its transfer function, counted with their multiplicity
- II: at most equal to the number of zeros of its transfer function, counted with their multiplicity
- III: equal to the number of poles of its transfer function, counted with their multiplicity
- IV: at most equal to the number of poles of its transfer function, counted with their multiplicity
- V: I do not know

Domanda 37

Every continuous time LTI system admits a rational transfer function.

Potenziali risposte:

I: true

II: false

III: it depends on the system

IV: I do not know

Domanda 38

The BIBO stability properties of a continuous time LTI system depend on the position of the zeros of the transfer function of the system, assuming there are no zero poles cancellations.

Potenziali risposte:

I: true

II: false

III: it depends on the system

IV: I do not know

Domanda 39

Changing the zeros of a transfer function of an LTI system means changing the transient associated to the step response of that system.

Potenziali risposte:

I: true

II: false

III: it depends on the system