
FOUNDATIONS OF SIGNALS AND SYSTEMS
Solved exercises and homework assignment on:

Fourier series in MatLab
Prof. T. Erseghe

Observe the outcome of truncated Fourier series, and appreciate the presence
of the Gibbs’ phenomenon at discontinuities. Practice yourself with numerically
evaluated Fourier coefficients, to be able to represent any periodic signal through
its (truncated) Fourier series.

Carefully read the solved exercises first and then do your homework. For
each question in the homework there is a solution, which you can read after
trying to solve it yourself to verify the adequacy of the method you used, as
well as the correctness of your result.

Solved exercises.

Solve the following MatLab problems:

1. Consider a rectangular wave of period Tp = 5 and duty cycle d = 1
2 , and

its truncated Fourier series

sN (t) =

N∑
k=−N

ak e
jkω0t , ω0 =

2π

Tp
, ak = d sinc(kd) .

In the same plot, show how the truncated series approximates the square
wave for N = 5, 10, 20, 50, 100, 200, and observe the Gibbs phenomenon in
the range [0, 12Tp]. Use a very small sampling spacing T for the represen-
tation in MatLab.

2. Consider again a rectangular wave s(t) of period Tp = 5 and duty cycle
d = 1

2 and its truncated Fourier series

sN (t) =

N∑
k=−N

ak e
jkω0t , ω0 =

2π

Tp
,

where the Fourier coefficients are now approximated via the numerical
integration

ak =
1

Tp

∫ Tp

0

s(t)e−jkω0tdt ' bk =
1

Tp
· T

M−1∑
n=0

s(nT ) e−jkω0nT ,

for T = Tp/M and a large M indicating the number of samples in the
period. Compare, for N = 100, the different output obtained by the
true coefficients ak and the approximated coefficients bk, using M =
200, 500, 1000.

Solutions.



1. In the code we first define constants and set the sampling spacing to a
very small value to fully capture the Gibbs phenomenon. The different
truncated series are obtained by a loop in N . Inside this loop, the trun-
cated series is computed by first initializing a vector to zero values, and
by then adding the contribution of each single Fourier coefficient, which
is performed through a cycle in k. Before plotting, the imaginary part is
removed, since this only accounts for numerical errors. The plots super-
position is obtained by freezing the figure through an hold command.

Tp = 5; % period

d = .5; % duty cycle

om0 = 2*pi/Tp; % omega0

T = 0.001; % sampling spacing

t = 0:T:Tp/2;

s = square_wave(t,Tp,d);

figure

plot(t,s)

grid

axis ([0 Tp/2 -.2 1.2])

xlabel('t')
ylabel('s(t)')
hold on

for N = [5 ,10 ,20 ,50 ,100 ,200]

tfs = zeros(size(t)); % truncated Fourier

series

for k = -N:N % cicle on coefficients

ak = d*sinc(k*d); % Fourier coefficient

tfs = tfs + ak*exp(1i*k*om0*t);

end

tfs = real(tfs); % prevent numerical errors

plot(t,tfs)

end

legend('N=\ infty ','5','10','20','50','100','200')
title('truncated Fourier series ')

function s = square_wave(t,Tp,d)

t1 = mod(t/Tp ,1);

s = rect(t1/d) + rect((t1 -1)/d);

end

function s = rect(t)

s = (abs(t) <.5)+.5*( abs(t)==.5);

end



2. This exercise repeats the previous one in its first part, then re-evaluates the
coefficients by numerical integration trough a cycle on M where samples
nT and s(nT ) are first stored, then used for calculating the approximate
coefficients through a sum. The plot is zooming on the signal part that
better evidences details, to appreciate how only M = 1000 is able to
closely match the true result.

Tp = 5; % period

d = .5; % duty cycle

om0 = 2*pi/Tp; % omega0

T = 0.001; % sampling spacing

N = 100; % number of Fourier coefficients

t = 0:T:Tp/2;

s = square_wave(t,Tp,d);

figure

plot(t,s)

grid

axis ([1 1.3 .85 1.15])

xlabel('t')
ylabel('s(t)')
hold on

% true coefficients

tfs = zeros(size(t)); % truncated Fourier series

for k = -N:N % cicle on coefficients

ak = d*sinc(k*d); % Fourier coefficient

tfs = tfs + ak*exp(1i*k*om0*t);

end

tfs = real(tfs); % prevent numerical errors



plot(t,tfs)

% numerical coefficients

for M = [200 ,500 ,1000]

tfs = zeros(size(t)); % truncated Fourier

series

nT = (0:M-1)*Tp/M;

snT = square_wave(nT ,Tp ,d);

for k = -N:N % cicle on coefficients

bk = sum(snT.*exp(-1i*k*om0*nT))/M;

tfs = tfs + bk*exp(1i*k*om0*t);

end

tfs = real(tfs); % prevent numerical errors

plot(t,tfs)

end

legend('signal ','true coefs ','M=200','M=500','M
=1000 ')

title('approx truncated Fourier series ')

function s = square_wave(t,Tp,d)

t1 = mod(t/Tp ,1);

s = rect(t1/d) + rect((t1 -1)/d);

end

function s = rect(t)

s = (abs(t) <.5)+.5*( abs(t)==.5);

end



Homework assignment.

Solve the following MatLab problems:

1. Consider the triangular wave

s(t) = rep
Tp

triang( t
dTp

) ,

period Tp = 5 and duty cycle d = 1
2 , and its truncated Fourier series

sN (t) =

N∑
k=−N

ak e
jkω0t , ω0 =

2π

Tp
, ak = d sinc2(kd) .

In the same plot, show how the truncated series approximates the square
wave for N = 5, 10, 20, 50, 100, 200 in the range [0, 12Tp]. Can we see
the Gibbs phenomenon? Use a very small sampling spacing T for the
representation in MatLab.

2. Consider a periodic signal of period Tp = 3, defined in a period as

s(t) =

{
t 0 < t < 1
1 1 < t < 2
0 2 < t < 3

so that in MatLab we can have

function s = signal(t)

t1 = mod(t,3);

s = t1.*(t1 <1) + (t1 >=1) .*(t1 <2);

end

Evaluate its Fourier coefficients by resorting to numerical integration, as
in solved exercise 2, with M = 103 and 104, and show the corresponding
truncated Fourier series for N = 100. Is the Gibbs phenomenon visible?
Where?



Solutions.

1. The code can mimic that of solved exercise 1, but since the triangular
wave has no discontinuities, no Gibbs phenomenon can be observed.

Tp = 5; % period

d = .3; % duty cycle

om0 = 2*pi/Tp; % omega0

T = 0.001; % sampling spacing

t = 0:T:Tp/2;

s = triang_wave(t,Tp,d);

figure

plot(t,s)

grid

axis ([0 Tp/2 -.2 1.2])

xlabel('t')
ylabel('s(t)')
hold on

for N = [5 ,10 ,20 ,50 ,100 ,200]

tfs = zeros(size(t)); % truncated Fourier

series

for k = -N:N % cicle on coefficients

ak = d*sinc(k*d)^2; % Fourier coefficient

tfs = tfs + ak*exp(1i*k*om0*t);

end

tfs = real(tfs); % prevent numerical errors

plot(t,tfs)

end

legend('N=\ infty ','5','10','20','50','100','200')
title('truncated Fourier series ')

function s = triang_wave(t,Tp,d)

t1 = mod(t/Tp ,1);

s = triang(t1/d) + triang ((t1 -1)/d);

end

function s = triang(t)

s = (abs(t) <1).*(1-abs(t));

end



2. This exercise repeats solved exercise 2 by substituting the signal values.
Note that with M = 103 we already obtain a very reliable result, showing
that the Gibbs phenomenon only appears at discontinuities.

Tp = 3; % period

om0 = 2*pi/Tp; % omega0

T = 0.001; % sampling spacing

N = 100; % number of Fourier coefficients

t = 0:T:Tp;

s = signal(t);

figure

plot(t,s)

grid

xlabel('t')
ylabel('s(t)')
hold on

% numerical coefficients

for M = [1e3 ,1e4]

tfs = zeros(size(t)); % truncated Fourier

series

nT = (0:M-1)*Tp/M;

snT = signal(nT);

for k = -N:N % cicle on coefficients

bk = sum(snT.*exp(-1i*k*om0*nT))/M;

tfs = tfs + bk*exp(1i*k*om0*t);

end

tfs = real(tfs); % prevent numerical errors

plot(t,tfs)



end

legend('signal ','M=1000 ','M=10000 ')
title('approx truncated Fourier series ')


